| From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001 |
| From: "Jason A. Donenfeld" <Jason@zx2c4.com> |
| Date: Fri, 8 Nov 2019 13:22:32 +0100 |
| Subject: [PATCH] crypto: curve25519 - generic C library implementations |
| |
| commit 0ed42a6f431e930b2e8fae21955406e09fe75d70 upstream. |
| |
| This contains two formally verified C implementations of the Curve25519 |
| scalar multiplication function, one for 32-bit systems, and one for |
| 64-bit systems whose compiler supports efficient 128-bit integer types. |
| Not only are these implementations formally verified, but they are also |
| the fastest available C implementations. They have been modified to be |
| friendly to kernel space and to be generally less horrendous looking, |
| but still an effort has been made to retain their formally verified |
| characteristic, and so the C might look slightly unidiomatic. |
| |
| The 64-bit version comes from HACL*: https://github.com/project-everest/hacl-star |
| The 32-bit version comes from Fiat: https://github.com/mit-plv/fiat-crypto |
| |
| Information: https://cr.yp.to/ecdh.html |
| |
| Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
| [ardb: - move from lib/zinc to lib/crypto |
| - replace .c #includes with Kconfig based object selection |
| - drop simd handling and simplify support for per-arch versions ] |
| Signed-off-by: Ard Biesheuvel <ardb@kernel.org> |
| Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> |
| Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> |
| --- |
| include/crypto/curve25519.h | 71 +++ |
| lib/crypto/Kconfig | 25 + |
| lib/crypto/Makefile | 5 + |
| lib/crypto/curve25519-fiat32.c | 864 +++++++++++++++++++++++++++++++++ |
| lib/crypto/curve25519-hacl64.c | 788 ++++++++++++++++++++++++++++++ |
| lib/crypto/curve25519.c | 25 + |
| 6 files changed, 1778 insertions(+) |
| create mode 100644 include/crypto/curve25519.h |
| create mode 100644 lib/crypto/curve25519-fiat32.c |
| create mode 100644 lib/crypto/curve25519-hacl64.c |
| create mode 100644 lib/crypto/curve25519.c |
| |
| --- /dev/null |
| +++ b/include/crypto/curve25519.h |
| @@ -0,0 +1,71 @@ |
| +/* SPDX-License-Identifier: GPL-2.0 OR MIT */ |
| +/* |
| + * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| + */ |
| + |
| +#ifndef CURVE25519_H |
| +#define CURVE25519_H |
| + |
| +#include <crypto/algapi.h> // For crypto_memneq. |
| +#include <linux/types.h> |
| +#include <linux/random.h> |
| + |
| +enum curve25519_lengths { |
| + CURVE25519_KEY_SIZE = 32 |
| +}; |
| + |
| +extern const u8 curve25519_null_point[]; |
| +extern const u8 curve25519_base_point[]; |
| + |
| +void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], |
| + const u8 scalar[CURVE25519_KEY_SIZE], |
| + const u8 point[CURVE25519_KEY_SIZE]); |
| + |
| +void curve25519_arch(u8 out[CURVE25519_KEY_SIZE], |
| + const u8 scalar[CURVE25519_KEY_SIZE], |
| + const u8 point[CURVE25519_KEY_SIZE]); |
| + |
| +void curve25519_base_arch(u8 pub[CURVE25519_KEY_SIZE], |
| + const u8 secret[CURVE25519_KEY_SIZE]); |
| + |
| +static inline |
| +bool __must_check curve25519(u8 mypublic[CURVE25519_KEY_SIZE], |
| + const u8 secret[CURVE25519_KEY_SIZE], |
| + const u8 basepoint[CURVE25519_KEY_SIZE]) |
| +{ |
| + if (IS_ENABLED(CONFIG_CRYPTO_ARCH_HAVE_LIB_CURVE25519)) |
| + curve25519_arch(mypublic, secret, basepoint); |
| + else |
| + curve25519_generic(mypublic, secret, basepoint); |
| + return crypto_memneq(mypublic, curve25519_null_point, |
| + CURVE25519_KEY_SIZE); |
| +} |
| + |
| +static inline bool |
| +__must_check curve25519_generate_public(u8 pub[CURVE25519_KEY_SIZE], |
| + const u8 secret[CURVE25519_KEY_SIZE]) |
| +{ |
| + if (unlikely(!crypto_memneq(secret, curve25519_null_point, |
| + CURVE25519_KEY_SIZE))) |
| + return false; |
| + |
| + if (IS_ENABLED(CONFIG_CRYPTO_ARCH_HAVE_LIB_CURVE25519)) |
| + curve25519_base_arch(pub, secret); |
| + else |
| + curve25519_generic(pub, secret, curve25519_base_point); |
| + return crypto_memneq(pub, curve25519_null_point, CURVE25519_KEY_SIZE); |
| +} |
| + |
| +static inline void curve25519_clamp_secret(u8 secret[CURVE25519_KEY_SIZE]) |
| +{ |
| + secret[0] &= 248; |
| + secret[31] = (secret[31] & 127) | 64; |
| +} |
| + |
| +static inline void curve25519_generate_secret(u8 secret[CURVE25519_KEY_SIZE]) |
| +{ |
| + get_random_bytes_wait(secret, CURVE25519_KEY_SIZE); |
| + curve25519_clamp_secret(secret); |
| +} |
| + |
| +#endif /* CURVE25519_H */ |
| --- a/lib/crypto/Kconfig |
| +++ b/lib/crypto/Kconfig |
| @@ -34,6 +34,31 @@ config CRYPTO_LIB_CHACHA |
| by either the generic implementation or an arch-specific one, if one |
| is available and enabled. |
| |
| +config CRYPTO_ARCH_HAVE_LIB_CURVE25519 |
| + tristate |
| + help |
| + Declares whether the architecture provides an arch-specific |
| + accelerated implementation of the Curve25519 library interface, |
| + either builtin or as a module. |
| + |
| +config CRYPTO_LIB_CURVE25519_GENERIC |
| + tristate |
| + help |
| + This symbol can be depended upon by arch implementations of the |
| + Curve25519 library interface that require the generic code as a |
| + fallback, e.g., for SIMD implementations. If no arch specific |
| + implementation is enabled, this implementation serves the users |
| + of CRYPTO_LIB_CURVE25519. |
| + |
| +config CRYPTO_LIB_CURVE25519 |
| + tristate "Curve25519 scalar multiplication library" |
| + depends on CRYPTO_ARCH_HAVE_LIB_CURVE25519 || !CRYPTO_ARCH_HAVE_LIB_CURVE25519 |
| + select CRYPTO_LIB_CURVE25519_GENERIC if CRYPTO_ARCH_HAVE_LIB_CURVE25519=n |
| + help |
| + Enable the Curve25519 library interface. This interface may be |
| + fulfilled by either the generic implementation or an arch-specific |
| + one, if one is available and enabled. |
| + |
| config CRYPTO_LIB_DES |
| tristate |
| |
| --- a/lib/crypto/Makefile |
| +++ b/lib/crypto/Makefile |
| @@ -10,6 +10,11 @@ libaes-y := aes.o |
| obj-$(CONFIG_CRYPTO_LIB_ARC4) += libarc4.o |
| libarc4-y := arc4.o |
| |
| +obj-$(CONFIG_CRYPTO_LIB_CURVE25519_GENERIC) += libcurve25519.o |
| +libcurve25519-y := curve25519-fiat32.o |
| +libcurve25519-$(CONFIG_ARCH_SUPPORTS_INT128) := curve25519-hacl64.o |
| +libcurve25519-y += curve25519.o |
| + |
| obj-$(CONFIG_CRYPTO_LIB_DES) += libdes.o |
| libdes-y := des.o |
| |
| --- /dev/null |
| +++ b/lib/crypto/curve25519-fiat32.c |
| @@ -0,0 +1,864 @@ |
| +// SPDX-License-Identifier: GPL-2.0 OR MIT |
| +/* |
| + * Copyright (C) 2015-2016 The fiat-crypto Authors. |
| + * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| + * |
| + * This is a machine-generated formally verified implementation of Curve25519 |
| + * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally |
| + * machine generated, it has been tweaked to be suitable for use in the kernel. |
| + * It is optimized for 32-bit machines and machines that cannot work efficiently |
| + * with 128-bit integer types. |
| + */ |
| + |
| +#include <asm/unaligned.h> |
| +#include <crypto/curve25519.h> |
| +#include <linux/string.h> |
| + |
| +/* fe means field element. Here the field is \Z/(2^255-19). An element t, |
| + * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77 |
| + * t[3]+2^102 t[4]+...+2^230 t[9]. |
| + * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc. |
| + * Multiplication and carrying produce fe from fe_loose. |
| + */ |
| +typedef struct fe { u32 v[10]; } fe; |
| + |
