| // SPDX-License-Identifier: GPL-2.0 | 
 | /* arch/sparc64/kernel/kprobes.c | 
 |  * | 
 |  * Copyright (C) 2004 David S. Miller <davem@davemloft.net> | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/extable.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/context_tracking.h> | 
 | #include <asm/signal.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <linux/uaccess.h> | 
 |  | 
 | /* We do not have hardware single-stepping on sparc64. | 
 |  * So we implement software single-stepping with breakpoint | 
 |  * traps.  The top-level scheme is similar to that used | 
 |  * in the x86 kprobes implementation. | 
 |  * | 
 |  * In the kprobe->ainsn.insn[] array we store the original | 
 |  * instruction at index zero and a break instruction at | 
 |  * index one. | 
 |  * | 
 |  * When we hit a kprobe we: | 
 |  * - Run the pre-handler | 
 |  * - Remember "regs->tnpc" and interrupt level stored in | 
 |  *   "regs->tstate" so we can restore them later | 
 |  * - Disable PIL interrupts | 
 |  * - Set regs->tpc to point to kprobe->ainsn.insn[0] | 
 |  * - Set regs->tnpc to point to kprobe->ainsn.insn[1] | 
 |  * - Mark that we are actively in a kprobe | 
 |  * | 
 |  * At this point we wait for the second breakpoint at | 
 |  * kprobe->ainsn.insn[1] to hit.  When it does we: | 
 |  * - Run the post-handler | 
 |  * - Set regs->tpc to "remembered" regs->tnpc stored above, | 
 |  *   restore the PIL interrupt level in "regs->tstate" as well | 
 |  * - Make any adjustments necessary to regs->tnpc in order | 
 |  *   to handle relative branches correctly.  See below. | 
 |  * - Mark that we are no longer actively in a kprobe. | 
 |  */ | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	if ((unsigned long) p->addr & 0x3UL) | 
 | 		return -EILSEQ; | 
 |  | 
 | 	p->ainsn.insn[0] = *p->addr; | 
 | 	flushi(&p->ainsn.insn[0]); | 
 |  | 
 | 	p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2; | 
 | 	flushi(&p->ainsn.insn[1]); | 
 |  | 
 | 	p->opcode = *p->addr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = BREAKPOINT_INSTRUCTION; | 
 | 	flushi(p->addr); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = p->opcode; | 
 | 	flushi(p->addr); | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc; | 
 | 	kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil; | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc; | 
 | 	kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil; | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 				struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__this_cpu_write(current_kprobe, p); | 
 | 	kcb->kprobe_orig_tnpc = regs->tnpc; | 
 | 	kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL); | 
 | } | 
 |  | 
 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs, | 
 | 			struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	regs->tstate |= TSTATE_PIL; | 
 |  | 
 | 	/*single step inline, if it a breakpoint instruction*/ | 
 | 	if (p->opcode == BREAKPOINT_INSTRUCTION) { | 
 | 		regs->tpc = (unsigned long) p->addr; | 
 | 		regs->tnpc = kcb->kprobe_orig_tnpc; | 
 | 	} else { | 
 | 		regs->tpc = (unsigned long) &p->ainsn.insn[0]; | 
 | 		regs->tnpc = (unsigned long) &p->ainsn.insn[1]; | 
 | 	} | 
 | } | 
 |  | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	void *addr = (void *) regs->tpc; | 
 | 	int ret = 0; | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			if (kcb->kprobe_status == KPROBE_HIT_SS) { | 
 | 				regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
 | 					kcb->kprobe_orig_tstate_pil); | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* We have reentered the kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			prepare_singlestep(p, regs, kcb); | 
 | 			return 1; | 
 | 		} else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { | 
 | 			/* The breakpoint instruction was removed by | 
 | 			 * another cpu right after we hit, no further | 
 | 			 * handling of this interrupt is appropriate | 
 | 			 */ | 
 | 			ret = 1; | 
 | 		} | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) { | 
 | 		if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) { | 
 | 			/* | 