| +/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc |
| + * Addition and subtraction produce fe_loose from (fe, fe). |
| + */ |
| +typedef struct fe_loose { u32 v[10]; } fe_loose; |
| + |
| +static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s) |
| +{ |
| + /* Ignores top bit of s. */ |
| + u32 a0 = get_unaligned_le32(s); |
| + u32 a1 = get_unaligned_le32(s+4); |
| + u32 a2 = get_unaligned_le32(s+8); |
| + u32 a3 = get_unaligned_le32(s+12); |
| + u32 a4 = get_unaligned_le32(s+16); |
| + u32 a5 = get_unaligned_le32(s+20); |
| + u32 a6 = get_unaligned_le32(s+24); |
| + u32 a7 = get_unaligned_le32(s+28); |
| + h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */ |
| + h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */ |
| + h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */ |
| + h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */ |
| + h[4] = (a3>> 6); /* (32- 6) = 26 */ |
| + h[5] = a4&((1<<25)-1); /* 25 */ |
| + h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */ |
| + h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */ |
| + h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */ |
| + h[9] = (a7>> 6)&((1<<25)-1); /* 25 */ |
| +} |
| + |
| +static __always_inline void fe_frombytes(fe *h, const u8 *s) |
| +{ |
| + fe_frombytes_impl(h->v, s); |
| +} |
| + |
| +static __always_inline u8 /*bool*/ |
| +addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| +{ |
| + /* This function extracts 25 bits of result and 1 bit of carry |
| + * (26 total), so a 32-bit intermediate is sufficient. |
| + */ |
| + u32 x = a + b + c; |
| + *low = x & ((1 << 25) - 1); |
| + return (x >> 25) & 1; |
| +} |
| + |
| +static __always_inline u8 /*bool*/ |
| +addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| +{ |
| + /* This function extracts 26 bits of result and 1 bit of carry |
| + * (27 total), so a 32-bit intermediate is sufficient. |
| + */ |
| + u32 x = a + b + c; |
| + *low = x & ((1 << 26) - 1); |
| + return (x >> 26) & 1; |
| +} |
| + |
| +static __always_inline u8 /*bool*/ |
| +subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| +{ |
| + /* This function extracts 25 bits of result and 1 bit of borrow |
| + * (26 total), so a 32-bit intermediate is sufficient. |
| + */ |
| + u32 x = a - b - c; |
| + *low = x & ((1 << 25) - 1); |
| + return x >> 31; |
| +} |
| + |
| +static __always_inline u8 /*bool*/ |
| +subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low) |
| +{ |
| + /* This function extracts 26 bits of result and 1 bit of borrow |
| + *(27 total), so a 32-bit intermediate is sufficient. |
| + */ |
| + u32 x = a - b - c; |
| + *low = x & ((1 << 26) - 1); |
| + return x >> 31; |
| +} |
| + |
| +static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz) |
| +{ |
| + t = -!!t; /* all set if nonzero, 0 if 0 */ |
| + return (t&nz) | ((~t)&z); |
| +} |
| + |
| +static __always_inline void fe_freeze(u32 out[10], const u32 in1[10]) |
| +{ |
| + { const u32 x17 = in1[9]; |
| + { const u32 x18 = in1[8]; |
| + { const u32 x16 = in1[7]; |
| + { const u32 x14 = in1[6]; |
| + { const u32 x12 = in1[5]; |
| + { const u32 x10 = in1[4]; |
| + { const u32 x8 = in1[3]; |
| + { const u32 x6 = in1[2]; |
| + { const u32 x4 = in1[1]; |
| + { const u32 x2 = in1[0]; |
| + { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20); |
| + { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23); |
| + { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26); |
| + { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29); |
| + { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32); |
| + { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35); |
| + { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38); |
| + { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41); |
| + { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44); |
| + { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47); |
| + { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff); |
| + { u32 x50 = (x49 & 0x3ffffed); |
| + { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52); |
| + { u32 x54 = (x49 & 0x1ffffff); |
| + { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56); |
| + { u32 x58 = (x49 & 0x3ffffff); |
| + { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60); |
| + { u32 x62 = (x49 & 0x1ffffff); |
| + { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64); |
| + { u32 x66 = (x49 & 0x3ffffff); |
| + { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68); |
| + { u32 x70 = (x49 & 0x1ffffff); |
| + { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72); |
| + { u32 x74 = (x49 & 0x3ffffff); |
| + { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76); |
| + { u32 x78 = (x49 & 0x1ffffff); |
| + { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80); |
| + { u32 x82 = (x49 & 0x3ffffff); |
| + { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84); |
| + { u32 x86 = (x49 & 0x1ffffff); |
| + { u32 x88; addcarryx_u25(x85, x47, x86, &x88); |
| + out[0] = x52; |
| + out[1] = x56; |
| + out[2] = x60; |
| + out[3] = x64; |
| + out[4] = x68; |
| + out[5] = x72; |
| + out[6] = x76; |
| + out[7] = x80; |
| + out[8] = x84; |
| + out[9] = x88; |
| + }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +static __always_inline void fe_tobytes(u8 s[32], const fe *f) |
| +{ |
| + u32 h[10]; |
| + fe_freeze(h, f->v); |
| + s[0] = h[0] >> 0; |
| + s[1] = h[0] >> 8; |
| + s[2] = h[0] >> 16; |
| + s[3] = (h[0] >> 24) | (h[1] << 2); |
| + s[4] = h[1] >> 6; |
| + s[5] = h[1] >> 14; |
| + s[6] = (h[1] >> 22) | (h[2] << 3); |
| + s[7] = h[2] >> 5; |
| + s[8] = h[2] >> 13; |
| + s[9] = (h[2] >> 21) | (h[3] << 5); |
| + s[10] = h[3] >> 3; |
| + s[11] = h[3] >> 11; |
| + s[12] = (h[3] >> 19) | (h[4] << 6); |
| + s[13] = h[4] >> 2; |
| + s[14] = h[4] >> 10; |
| + s[15] = h[4] >> 18; |
| + s[16] = h[5] >> 0; |
| + s[17] = h[5] >> 8; |
| + s[18] = h[5] >> 16; |
| + s[19] = (h[5] >> 24) | (h[6] << 1); |
| + s[20] = h[6] >> 7; |
| + s[21] = h[6] >> 15; |
| + s[22] = (h[6] >> 23) | (h[7] << 3); |
| + s[23] = h[7] >> 5; |
| + s[24] = h[7] >> 13; |
| + s[25] = (h[7] >> 21) | (h[8] << 4); |
| + s[26] = h[8] >> 4; |
| + s[27] = h[8] >> 12; |
| + s[28] = (h[8] >> 20) | (h[9] << 6); |
| + s[29] = h[9] >> 2; |
| + s[30] = h[9] >> 10; |
| + s[31] = h[9] >> 18; |
| +} |
| + |
| +/* h = f */ |
| +static __always_inline void fe_copy(fe *h, const fe *f) |
| +{ |
| + memmove(h, f, sizeof(u32) * 10); |
| +} |
| + |
| +static __always_inline void fe_copy_lt(fe_loose *h, const fe *f) |
| +{ |
| + memmove(h, f, sizeof(u32) * 10); |
| +} |
| + |
| +/* h = 0 */ |
| +static __always_inline void fe_0(fe *h) |
| +{ |
| + memset(h, 0, sizeof(u32) * 10); |
| +} |
| + |
| +/* h = 1 */ |
| +static __always_inline void fe_1(fe *h) |
| +{ |
| + memset(h, 0, sizeof(u32) * 10); |
| + h->v[0] = 1; |
| +} |
| + |
| +static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| +{ |
| + { const u32 x20 = in1[9]; |
| + { const u32 x21 = in1[8]; |
| + { const u32 x19 = in1[7]; |
| + { const u32 x17 = in1[6]; |
| + { const u32 x15 = in1[5]; |
| + { const u32 x13 = in1[4]; |
| + { const u32 x11 = in1[3]; |
| + { const u32 x9 = in1[2]; |
| + { const u32 x7 = in1[1]; |
| + { const u32 x5 = in1[0]; |
| + { const u32 x38 = in2[9]; |
| + { const u32 x39 = in2[8]; |
| + { const u32 x37 = in2[7]; |
| + { const u32 x35 = in2[6]; |
| + { const u32 x33 = in2[5]; |
| + { const u32 x31 = in2[4]; |
| + { const u32 x29 = in2[3]; |
| + { const u32 x27 = in2[2]; |
| + { const u32 x25 = in2[1]; |
| + { const u32 x23 = in2[0]; |
| + out[0] = (x5 + x23); |
| + out[1] = (x7 + x25); |
| + out[2] = (x9 + x27); |
| + out[3] = (x11 + x29); |
| + out[4] = (x13 + x31); |
| + out[5] = (x15 + x33); |
| + out[6] = (x17 + x35); |
| + out[7] = (x19 + x37); |
| + out[8] = (x21 + x39); |
| + out[9] = (x20 + x38); |
| + }}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +/* h = f + g |
| + * Can overlap h with f or g. |
| + */ |
| +static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g) |
| +{ |
| + fe_add_impl(h->v, f->v, g->v); |
| +} |
| + |
| +static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| +{ |
| + { const u32 x20 = in1[9]; |
| + { const u32 x21 = in1[8]; |
| + { const u32 x19 = in1[7]; |
| + { const u32 x17 = in1[6]; |
| + { const u32 x15 = in1[5]; |
| + { const u32 x13 = in1[4]; |
| + { const u32 x11 = in1[3]; |
| + { const u32 x9 = in1[2]; |
| + { const u32 x7 = in1[1]; |
| + { const u32 x5 = in1[0]; |
| + { const u32 x38 = in2[9]; |
| + { const u32 x39 = in2[8]; |
| + { const u32 x37 = in2[7]; |
| + { const u32 x35 = in2[6]; |
| + { const u32 x33 = in2[5]; |
| + { const u32 x31 = in2[4]; |
| + { const u32 x29 = in2[3]; |
| + { const u32 x27 = in2[2]; |
| + { const u32 x25 = in2[1]; |
| + { const u32 x23 = in2[0]; |
| + out[0] = ((0x7ffffda + x5) - x23); |
| + out[1] = ((0x3fffffe + x7) - x25); |
| + out[2] = ((0x7fffffe + x9) - x27); |
| + out[3] = ((0x3fffffe + x11) - x29); |
| + out[4] = ((0x7fffffe + x13) - x31); |
| + out[5] = ((0x3fffffe + x15) - x33); |
| + out[6] = ((0x7fffffe + x17) - x35); |
| + out[7] = ((0x3fffffe + x19) - x37); |
| + out[8] = ((0x7fffffe + x21) - x39); |
| + out[9] = ((0x3fffffe + x20) - x38); |
| + }}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +/* h = f - g |
| + * Can overlap h with f or g. |
| + */ |
| +static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g) |
| +{ |
| + fe_sub_impl(h->v, f->v, g->v); |
| +} |
| + |
| +static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10]) |
| +{ |
| + { const u32 x20 = in1[9]; |
| + { const u32 x21 = in1[8]; |
| + { const u32 x19 = in1[7]; |
| + { const u32 x17 = in1[6]; |
| + { const u32 x15 = in1[5]; |
| + { const u32 x13 = in1[4]; |
| + { const u32 x11 = in1[3]; |
| + { const u32 x9 = in1[2]; |
| + { const u32 x7 = in1[1]; |
| + { const u32 x5 = in1[0]; |
| + { const u32 x38 = in2[9]; |
| + { const u32 x39 = in2[8]; |
| + { const u32 x37 = in2[7]; |
| + { const u32 x35 = in2[6]; |
| + { const u32 x33 = in2[5]; |
| + { const u32 x31 = in2[4]; |
| + { const u32 x29 = in2[3]; |
| + { const u32 x27 = in2[2]; |
| + { const u32 x25 = in2[1]; |
| + { const u32 x23 = in2[0]; |
| + { u64 x40 = ((u64)x23 * x5); |
| + { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| + { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| + { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| + { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| + { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| + { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| + { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| + { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| + { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| + { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| + { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| + { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| + { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| + { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| + { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| + { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| + { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| + { u64 x58 = ((u64)(0x2 * x38) * x20); |
| + { u64 x59 = (x48 + (x58 << 0x4)); |
| + { u64 x60 = (x59 + (x58 << 0x1)); |
| + { u64 x61 = (x60 + x58); |
| + { u64 x62 = (x47 + (x57 << 0x4)); |
| + { u64 x63 = (x62 + (x57 << 0x1)); |
| + { u64 x64 = (x63 + x57); |
| + { u64 x65 = (x46 + (x56 << 0x4)); |
| + { u64 x66 = (x65 + (x56 << 0x1)); |
| + { u64 x67 = (x66 + x56); |
| + { u64 x68 = (x45 + (x55 << 0x4)); |
| + { u64 x69 = (x68 + (x55 << 0x1)); |
| + { u64 x70 = (x69 + x55); |
| + { u64 x71 = (x44 + (x54 << 0x4)); |
| + { u64 x72 = (x71 + (x54 << 0x1)); |
| + { u64 x73 = (x72 + x54); |
| + { u64 x74 = (x43 + (x53 << 0x4)); |
| + { u64 x75 = (x74 + (x53 << 0x1)); |
| + { u64 x76 = (x75 + x53); |
| + { u64 x77 = (x42 + (x52 << 0x4)); |
| + { u64 x78 = (x77 + (x52 << 0x1)); |
| + { u64 x79 = (x78 + x52); |
| + { u64 x80 = (x41 + (x51 << 0x4)); |
| + { u64 x81 = (x80 + (x51 << 0x1)); |
| + { u64 x82 = (x81 + x51); |
| + { u64 x83 = (x40 + (x50 << 0x4)); |
| + { u64 x84 = (x83 + (x50 << 0x1)); |
| + { u64 x85 = (x84 + x50); |
| + { u64 x86 = (x85 >> 0x1a); |
| + { u32 x87 = ((u32)x85 & 0x3ffffff); |
| + { u64 x88 = (x86 + x82); |
| + { u64 x89 = (x88 >> 0x19); |
| + { u32 x90 = ((u32)x88 & 0x1ffffff); |
| + { u64 x91 = (x89 + x79); |
| + { u64 x92 = (x91 >> 0x1a); |
| + { u32 x93 = ((u32)x91 & 0x3ffffff); |
| + { u64 x94 = (x92 + x76); |
| + { u64 x95 = (x94 >> 0x19); |
| + { u32 x96 = ((u32)x94 & 0x1ffffff); |
| + { u64 x97 = (x95 + x73); |
| + { u64 x98 = (x97 >> 0x1a); |
| + { u32 x99 = ((u32)x97 & 0x3ffffff); |
| + { u64 x100 = (x98 + x70); |
| + { u64 x101 = (x100 >> 0x19); |
| + { u32 x102 = ((u32)x100 & 0x1ffffff); |
| + { u64 x103 = (x101 + x67); |
| + { u64 x104 = (x103 >> 0x1a); |
| + { u32 x105 = ((u32)x103 & 0x3ffffff); |
| + { u64 x106 = (x104 + x64); |
| + { u64 x107 = (x106 >> 0x19); |
| + { u32 x108 = ((u32)x106 & 0x1ffffff); |
| + { u64 x109 = (x107 + x61); |
| + { u64 x110 = (x109 >> 0x1a); |
| + { u32 x111 = ((u32)x109 & 0x3ffffff); |
| + { u64 x112 = (x110 + x49); |
| + { u64 x113 = (x112 >> 0x19); |
| + { u32 x114 = ((u32)x112 & 0x1ffffff); |
| + { u64 x115 = (x87 + (0x13 * x113)); |
| + { u32 x116 = (u32) (x115 >> 0x1a); |
| + { u32 x117 = ((u32)x115 & 0x3ffffff); |
| + { u32 x118 = (x116 + x90); |
| + { u32 x119 = (x118 >> 0x19); |
| + { u32 x120 = (x118 & 0x1ffffff); |
| + out[0] = x117; |
| + out[1] = x120; |
| + out[2] = (x119 + x93); |
| + out[3] = x96; |
| + out[4] = x99; |
| + out[5] = x102; |
| + out[6] = x105; |
| + out[7] = x108; |
| + out[8] = x111; |
| + out[9] = x114; |
| + }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g) |
| +{ |
| + fe_mul_impl(h->v, f->v, g->v); |
| +} |
| + |
| +static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g) |
| +{ |
| + fe_mul_impl(h->v, f->v, g->v); |
| +} |
| + |
| +static __always_inline void |
| +fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g) |
| +{ |
| + fe_mul_impl(h->v, f->v, g->v); |
| +} |
| + |
| +static void fe_sqr_impl(u32 out[10], const u32 in1[10]) |
| +{ |
| + { const u32 x17 = in1[9]; |
| + { const u32 x18 = in1[8]; |
| + { const u32 x16 = in1[7]; |
| + { const u32 x14 = in1[6]; |
| + { const u32 x12 = in1[5]; |
| + { const u32 x10 = in1[4]; |
| + { const u32 x8 = in1[3]; |
| + { const u32 x6 = in1[2]; |
| + { const u32 x4 = in1[1]; |
| + { const u32 x2 = in1[0]; |
| + { u64 x19 = ((u64)x2 * x2); |
| + { u64 x20 = ((u64)(0x2 * x2) * x4); |
| + { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6))); |
| + { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8))); |
| + { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10)); |
| + { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12))); |
| + { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12))); |
| + { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16))); |
| + { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12)))))); |
| + { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17))); |
| + { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17))))); |
| + { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17))); |
| + { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17)))))); |
| + { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17))); |
| + { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17))); |
| + { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17))); |
| + { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17)); |
| + { u64 x36 = ((u64)(0x2 * x18) * x17); |
| + { u64 x37 = ((u64)(0x2 * x17) * x17); |
| + { u64 x38 = (x27 + (x37 << 0x4)); |
| + { u64 x39 = (x38 + (x37 << 0x1)); |
| + { u64 x40 = (x39 + x37); |
| + { u64 x41 = (x26 + (x36 << 0x4)); |
| + { u64 x42 = (x41 + (x36 << 0x1)); |
| + { u64 x43 = (x42 + x36); |
| + { u64 x44 = (x25 + (x35 << 0x4)); |
| + { u64 x45 = (x44 + (x35 << 0x1)); |
| + { u64 x46 = (x45 + x35); |
| + { u64 x47 = (x24 + (x34 << 0x4)); |
| + { u64 x48 = (x47 + (x34 << 0x1)); |
| + { u64 x49 = (x48 + x34); |
| + { u64 x50 = (x23 + (x33 << 0x4)); |
| + { u64 x51 = (x50 + (x33 << 0x1)); |
| + { u64 x52 = (x51 + x33); |
| + { u64 x53 = (x22 + (x32 << 0x4)); |
| + { u64 x54 = (x53 + (x32 << 0x1)); |
| + { u64 x55 = (x54 + x32); |
| + { u64 x56 = (x21 + (x31 << 0x4)); |
| + { u64 x57 = (x56 + (x31 << 0x1)); |
| + { u64 x58 = (x57 + x31); |
| + { u64 x59 = (x20 + (x30 << 0x4)); |
| + { u64 x60 = (x59 + (x30 << 0x1)); |
| + { u64 x61 = (x60 + x30); |
| + { u64 x62 = (x19 + (x29 << 0x4)); |
| + { u64 x63 = (x62 + (x29 << 0x1)); |
| + { u64 x64 = (x63 + x29); |
| + { u64 x65 = (x64 >> 0x1a); |
| + { u32 x66 = ((u32)x64 & 0x3ffffff); |
| + { u64 x67 = (x65 + x61); |
| + { u64 x68 = (x67 >> 0x19); |
| + { u32 x69 = ((u32)x67 & 0x1ffffff); |
| + { u64 x70 = (x68 + x58); |
| + { u64 x71 = (x70 >> 0x1a); |
| + { u32 x72 = ((u32)x70 & 0x3ffffff); |
| + { u64 x73 = (x71 + x55); |
| + { u64 x74 = (x73 >> 0x19); |
| + { u32 x75 = ((u32)x73 & 0x1ffffff); |
| + { u64 x76 = (x74 + x52); |
| + { u64 x77 = (x76 >> 0x1a); |
| + { u32 x78 = ((u32)x76 & 0x3ffffff); |
| + { u64 x79 = (x77 + x49); |
| + { u64 x80 = (x79 >> 0x19); |
| + { u32 x81 = ((u32)x79 & 0x1ffffff); |
| + { u64 x82 = (x80 + x46); |
| + { u64 x83 = (x82 >> 0x1a); |
| + { u32 x84 = ((u32)x82 & 0x3ffffff); |
| + { u64 x85 = (x83 + x43); |
| + { u64 x86 = (x85 >> 0x19); |
| + { u32 x87 = ((u32)x85 & 0x1ffffff); |
| + { u64 x88 = (x86 + x40); |
| + { u64 x89 = (x88 >> 0x1a); |
| + { u32 x90 = ((u32)x88 & 0x3ffffff); |
| + { u64 x91 = (x89 + x28); |
| + { u64 x92 = (x91 >> 0x19); |
| + { u32 x93 = ((u32)x91 & 0x1ffffff); |
| + { u64 x94 = (x66 + (0x13 * x92)); |
| + { u32 x95 = (u32) (x94 >> 0x1a); |
| + { u32 x96 = ((u32)x94 & 0x3ffffff); |
| + { u32 x97 = (x95 + x69); |
| + { u32 x98 = (x97 >> 0x19); |
| + { u32 x99 = (x97 & 0x1ffffff); |
| + out[0] = x96; |
| + out[1] = x99; |
| + out[2] = (x98 + x72); |
| + out[3] = x75; |
| + out[4] = x78; |
| + out[5] = x81; |
| + out[6] = x84; |
| + out[7] = x87; |
| + out[8] = x90; |
| + out[9] = x93; |
| + }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +static __always_inline void fe_sq_tl(fe *h, const fe_loose *f) |
| +{ |
| + fe_sqr_impl(h->v, f->v); |
| +} |
| + |
| +static __always_inline void fe_sq_tt(fe *h, const fe *f) |
| +{ |
| + fe_sqr_impl(h->v, f->v); |
| +} |
| + |
| +static __always_inline void fe_loose_invert(fe *out, const fe_loose *z) |
| +{ |
| + fe t0; |
| + fe t1; |
| + fe t2; |
| + fe t3; |
| + int i; |
| + |
| + fe_sq_tl(&t0, z); |
| + fe_sq_tt(&t1, &t0); |
| + for (i = 1; i < 2; ++i) |
| + fe_sq_tt(&t1, &t1); |
| + fe_mul_tlt(&t1, z, &t1); |
| + fe_mul_ttt(&t0, &t0, &t1); |
| + fe_sq_tt(&t2, &t0); |
| + fe_mul_ttt(&t1, &t1, &t2); |
| + fe_sq_tt(&t2, &t1); |
| + for (i = 1; i < 5; ++i) |
| + fe_sq_tt(&t2, &t2); |
| + fe_mul_ttt(&t1, &t2, &t1); |
| + fe_sq_tt(&t2, &t1); |
| + for (i = 1; i < 10; ++i) |
| + fe_sq_tt(&t2, &t2); |
| + fe_mul_ttt(&t2, &t2, &t1); |
| + fe_sq_tt(&t3, &t2); |
| + for (i = 1; i < 20; ++i) |
| + fe_sq_tt(&t3, &t3); |
| + fe_mul_ttt(&t2, &t3, &t2); |
| + fe_sq_tt(&t2, &t2); |
| + for (i = 1; i < 10; ++i) |
| + fe_sq_tt(&t2, &t2); |
| + fe_mul_ttt(&t1, &t2, &t1); |
| + fe_sq_tt(&t2, &t1); |
| + for (i = 1; i < 50; ++i) |
| + fe_sq_tt(&t2, &t2); |
| + fe_mul_ttt(&t2, &t2, &t1); |
| + fe_sq_tt(&t3, &t2); |
| + for (i = 1; i < 100; ++i) |
| + fe_sq_tt(&t3, &t3); |
| + fe_mul_ttt(&t2, &t3, &t2); |
| + fe_sq_tt(&t2, &t2); |
| + for (i = 1; i < 50; ++i) |
| + fe_sq_tt(&t2, &t2); |
| + fe_mul_ttt(&t1, &t2, &t1); |
| + fe_sq_tt(&t1, &t1); |
| + for (i = 1; i < 5; ++i) |
| + fe_sq_tt(&t1, &t1); |
| + fe_mul_ttt(out, &t1, &t0); |
| +} |
| + |
| +static __always_inline void fe_invert(fe *out, const fe *z) |
| +{ |
| + fe_loose l; |
| + fe_copy_lt(&l, z); |
| + fe_loose_invert(out, &l); |
| +} |
| + |
| +/* Replace (f,g) with (g,f) if b == 1; |
| + * replace (f,g) with (f,g) if b == 0. |
| + * |
| + * Preconditions: b in {0,1} |
| + */ |
| +static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b) |
| +{ |
| + unsigned i; |
| + b = 0 - b; |
| + for (i = 0; i < 10; i++) { |
| + u32 x = f->v[i] ^ g->v[i]; |
| + x &= b; |
| + f->v[i] ^= x; |
| + g->v[i] ^= x; |
| + } |
| +} |
| + |
| +/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/ |
| +static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10]) |
| +{ |
| + { const u32 x20 = in1[9]; |
| + { const u32 x21 = in1[8]; |
| + { const u32 x19 = in1[7]; |
| + { const u32 x17 = in1[6]; |
| + { const u32 x15 = in1[5]; |
| + { const u32 x13 = in1[4]; |
| + { const u32 x11 = in1[3]; |
| + { const u32 x9 = in1[2]; |
| + { const u32 x7 = in1[1]; |
| + { const u32 x5 = in1[0]; |
| + { const u32 x38 = 0; |
| + { const u32 x39 = 0; |
| + { const u32 x37 = 0; |
| + { const u32 x35 = 0; |
| + { const u32 x33 = 0; |
| + { const u32 x31 = 0; |
| + { const u32 x29 = 0; |
| + { const u32 x27 = 0; |
| + { const u32 x25 = 0; |
| + { const u32 x23 = 121666; |
| + { u64 x40 = ((u64)x23 * x5); |
| + { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5)); |
| + { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5)); |
| + { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5)); |
| + { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5)); |
| + { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5)); |
| + { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5)); |
| + { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5)); |
| + { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5)); |
| + { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5)); |
| + { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9)); |
| + { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9)); |
| + { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13)); |
| + { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13)); |
| + { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17)); |
| + { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17)); |
| + { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19)))); |
| + { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21)); |
| + { u64 x58 = ((u64)(0x2 * x38) * x20); |
| + { u64 x59 = (x48 + (x58 << 0x4)); |
| + { u64 x60 = (x59 + (x58 << 0x1)); |
| + { u64 x61 = (x60 + x58); |
| + { u64 x62 = (x47 + (x57 << 0x4)); |
| + { u64 x63 = (x62 + (x57 << 0x1)); |
| + { u64 x64 = (x63 + x57); |
| + { u64 x65 = (x46 + (x56 << 0x4)); |
| + { u64 x66 = (x65 + (x56 << 0x1)); |
| + { u64 x67 = (x66 + x56); |
| + { u64 x68 = (x45 + (x55 << 0x4)); |
| + { u64 x69 = (x68 + (x55 << 0x1)); |
| + { u64 x70 = (x69 + x55); |
| + { u64 x71 = (x44 + (x54 << 0x4)); |
| + { u64 x72 = (x71 + (x54 << 0x1)); |
| + { u64 x73 = (x72 + x54); |
| + { u64 x74 = (x43 + (x53 << 0x4)); |
| + { u64 x75 = (x74 + (x53 << 0x1)); |
| + { u64 x76 = (x75 + x53); |
| + { u64 x77 = (x42 + (x52 << 0x4)); |
| + { u64 x78 = (x77 + (x52 << 0x1)); |
| + { u64 x79 = (x78 + x52); |
| + { u64 x80 = (x41 + (x51 << 0x4)); |
| + { u64 x81 = (x80 + (x51 << 0x1)); |
| + { u64 x82 = (x81 + x51); |
| + { u64 x83 = (x40 + (x50 << 0x4)); |
| + { u64 x84 = (x83 + (x50 << 0x1)); |
| + { u64 x85 = (x84 + x50); |
| + { u64 x86 = (x85 >> 0x1a); |
| + { u32 x87 = ((u32)x85 & 0x3ffffff); |
| + { u64 x88 = (x86 + x82); |
| + { u64 x89 = (x88 >> 0x19); |
| + { u32 x90 = ((u32)x88 & 0x1ffffff); |
| + { u64 x91 = (x89 + x79); |
| + { u64 x92 = (x91 >> 0x1a); |
| + { u32 x93 = ((u32)x91 & 0x3ffffff); |
| + { u64 x94 = (x92 + x76); |
| + { u64 x95 = (x94 >> 0x19); |
| + { u32 x96 = ((u32)x94 & 0x1ffffff); |
| + { u64 x97 = (x95 + x73); |
| + { u64 x98 = (x97 >> 0x1a); |
| + { u32 x99 = ((u32)x97 & 0x3ffffff); |
| + { u64 x100 = (x98 + x70); |
| + { u64 x101 = (x100 >> 0x19); |
| + { u32 x102 = ((u32)x100 & 0x1ffffff); |
| + { u64 x103 = (x101 + x67); |
| + { u64 x104 = (x103 >> 0x1a); |
| + { u32 x105 = ((u32)x103 & 0x3ffffff); |
| + { u64 x106 = (x104 + x64); |
| + { u64 x107 = (x106 >> 0x19); |
| + { u32 x108 = ((u32)x106 & 0x1ffffff); |
| + { u64 x109 = (x107 + x61); |
| + { u64 x110 = (x109 >> 0x1a); |
| + { u32 x111 = ((u32)x109 & 0x3ffffff); |
| + { u64 x112 = (x110 + x49); |
| + { u64 x113 = (x112 >> 0x19); |
| + { u32 x114 = ((u32)x112 & 0x1ffffff); |
| + { u64 x115 = (x87 + (0x13 * x113)); |
| + { u32 x116 = (u32) (x115 >> 0x1a); |
| + { u32 x117 = ((u32)x115 & 0x3ffffff); |
| + { u32 x118 = (x116 + x90); |
| + { u32 x119 = (x118 >> 0x19); |
| + { u32 x120 = (x118 & 0x1ffffff); |
| + out[0] = x117; |
| + out[1] = x120; |
| + out[2] = (x119 + x93); |
| + out[3] = x96; |
| + out[4] = x99; |
| + out[5] = x102; |
| + out[6] = x105; |
| + out[7] = x108; |
| + out[8] = x111; |
| + out[9] = x114; |
| + }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} |
| +} |
| + |
| +static __always_inline void fe_mul121666(fe *h, const fe_loose *f) |
| +{ |
| + fe_mul_121666_impl(h->v, f->v); |
| +} |
| + |
| +void curve25519_generic(u8 out[CURVE25519_KEY_SIZE], |
| + const u8 scalar[CURVE25519_KEY_SIZE], |
| + const u8 point[CURVE25519_KEY_SIZE]) |
| +{ |
| + fe x1, x2, z2, x3, z3; |
| + fe_loose x2l, z2l, x3l; |
| + unsigned swap = 0; |
| + int pos; |
| + u8 e[32]; |
| + |
| + memcpy(e, scalar, 32); |
| + curve25519_clamp_secret(e); |
| + |
| + /* The following implementation was transcribed to Coq and proven to |
| + * correspond to unary scalar multiplication in affine coordinates given |
| + * that x1 != 0 is the x coordinate of some point on the curve. It was |
| + * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives |
| + * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was |
| + * quantified over the underlying field, so it applies to Curve25519 |
| + * itself and the quadratic twist of Curve25519. It was not proven in |
| + * Coq that prime-field arithmetic correctly simulates extension-field |
| + * arithmetic on prime-field values. The decoding of the byte array |
| + * representation of e was not considered. |
| + * |
| + * Specification of Montgomery curves in affine coordinates: |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27> |
| + * |
| + * Proof that these form a group that is isomorphic to a Weierstrass |
| + * curve: |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35> |
| + * |
| + * Coq transcription and correctness proof of the loop |
| + * (where scalarbits=255): |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118> |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278> |
| + * preconditions: 0 <= e < 2^255 (not necessarily e < order), |
| + * fe_invert(0) = 0 |
| + */ |
| + fe_frombytes(&x1, point); |
| + fe_1(&x2); |
| + fe_0(&z2); |
| + fe_copy(&x3, &x1); |
| + fe_1(&z3); |
| + |
| + for (pos = 254; pos >= 0; --pos) { |
| + fe tmp0, tmp1; |
| + fe_loose tmp0l, tmp1l; |
| + /* loop invariant as of right before the test, for the case |
| + * where x1 != 0: |
| + * pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3 |
| + * is nonzero |
| + * let r := e >> (pos+1) in the following equalities of |
| + * projective points: |
| + * to_xz (r*P) === if swap then (x3, z3) else (x2, z2) |
| + * to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3) |
| + * x1 is the nonzero x coordinate of the nonzero |
| + * point (r*P-(r+1)*P) |
| + */ |
| + unsigned b = 1 & (e[pos / 8] >> (pos & 7)); |
| + swap ^= b; |
| + fe_cswap(&x2, &x3, swap); |
| + fe_cswap(&z2, &z3, swap); |
| + swap = b; |
| + /* Coq transcription of ladderstep formula (called from |
| + * transcribed loop): |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89> |
| + * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131> |
| + * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217> |
| + * x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147> |
| + */ |
| + fe_sub(&tmp0l, &x3, &z3); |
| + fe_sub(&tmp1l, &x2, &z2); |
| + fe_add(&x2l, &x2, &z2); |
| + fe_add(&z2l, &x3, &z3); |
| + fe_mul_tll(&z3, &tmp0l, &x2l); |
| + fe_mul_tll(&z2, &z2l, &tmp1l); |
| + fe_sq_tl(&tmp0, &tmp1l); |
| + fe_sq_tl(&tmp1, &x2l); |
| + fe_add(&x3l, &z3, &z2); |
| + fe_sub(&z2l, &z3, &z2); |
| + fe_mul_ttt(&x2, &tmp1, &tmp0); |
| + fe_sub(&tmp1l, &tmp1, &tmp0); |
| + fe_sq_tl(&z2, &z2l); |
| + fe_mul121666(&z3, &tmp1l); |
| + fe_sq_tl(&x3, &x3l); |
| + fe_add(&tmp0l, &tmp0, &z3); |
| + fe_mul_ttt(&z3, &x1, &z2); |
| + fe_mul_tll(&z2, &tmp1l, &tmp0l); |
| + } |
| + /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3) |
| + * else (x2, z2) |
| + */ |
| + fe_cswap(&x2, &x3, swap); |
| + fe_cswap(&z2, &z3, swap); |
| + |
| + fe_invert(&z2, &z2); |
| + fe_mul_ttt(&x2, &x2, &z2); |
| + fe_tobytes(out, &x2); |
| + |
| + memzero_explicit(&x1, sizeof(x1)); |
| + memzero_explicit(&x2, sizeof(x2)); |
| + memzero_explicit(&z2, sizeof(z2)); |
| + memzero_explicit(&x3, sizeof(x3)); |
| + memzero_explicit(&z3, sizeof(z3)); |
| + memzero_explicit(&x2l, sizeof(x2l)); |
| + memzero_explicit(&z2l, sizeof(z2l)); |
| + memzero_explicit(&x3l, sizeof(x3l)); |
| + memzero_explicit(&e, sizeof(e)); |
| +} |
| --- /dev/null |
| +++ b/lib/crypto/curve25519-hacl64.c |
| @@ -0,0 +1,788 @@ |
| +// SPDX-License-Identifier: GPL-2.0 OR MIT |
| +/* |
| + * Copyright (C) 2016-2017 INRIA and Microsoft Corporation. |
| + * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| + * |
| + * This is a machine-generated formally verified implementation of Curve25519 |
| + * ECDH from: <https://github.com/mitls/hacl-star>. Though originally machine |
| + * generated, it has been tweaked to be suitable for use in the kernel. It is |
| + * optimized for 64-bit machines that can efficiently work with 128-bit |
| + * integer types. |
| + */ |
| + |
| +#include <asm/unaligned.h> |
| +#include <crypto/curve25519.h> |
| +#include <linux/string.h> |
| + |
| +typedef __uint128_t u128; |
| + |
| +static __always_inline u64 u64_eq_mask(u64 a, u64 b) |
| +{ |
| + u64 x = a ^ b; |
| + u64 minus_x = ~x + (u64)1U; |
| + u64 x_or_minus_x = x | minus_x; |
| + u64 xnx = x_or_minus_x >> (u32)63U; |
| + u64 c = xnx - (u64)1U; |
| + return c; |
| +} |
| + |
| +static __always_inline u64 u64_gte_mask(u64 a, u64 b) |
| +{ |
| + u64 x = a; |
| + u64 y = b; |
| + u64 x_xor_y = x ^ y; |
| + u64 x_sub_y = x - y; |
| + u64 x_sub_y_xor_y = x_sub_y ^ y; |
| + u64 q = x_xor_y | x_sub_y_xor_y; |
| + u64 x_xor_q = x ^ q; |
| + u64 x_xor_q_ = x_xor_q >> (u32)63U; |
| + u64 c = x_xor_q_ - (u64)1U; |
| + return c; |
| +} |
| + |
| +static __always_inline void modulo_carry_top(u64 *b) |
| +{ |
| + u64 b4 = b[4]; |
| + u64 b0 = b[0]; |
| + u64 b4_ = b4 & 0x7ffffffffffffLLU; |
| + u64 b0_ = b0 + 19 * (b4 >> 51); |
| + b[4] = b4_; |
| + b[0] = b0_; |
| +} |
| + |
| +static __always_inline void fproduct_copy_from_wide_(u64 *output, u128 *input) |
| +{ |
| + { |
| + u128 xi = input[0]; |
| + output[0] = ((u64)(xi)); |
| + } |
| + { |
| + u128 xi = input[1]; |
| + output[1] = ((u64)(xi)); |
| + } |
| + { |
| + u128 xi = input[2]; |
| + output[2] = ((u64)(xi)); |
| + } |
| + { |
| + u128 xi = input[3]; |
| + output[3] = ((u64)(xi)); |
| + } |
| + { |
| + u128 xi = input[4]; |
| + output[4] = ((u64)(xi)); |
| + } |
| +} |
| + |
| +static __always_inline void |
| +fproduct_sum_scalar_multiplication_(u128 *output, u64 *input, u64 s) |
| +{ |
| + output[0] += (u128)input[0] * s; |
| + output[1] += (u128)input[1] * s; |
| + output[2] += (u128)input[2] * s; |
| + output[3] += (u128)input[3] * s; |
| + output[4] += (u128)input[4] * s; |
| +} |
| + |
| +static __always_inline void fproduct_carry_wide_(u128 *tmp) |
| +{ |
| + { |
| + u32 ctr = 0; |
| + u128 tctr = tmp[ctr]; |
| + u128 tctrp1 = tmp[ctr + 1]; |
| + u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; |
| + u128 c = ((tctr) >> (51)); |
| + tmp[ctr] = ((u128)(r0)); |
| + tmp[ctr + 1] = ((tctrp1) + (c)); |
| + } |
| + { |
| + u32 ctr = 1; |
| + u128 tctr = tmp[ctr]; |
| + u128 tctrp1 = tmp[ctr + 1]; |
| + u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; |
| + u128 c = ((tctr) >> (51)); |
| + tmp[ctr] = ((u128)(r0)); |
| + tmp[ctr + 1] = ((tctrp1) + (c)); |
| + } |
| + |
| + { |
| + u32 ctr = 2; |
| + u128 tctr = tmp[ctr]; |
| + u128 tctrp1 = tmp[ctr + 1]; |
| + u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; |
| + u128 c = ((tctr) >> (51)); |
| + tmp[ctr] = ((u128)(r0)); |
| + tmp[ctr + 1] = ((tctrp1) + (c)); |
| + } |
| + { |
| + u32 ctr = 3; |
| + u128 tctr = tmp[ctr]; |
| + u128 tctrp1 = tmp[ctr + 1]; |
| + u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU; |
| + u128 c = ((tctr) >> (51)); |
| + tmp[ctr] = ((u128)(r0)); |
| + tmp[ctr + 1] = ((tctrp1) + (c)); |
| + } |
| +} |
| + |
| +static __always_inline void fmul_shift_reduce(u64 *output) |
| +{ |
| + u64 tmp = output[4]; |
| + u64 b0; |
| + { |
| + u32 ctr = 5 - 0 - 1; |
| + u64 z = output[ctr - 1]; |
| + output[ctr] = z; |
| + } |
| + { |
| + u32 ctr = 5 - 1 - 1; |
| + u64 z = output[ctr - 1]; |
| + output[ctr] = z; |
| + } |
| + { |
| + u32 ctr = 5 - 2 - 1; |
| + u64 z = output[ctr - 1]; |
| + output[ctr] = z; |
| + } |
| + { |
| + u32 ctr = 5 - 3 - 1; |
| + u64 z = output[ctr - 1]; |
| + output[ctr] = z; |
| + } |
| + output[0] = tmp; |
| + b0 = output[0]; |
| + output[0] = 19 * b0; |
| +} |
| + |
| +static __always_inline void fmul_mul_shift_reduce_(u128 *output, u64 *input, |
| + u64 *input21) |
| +{ |
| + u32 i; |
| + u64 input2i; |
| + { |
| + u64 input2i = input21[0]; |
| + fproduct_sum_scalar_multiplication_(output, input, input2i); |
| + fmul_shift_reduce(input); |
| + } |
| + { |
| + u64 input2i = input21[1]; |
| + fproduct_sum_scalar_multiplication_(output, input, input2i); |
| + fmul_shift_reduce(input); |
| + } |
| + { |
| + u64 input2i = input21[2]; |
| + fproduct_sum_scalar_multiplication_(output, input, input2i); |
| + fmul_shift_reduce(input); |
| + } |
| + { |
| + u64 input2i = input21[3]; |
| + fproduct_sum_scalar_multiplication_(output, input, input2i); |
| + fmul_shift_reduce(input); |
| + } |
| + i = 4; |
| + input2i = input21[i]; |
| + fproduct_sum_scalar_multiplication_(output, input, input2i); |
| +} |
| + |
| +static __always_inline void fmul_fmul(u64 *output, u64 *input, u64 *input21) |
| +{ |
| + u64 tmp[5] = { input[0], input[1], input[2], input[3], input[4] }; |
| + { |
| + u128 b4; |
| + u128 b0; |
| + u128 b4_; |
| + u128 b0_; |
| + u64 i0; |
| + u64 i1; |
| + u64 i0_; |
| + u64 i1_; |
| + u128 t[5] = { 0 }; |
| + fmul_mul_shift_reduce_(t, tmp, input21); |
| + fproduct_carry_wide_(t); |
| + b4 = t[4]; |
| + b0 = t[0]; |
| + b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); |
| + b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); |
| + t[4] = b4_; |
| + t[0] = b0_; |
| + fproduct_copy_from_wide_(output, t); |
| + i0 = output[0]; |
| + i1 = output[1]; |
| + i0_ = i0 & 0x7ffffffffffffLLU; |
| + i1_ = i1 + (i0 >> 51); |
| + output[0] = i0_; |
| + output[1] = i1_; |
| + } |
| +} |
| + |
| +static __always_inline void fsquare_fsquare__(u128 *tmp, u64 *output) |
| +{ |
| + u64 r0 = output[0]; |
| + u64 r1 = output[1]; |
| + u64 r2 = output[2]; |
| + u64 r3 = output[3]; |
| + u64 r4 = output[4]; |
| + u64 d0 = r0 * 2; |
| + u64 d1 = r1 * 2; |
| + u64 d2 = r2 * 2 * 19; |
| + u64 d419 = r4 * 19; |
| + u64 d4 = d419 * 2; |
| + u128 s0 = ((((((u128)(r0) * (r0))) + (((u128)(d4) * (r1))))) + |
| + (((u128)(d2) * (r3)))); |
| + u128 s1 = ((((((u128)(d0) * (r1))) + (((u128)(d4) * (r2))))) + |
| + (((u128)(r3 * 19) * (r3)))); |
| + u128 s2 = ((((((u128)(d0) * (r2))) + (((u128)(r1) * (r1))))) + |
| + (((u128)(d4) * (r3)))); |
| + u128 s3 = ((((((u128)(d0) * (r3))) + (((u128)(d1) * (r2))))) + |
| + (((u128)(r4) * (d419)))); |
| + u128 s4 = ((((((u128)(d0) * (r4))) + (((u128)(d1) * (r3))))) + |
| + (((u128)(r2) * (r2)))); |
| + tmp[0] = s0; |
| + tmp[1] = s1; |
| + tmp[2] = s2; |
| + tmp[3] = s3; |
| + tmp[4] = s4; |
| +} |
| + |
| +static __always_inline void fsquare_fsquare_(u128 *tmp, u64 *output) |
| +{ |
| + u128 b4; |
| + u128 b0; |
| + u128 b4_; |
| + u128 b0_; |
| + u64 i0; |
| + u64 i1; |
| + u64 i0_; |
| + u64 i1_; |
| + fsquare_fsquare__(tmp, output); |
| + fproduct_carry_wide_(tmp); |
| + b4 = tmp[4]; |
| + b0 = tmp[0]; |
| + b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); |
| + b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); |
| + tmp[4] = b4_; |
| + tmp[0] = b0_; |
| + fproduct_copy_from_wide_(output, tmp); |
| + i0 = output[0]; |
| + i1 = output[1]; |
| + i0_ = i0 & 0x7ffffffffffffLLU; |
| + i1_ = i1 + (i0 >> 51); |
| + output[0] = i0_; |
| + output[1] = i1_; |
| +} |
| + |
| +static __always_inline void fsquare_fsquare_times_(u64 *output, u128 *tmp, |
| + u32 count1) |
| +{ |
| + u32 i; |
| + fsquare_fsquare_(tmp, output); |
| + for (i = 1; i < count1; ++i) |
| + fsquare_fsquare_(tmp, output); |
| +} |
| + |
| +static __always_inline void fsquare_fsquare_times(u64 *output, u64 *input, |
| + u32 count1) |
| +{ |
| + u128 t[5]; |
| + memcpy(output, input, 5 * sizeof(*input)); |
| + fsquare_fsquare_times_(output, t, count1); |
| +} |
| + |
| +static __always_inline void fsquare_fsquare_times_inplace(u64 *output, |
| + u32 count1) |
| +{ |
| + u128 t[5]; |
| + fsquare_fsquare_times_(output, t, count1); |
| +} |
| + |
| +static __always_inline void crecip_crecip(u64 *out, u64 *z) |
| +{ |
| + u64 buf[20] = { 0 }; |
| + u64 *a0 = buf; |
| + u64 *t00 = buf + 5; |
| + u64 *b0 = buf + 10; |
| + u64 *t01; |
| + u64 *b1; |
| + u64 *c0; |
| + u64 *a; |
| + u64 *t0; |
| + u64 *b; |
| + u64 *c; |
| + fsquare_fsquare_times(a0, z, 1); |
| + fsquare_fsquare_times(t00, a0, 2); |
| + fmul_fmul(b0, t00, z); |
| + fmul_fmul(a0, b0, a0); |
| + fsquare_fsquare_times(t00, a0, 1); |
| + fmul_fmul(b0, t00, b0); |
| + fsquare_fsquare_times(t00, b0, 5); |
| + t01 = buf + 5; |
| + b1 = buf + 10; |
| + c0 = buf + 15; |
| + fmul_fmul(b1, t01, b1); |
| + fsquare_fsquare_times(t01, b1, 10); |
| + fmul_fmul(c0, t01, b1); |
| + fsquare_fsquare_times(t01, c0, 20); |
| + fmul_fmul(t01, t01, c0); |
| + fsquare_fsquare_times_inplace(t01, 10); |
| + fmul_fmul(b1, t01, b1); |
| + fsquare_fsquare_times(t01, b1, 50); |
| + a = buf; |
| + t0 = buf + 5; |
| + b = buf + 10; |
| + c = buf + 15; |
| + fmul_fmul(c, t0, b); |
| + fsquare_fsquare_times(t0, c, 100); |
| + fmul_fmul(t0, t0, c); |
| + fsquare_fsquare_times_inplace(t0, 50); |
| + fmul_fmul(t0, t0, b); |
| + fsquare_fsquare_times_inplace(t0, 5); |
| + fmul_fmul(out, t0, a); |
| +} |
| + |
| +static __always_inline void fsum(u64 *a, u64 *b) |
| +{ |
| + a[0] += b[0]; |
| + a[1] += b[1]; |
| + a[2] += b[2]; |
| + a[3] += b[3]; |
| + a[4] += b[4]; |
| +} |
| + |
| +static __always_inline void fdifference(u64 *a, u64 *b) |
| +{ |
| + u64 tmp[5] = { 0 }; |
| + u64 b0; |
| + u64 b1; |
| + u64 b2; |
| + u64 b3; |
| + u64 b4; |
| + memcpy(tmp, b, 5 * sizeof(*b)); |
| + b0 = tmp[0]; |
| + b1 = tmp[1]; |
| + b2 = tmp[2]; |
| + b3 = tmp[3]; |
| + b4 = tmp[4]; |
| + tmp[0] = b0 + 0x3fffffffffff68LLU; |
| + tmp[1] = b1 + 0x3ffffffffffff8LLU; |
| + tmp[2] = b2 + 0x3ffffffffffff8LLU; |
| + tmp[3] = b3 + 0x3ffffffffffff8LLU; |
| + tmp[4] = b4 + 0x3ffffffffffff8LLU; |
| + { |
| + u64 xi = a[0]; |
| + u64 yi = tmp[0]; |
| + a[0] = yi - xi; |
| + } |
| + { |
| + u64 xi = a[1]; |
| + u64 yi = tmp[1]; |
| + a[1] = yi - xi; |
| + } |
| + { |
| + u64 xi = a[2]; |
| + u64 yi = tmp[2]; |
| + a[2] = yi - xi; |
| + } |
| + { |
| + u64 xi = a[3]; |
| + u64 yi = tmp[3]; |
| + a[3] = yi - xi; |
| + } |
| + { |
| + u64 xi = a[4]; |
| + u64 yi = tmp[4]; |
| + a[4] = yi - xi; |
| + } |
| +} |
| + |
| +static __always_inline void fscalar(u64 *output, u64 *b, u64 s) |
| +{ |
| + u128 tmp[5]; |
| + u128 b4; |
| + u128 b0; |
| + u128 b4_; |
| + u128 b0_; |
| + { |
| + u64 xi = b[0]; |
| + tmp[0] = ((u128)(xi) * (s)); |
| + } |
| + { |
| + u64 xi = b[1]; |
| + tmp[1] = ((u128)(xi) * (s)); |
| + } |
| + { |
| + u64 xi = b[2]; |
| + tmp[2] = ((u128)(xi) * (s)); |
| + } |
| + { |
| + u64 xi = b[3]; |
| + tmp[3] = ((u128)(xi) * (s)); |
| + } |
| + { |
| + u64 xi = b[4]; |
| + tmp[4] = ((u128)(xi) * (s)); |
| + } |
| + fproduct_carry_wide_(tmp); |
| + b4 = tmp[4]; |
| + b0 = tmp[0]; |
| + b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU)))); |
| + b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51)))))))); |
| + tmp[4] = b4_; |
| + tmp[0] = b0_; |
| + fproduct_copy_from_wide_(output, tmp); |
| +} |
| + |
| +static __always_inline void fmul(u64 *output, u64 *a, u64 *b) |
| +{ |
| + fmul_fmul(output, a, b); |
| +} |
| + |
| +static __always_inline void crecip(u64 *output, u64 *input) |
| +{ |
| + crecip_crecip(output, input); |
| +} |
| + |
| +static __always_inline void point_swap_conditional_step(u64 *a, u64 *b, |
| + u64 swap1, u32 ctr) |
| +{ |
| + u32 i = ctr - 1; |
| + u64 ai = a[i]; |
| + u64 bi = b[i]; |
| + u64 x = swap1 & (ai ^ bi); |
| + u64 ai1 = ai ^ x; |
| + u64 bi1 = bi ^ x; |
| + a[i] = ai1; |
| + b[i] = bi1; |
| +} |
| + |
| +static __always_inline void point_swap_conditional5(u64 *a, u64 *b, u64 swap1) |
| +{ |
| + point_swap_conditional_step(a, b, swap1, 5); |
| + point_swap_conditional_step(a, b, swap1, 4); |
| + point_swap_conditional_step(a, b, swap1, 3); |
| + point_swap_conditional_step(a, b, swap1, 2); |
| + point_swap_conditional_step(a, b, swap1, 1); |
| +} |
| + |
| +static __always_inline void point_swap_conditional(u64 *a, u64 *b, u64 iswap) |
| +{ |
| + u64 swap1 = 0 - iswap; |
| + point_swap_conditional5(a, b, swap1); |
| + point_swap_conditional5(a + 5, b + 5, swap1); |
| +} |
| + |
| +static __always_inline void point_copy(u64 *output, u64 *input) |
| +{ |
| + memcpy(output, input, 5 * sizeof(*input)); |
| + memcpy(output + 5, input + 5, 5 * sizeof(*input)); |
| +} |
| + |
| +static __always_inline void addanddouble_fmonty(u64 *pp, u64 *ppq, u64 *p, |
| + u64 *pq, u64 *qmqp) |
| +{ |
| + u64 *qx = qmqp; |
| + u64 *x2 = pp; |
| + u64 *z2 = pp + 5; |
| + u64 *x3 = ppq; |
| + u64 *z3 = ppq + 5; |
| + u64 *x = p; |
| + u64 *z = p + 5; |
| + u64 *xprime = pq; |
| + u64 *zprime = pq + 5; |
| + u64 buf[40] = { 0 }; |
| + u64 *origx = buf; |
| + u64 *origxprime0 = buf + 5; |
| + u64 *xxprime0; |
| + u64 *zzprime0; |
| + u64 *origxprime; |
| + xxprime0 = buf + 25; |
| + zzprime0 = buf + 30; |
| + memcpy(origx, x, 5 * sizeof(*x)); |
| + fsum(x, z); |
| + fdifference(z, origx); |
| + memcpy(origxprime0, xprime, 5 * sizeof(*xprime)); |
| + fsum(xprime, zprime); |
| + fdifference(zprime, origxprime0); |
| + fmul(xxprime0, xprime, z); |
| + fmul(zzprime0, x, zprime); |
| + origxprime = buf + 5; |
| + { |
| + u64 *xx0; |
| + u64 *zz0; |
| + u64 *xxprime; |
| + u64 *zzprime; |
| + u64 *zzzprime; |
| + xx0 = buf + 15; |
| + zz0 = buf + 20; |
| + xxprime = buf + 25; |
| + zzprime = buf + 30; |
| + zzzprime = buf + 35; |
| + memcpy(origxprime, xxprime, 5 * sizeof(*xxprime)); |
| + fsum(xxprime, zzprime); |
| + fdifference(zzprime, origxprime); |
| + fsquare_fsquare_times(x3, xxprime, 1); |
| + fsquare_fsquare_times(zzzprime, zzprime, 1); |
| + fmul(z3, zzzprime, qx); |
| + fsquare_fsquare_times(xx0, x, 1); |
| + fsquare_fsquare_times(zz0, z, 1); |
| + { |
| + u64 *zzz; |
| + u64 *xx; |
| + u64 *zz; |
| + u64 scalar; |
| + zzz = buf + 10; |
| + xx = buf + 15; |
| + zz = buf + 20; |
| + fmul(x2, xx, zz); |
| + fdifference(zz, xx); |
| + scalar = 121665; |
| + fscalar(zzz, zz, scalar); |
| + fsum(zzz, xx); |
| + fmul(z2, zzz, zz); |
| + } |
| + } |
| +} |
| + |
| +static __always_inline void |
| +ladder_smallloop_cmult_small_loop_step(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2, |
| + u64 *q, u8 byt) |
| +{ |
| + u64 bit0 = (u64)(byt >> 7); |
| + u64 bit; |
| + point_swap_conditional(nq, nqpq, bit0); |
| + addanddouble_fmonty(nq2, nqpq2, nq, nqpq, q); |
| + bit = (u64)(byt >> 7); |
| + point_swap_conditional(nq2, nqpq2, bit); |
| +} |
| + |
| +static __always_inline void |
| +ladder_smallloop_cmult_small_loop_double_step(u64 *nq, u64 *nqpq, u64 *nq2, |
| + u64 *nqpq2, u64 *q, u8 byt) |
| +{ |
| + u8 byt1; |
| + ladder_smallloop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt); |
| + byt1 = byt << 1; |
| + ladder_smallloop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1); |
| +} |
| + |
| +static __always_inline void |
| +ladder_smallloop_cmult_small_loop(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2, |
| + u64 *q, u8 byt, u32 i) |
| +{ |
| + while (i--) { |
| + ladder_smallloop_cmult_small_loop_double_step(nq, nqpq, nq2, |
| + nqpq2, q, byt); |
| + byt <<= 2; |