 | 			 * The breakpoint instruction was removed right | 
 | 			 * after we hit it.  Another cpu has removed | 
 | 			 * either a probepoint or a debugger breakpoint | 
 | 			 * at this address.  In either case, no further | 
 | 			 * handling of this interrupt is appropriate. | 
 | 			 */ | 
 | 			ret = 1; | 
 | 		} | 
 | 		/* Not one of ours: let kernel handle it */ | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	set_current_kprobe(p, regs, kcb); | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) { | 
 | 		reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	prepare_singlestep(p, regs, kcb); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* If INSN is a relative control transfer instruction, | 
 |  * return the corrected branch destination value. | 
 |  * | 
 |  * regs->tpc and regs->tnpc still hold the values of the | 
 |  * program counters at the time of trap due to the execution | 
 |  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1] | 
 |  *  | 
 |  */ | 
 | static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p, | 
 | 					       struct pt_regs *regs) | 
 | { | 
 | 	unsigned long real_pc = (unsigned long) p->addr; | 
 |  | 
 | 	/* Branch not taken, no mods necessary.  */ | 
 | 	if (regs->tnpc == regs->tpc + 0x4UL) | 
 | 		return real_pc + 0x8UL; | 
 |  | 
 | 	/* The three cases are call, branch w/prediction, | 
 | 	 * and traditional branch. | 
 | 	 */ | 
 | 	if ((insn & 0xc0000000) == 0x40000000 || | 
 | 	    (insn & 0xc1c00000) == 0x00400000 || | 
 | 	    (insn & 0xc1c00000) == 0x00800000) { | 
 | 		unsigned long ainsn_addr; | 
 |  | 
 | 		ainsn_addr = (unsigned long) &p->ainsn.insn[0]; | 
 |  | 
 | 		/* The instruction did all the work for us | 
 | 		 * already, just apply the offset to the correct | 
 | 		 * instruction location. | 
 | 		 */ | 
 | 		return (real_pc + (regs->tnpc - ainsn_addr)); | 
 | 	} | 
 |  | 
 | 	/* It is jmpl or some other absolute PC modification instruction, | 
 | 	 * leave NPC as-is. | 
 | 	 */ | 
 | 	return regs->tnpc; | 
 | } | 
 |  | 
 | /* If INSN is an instruction which writes it's PC location | 
 |  * into a destination register, fix that up. | 
 |  */ | 
 | static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn, | 
 | 				  unsigned long real_pc) | 
 | { | 
 | 	unsigned long *slot = NULL; | 
 |  | 
 | 	/* Simplest case is 'call', which always uses %o7 */ | 
 | 	if ((insn & 0xc0000000) == 0x40000000) { | 
 | 		slot = ®s->u_regs[UREG_I7]; | 
 | 	} | 
 |  | 
 | 	/* 'jmpl' encodes the register inside of the opcode */ | 
 | 	if ((insn & 0xc1f80000) == 0x81c00000) { | 
 | 		unsigned long rd = ((insn >> 25) & 0x1f); | 
 |  | 
 | 		if (rd <= 15) { | 
 | 			slot = ®s->u_regs[rd]; | 
 | 		} else { | 
 | 			/* Hard case, it goes onto the stack. */ | 
 | 			flushw_all(); | 
 |  | 
 | 			rd -= 16; | 
 | 			slot = (unsigned long *) | 
 | 				(regs->u_regs[UREG_FP] + STACK_BIAS); | 
 | 			slot += rd; | 
 | 		} | 
 | 	} | 
 | 	if (slot != NULL) | 
 | 		*slot = real_pc; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction which has been replaced by the breakpoint | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is &p->ainsn.insn[0]. | 
 |  * | 
 |  * This function prepares to return from the post-single-step | 
 |  * breakpoint trap. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, | 
 | 		struct pt_regs *regs, struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	u32 insn = p->ainsn.insn[0]; | 
 |  | 
 | 	regs->tnpc = relbranch_fixup(insn, p, regs); | 
 |  | 
 | 	/* This assignment must occur after relbranch_fixup() */ | 
 | 	regs->tpc = kcb->kprobe_orig_tnpc; | 
 |  | 
 | 	retpc_fixup(regs, insn, (unsigned long) p->addr); | 
 |  | 
 | 	regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
 | 			kcb->kprobe_orig_tstate_pil); | 
 | } | 
 |  | 
 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs, kcb); | 
 |  | 
 | 	/*Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	const struct exception_table_entry *entry; | 
 |  | 
 | 	switch(kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the tpc points back to the probe address | 
 | 		 * and allow the page fault handler to continue as a | 