| + } |
| +} |
| + |
| +static __always_inline void ladder_bigloop_cmult_big_loop(u8 *n1, u64 *nq, |
| + u64 *nqpq, u64 *nq2, |
| + u64 *nqpq2, u64 *q, |
| + u32 i) |
| +{ |
| + while (i--) { |
| + u8 byte = n1[i]; |
| + ladder_smallloop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, |
| + byte, 4); |
| + } |
| +} |
| + |
| +static void ladder_cmult(u64 *result, u8 *n1, u64 *q) |
| +{ |
| + u64 point_buf[40] = { 0 }; |
| + u64 *nq = point_buf; |
| + u64 *nqpq = point_buf + 10; |
| + u64 *nq2 = point_buf + 20; |
| + u64 *nqpq2 = point_buf + 30; |
| + point_copy(nqpq, q); |
| + nq[0] = 1; |
| + ladder_bigloop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, 32); |
| + point_copy(result, nq); |
| +} |
| + |
| +static __always_inline void format_fexpand(u64 *output, const u8 *input) |
| +{ |
| + const u8 *x00 = input + 6; |
| + const u8 *x01 = input + 12; |
| + const u8 *x02 = input + 19; |
| + const u8 *x0 = input + 24; |
| + u64 i0, i1, i2, i3, i4, output0, output1, output2, output3, output4; |
| + i0 = get_unaligned_le64(input); |
| + i1 = get_unaligned_le64(x00); |
| + i2 = get_unaligned_le64(x01); |
| + i3 = get_unaligned_le64(x02); |
| + i4 = get_unaligned_le64(x0); |
| + output0 = i0 & 0x7ffffffffffffLLU; |
| + output1 = i1 >> 3 & 0x7ffffffffffffLLU; |
| + output2 = i2 >> 6 & 0x7ffffffffffffLLU; |
| + output3 = i3 >> 1 & 0x7ffffffffffffLLU; |
| + output4 = i4 >> 12 & 0x7ffffffffffffLLU; |
| + output[0] = output0; |
| + output[1] = output1; |
| + output[2] = output2; |
| + output[3] = output3; |
| + output[4] = output4; |
| +} |
| + |
| +static __always_inline void format_fcontract_first_carry_pass(u64 *input) |
| +{ |
| + u64 t0 = input[0]; |
| + u64 t1 = input[1]; |
| + u64 t2 = input[2]; |
| + u64 t3 = input[3]; |
| + u64 t4 = input[4]; |
| + u64 t1_ = t1 + (t0 >> 51); |
| + u64 t0_ = t0 & 0x7ffffffffffffLLU; |
| + u64 t2_ = t2 + (t1_ >> 51); |
| + u64 t1__ = t1_ & 0x7ffffffffffffLLU; |
| + u64 t3_ = t3 + (t2_ >> 51); |
| + u64 t2__ = t2_ & 0x7ffffffffffffLLU; |
| + u64 t4_ = t4 + (t3_ >> 51); |
| + u64 t3__ = t3_ & 0x7ffffffffffffLLU; |
| + input[0] = t0_; |
| + input[1] = t1__; |
| + input[2] = t2__; |
| + input[3] = t3__; |
| + input[4] = t4_; |
| +} |
| + |
| +static __always_inline void format_fcontract_first_carry_full(u64 *input) |
| +{ |
| + format_fcontract_first_carry_pass(input); |
| + modulo_carry_top(input); |
| +} |
| + |
| +static __always_inline void format_fcontract_second_carry_pass(u64 *input) |
| +{ |
| + u64 t0 = input[0]; |
| + u64 t1 = input[1]; |
| + u64 t2 = input[2]; |
| + u64 t3 = input[3]; |
| + u64 t4 = input[4]; |
| + u64 t1_ = t1 + (t0 >> 51); |
| + u64 t0_ = t0 & 0x7ffffffffffffLLU; |
| + u64 t2_ = t2 + (t1_ >> 51); |
| + u64 t1__ = t1_ & 0x7ffffffffffffLLU; |
| + u64 t3_ = t3 + (t2_ >> 51); |
| + u64 t2__ = t2_ & 0x7ffffffffffffLLU; |
| + u64 t4_ = t4 + (t3_ >> 51); |
| + u64 t3__ = t3_ & 0x7ffffffffffffLLU; |
| + input[0] = t0_; |
| + input[1] = t1__; |
| + input[2] = t2__; |
| + input[3] = t3__; |
| + input[4] = t4_; |
| +} |
| + |
| +static __always_inline void format_fcontract_second_carry_full(u64 *input) |
| +{ |
| + u64 i0; |
| + u64 i1; |
| + u64 i0_; |
| + u64 i1_; |
| + format_fcontract_second_carry_pass(input); |
| + modulo_carry_top(input); |
| + i0 = input[0]; |
| + i1 = input[1]; |
| + i0_ = i0 & 0x7ffffffffffffLLU; |
| + i1_ = i1 + (i0 >> 51); |
| + input[0] = i0_; |
| + input[1] = i1_; |
| +} |
| + |
| +static __always_inline void format_fcontract_trim(u64 *input) |
| +{ |
| + u64 a0 = input[0]; |
| + u64 a1 = input[1]; |
| + u64 a2 = input[2]; |
| + u64 a3 = input[3]; |
| + u64 a4 = input[4]; |
| + u64 mask0 = u64_gte_mask(a0, 0x7ffffffffffedLLU); |
| + u64 mask1 = u64_eq_mask(a1, 0x7ffffffffffffLLU); |
| + u64 mask2 = u64_eq_mask(a2, 0x7ffffffffffffLLU); |
| + u64 mask3 = u64_eq_mask(a3, 0x7ffffffffffffLLU); |
| + u64 mask4 = u64_eq_mask(a4, 0x7ffffffffffffLLU); |
| + u64 mask = (((mask0 & mask1) & mask2) & mask3) & mask4; |
| + u64 a0_ = a0 - (0x7ffffffffffedLLU & mask); |
| + u64 a1_ = a1 - (0x7ffffffffffffLLU & mask); |
| + u64 a2_ = a2 - (0x7ffffffffffffLLU & mask); |
| + u64 a3_ = a3 - (0x7ffffffffffffLLU & mask); |
| + u64 a4_ = a4 - (0x7ffffffffffffLLU & mask); |
| + input[0] = a0_; |
| + input[1] = a1_; |
| + input[2] = a2_; |
| + input[3] = a3_; |
| + input[4] = a4_; |
| +} |
| + |
| +static __always_inline void format_fcontract_store(u8 *output, u64 *input) |
| +{ |
| + u64 t0 = input[0]; |
| + u64 t1 = input[1]; |
| + u64 t2 = input[2]; |
| + u64 t3 = input[3]; |
| + u64 t4 = input[4]; |
| + u64 o0 = t1 << 51 | t0; |
| + u64 o1 = t2 << 38 | t1 >> 13; |
| + u64 o2 = t3 << 25 | t2 >> 26; |
| + u64 o3 = t4 << 12 | t3 >> 39; |
| + u8 *b0 = output; |
| + u8 *b1 = output + 8; |
| + u8 *b2 = output + 16; |
| + u8 *b3 = output + 24; |
| + put_unaligned_le64(o0, b0); |
| + put_unaligned_le64(o1, b1); |
| + put_unaligned_le64(o2, b2); |
| + put_unaligned_le64(o3, b3); |
| +} |
| + |
| +static __always_inline void format_fcontract(u8 *output, u64 *input) |
| +{ |
| + format_fcontract_first_carry_full(input); |
| + format_fcontract_second_carry_full(input); |
| + format_fcontract_trim(input); |
| + format_fcontract_store(output, input); |
| +} |
| + |
| +static __always_inline void format_scalar_of_point(u8 *scalar, u64 *point) |
| +{ |
| + u64 *x = point; |
| + u64 *z = point + 5; |
| + u64 buf[10] __aligned(32) = { 0 }; |
| + u64 *zmone = buf; |
| + u64 *sc = buf + 5; |
| + crecip(zmone, z); |
| + fmul(sc, x, zmone); |
| + format_fcontract(scalar, sc); |
| +} |
| + |
| +void curve25519_generic(u8 mypublic[CURVE25519_KEY_SIZE], |
| + const u8 secret[CURVE25519_KEY_SIZE], |
| + const u8 basepoint[CURVE25519_KEY_SIZE]) |
| +{ |
| + u64 buf0[10] __aligned(32) = { 0 }; |
| + u64 *x0 = buf0; |
| + u64 *z = buf0 + 5; |
| + u64 *q; |
| + format_fexpand(x0, basepoint); |
| + z[0] = 1; |
| + q = buf0; |
| + { |
| + u8 e[32] __aligned(32) = { 0 }; |
| + u8 *scalar; |
| + memcpy(e, secret, 32); |
| + curve25519_clamp_secret(e); |
| + scalar = e; |
| + { |
| + u64 buf[15] = { 0 }; |
| + u64 *nq = buf; |
| + u64 *x = nq; |
| + x[0] = 1; |
| + ladder_cmult(nq, scalar, q); |
| + format_scalar_of_point(mypublic, nq); |
| + memzero_explicit(buf, sizeof(buf)); |
| + } |
| + memzero_explicit(e, sizeof(e)); |
| + } |
| + memzero_explicit(buf0, sizeof(buf0)); |
| +} |
| --- /dev/null |
| +++ b/lib/crypto/curve25519.c |
| @@ -0,0 +1,25 @@ |
| +// SPDX-License-Identifier: GPL-2.0 OR MIT |
| +/* |
| + * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| + * |
| + * This is an implementation of the Curve25519 ECDH algorithm, using either |
| + * a 32-bit implementation or a 64-bit implementation with 128-bit integers, |
| + * depending on what is supported by the target compiler. |
| + * |
| + * Information: https://cr.yp.to/ecdh.html |
| + */ |
| + |
| +#include <crypto/curve25519.h> |
| +#include <linux/module.h> |
| +#include <linux/init.h> |
| + |
| +const u8 curve25519_null_point[CURVE25519_KEY_SIZE] __aligned(32) = { 0 }; |
| +const u8 curve25519_base_point[CURVE25519_KEY_SIZE] __aligned(32) = { 9 }; |
| + |
| +EXPORT_SYMBOL(curve25519_null_point); |
| +EXPORT_SYMBOL(curve25519_base_point); |
| +EXPORT_SYMBOL(curve25519_generic); |
| + |
| +MODULE_LICENSE("GPL v2"); |
| +MODULE_DESCRIPTION("Curve25519 scalar multiplication"); |
| +MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>"); |