 | 		 * normal page fault. | 
 | 		 */ | 
 | 		regs->tpc = (unsigned long)cur->addr; | 
 | 		regs->tnpc = kcb->kprobe_orig_tnpc; | 
 | 		regs->tstate = ((regs->tstate & ~TSTATE_PIL) | | 
 | 				kcb->kprobe_orig_tstate_pil); | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accounting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 |  | 
 | 		entry = search_exception_tables(regs->tpc); | 
 | 		if (entry) { | 
 | 			regs->tpc = entry->fixup; | 
 | 			regs->tnpc = regs->tpc + 4; | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * fixup_exception() could not handle it, | 
 | 		 * Let do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine to for handling exceptions. | 
 |  */ | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	if (args->regs && user_mode(args->regs)) | 
 | 		return ret; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_DEBUG: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_DEBUG_2: | 
 | 		if (post_kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | asmlinkage void __kprobes kprobe_trap(unsigned long trap_level, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	enum ctx_state prev_state = exception_enter(); | 
 |  | 
 | 	BUG_ON(trap_level != 0x170 && trap_level != 0x171); | 
 |  | 
 | 	if (user_mode(regs)) { | 
 | 		local_irq_enable(); | 
 | 		bad_trap(regs, trap_level); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* trap_level == 0x170 --> ta 0x70 | 
 | 	 * trap_level == 0x171 --> ta 0x71 | 
 | 	 */ | 
 | 	if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2, | 
 | 		       (trap_level == 0x170) ? "debug" : "debug_2", | 
 | 		       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) | 
 | 		bad_trap(regs, trap_level); | 
 | out: | 
 | 	exception_exit(prev_state); | 
 | } | 
 |  | 
 | /* The value stored in the return address register is actually 2 | 
 |  * instructions before where the callee will return to. | 
 |  * Sequences usually look something like this | 
 |  * | 
 |  *		call	some_function	<--- return register points here | 
 |  *		 nop			<--- call delay slot | 
 |  *		whatever		<--- where callee returns to | 
 |  * | 
 |  * To keep trampoline_probe_handler logic simpler, we normalize the | 
 |  * value kept in ri->ret_addr so we don't need to keep adjusting it | 
 |  * back and forth. | 
 |  */ | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8); | 
 |  | 
 | 	/* Replace the return addr with trampoline addr */ | 
 | 	regs->u_regs[UREG_RETPC] = | 
 | 		((unsigned long)kretprobe_trampoline) - 8; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when the probe at kretprobe trampoline is hit | 
 |  */ | 
 | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
 | 					      struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	kretprobe_hash_lock(current, &head, &flags); | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more than one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *       function, the first instance's ret_addr will point to the | 
 | 	 *       real return address, and all the rest will point to | 
 | 	 *       kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler) | 
 | 			ri->rp->handler(ri, regs); | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 | 	regs->tpc = orig_ret_address; | 
 | 	regs->tnpc = orig_ret_address + 4; | 
 |  | 
 | 	kretprobe_hash_unlock(current, &flags); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	/* | 
 | 	 * By returning a non-zero value, we are telling | 
 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 	 * to run (and have re-enabled preemption) | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void __used kretprobe_trampoline_holder(void) | 
 | { | 
 | 	asm volatile(".global kretprobe_trampoline\n" | 
 | 		     "kretprobe_trampoline:\n" | 
 | 		     "\tnop\n" | 
 | 		     "\tnop\n"); | 
 | } | 
 | static struct kprobe trampoline_p = { | 
 | 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline, | 
 | 	.pre_handler = trampoline_probe_handler | 
 | }; | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return register_kprobe(&trampoline_p); | 
 | } | 
 |  | 
 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } |