

Marvell. Moving Forward Faster

Doc. No. MV-Sxxxxx-xx Rev. y

June 21, 2015, Preliminary

CONFIDENTIAL

Document Classification: Proprietary Information

PXA1826 Openwrt
Power Management Guide

FOR <CUSTOMER> USE ONLY

Not Approved by Document Control.

For Review Only

MARVELL INTERNAL USE ONLY

DO NOT DISTRIBUTE

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 2 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

Document Conventions

Note: Provides related information or information of special importance.

Caution: Indicates potential damage to hardware or software, or loss of data.

Warning: Indicates a risk of personal injury.

Document Status

Doc Status: Preliminary Technical Publication: Int. Rev. 0.xx

This document is based on template# MV-S200005-05.

For more information, visit our website at: http://www.marvell.com

Disclaimer

No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose,
without the express written permission of Marvell. Marvell retains the right to make changes to this document at any time, without notice. Marvell makes no warranty of any kind,
expressed or implied, with regard to any information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any
particular purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained within this document.

Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any such products failed. Do not use Marvell
products in these types of equipment or applications.

With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S. Export Control
Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct products thereof are
controlled for national security reasons by the EAR; and,

3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or component of a plant, not
to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is controlled for national security reasons by the
EAR, or is subject to controls under the U.S. Munitions List ("USML").

At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in connection with their receipt of any
such information.

Copyright © 1999–2015. Marvell International Ltd. All rights reserved. M Logo, Marvell, Moving Forward Faster, Alaska, Link Street, Prestera, Virtual Cable Tester, Yukon,
Datacom Systems On Silicon, AnyVoltage, DSP Switcher, Feroceon, ZX, ZXSTREAM, ARMADA, Qdeo & Design, QuietVideo, TopDog, TwinD, and Kinoma are registered
trademarks of Marvell or its affiliates. Avanta, Avastar, Carrierspan, DragonFly, HyperDuo, HyperScale, Kirkwood, LinkCrypt, Marvell Smart, The World As You See It,
Turbosan, and Vmeta are trademarks of Marvell or its affiliates.

Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.

Caution

<Table of Contents

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 3

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

Table of Contents

1 About This Document ... 5

1.1 Purpose .. 5

1.2 Acronyms and Abbreviations ... 5

2 Introduction ... 6

3 Opportunistic Sleep... 8

3.1 Suspend-to-RAM .. 8

3.2 Wake Source and Wakelock .. 10

4 PM QoS .. 14

5 cpufreq ... 16

5.1 CPUfreq Qos .. 18
5.1.1 PM QoS user space interface .. 19

6 devfreq for DDR ... 20

6.1 devfreq PM QoS interface ... 20

7 cpuidle ... 22

7.1 cpuidle QoS Constraints .. 25

7.2 Tickless idle .. 26

8 runtime PM ... 27

8.1 Runtime PM V.S. autosleep... 28

8.2 Hardware v.s. Software ... 29

9 Thermel Management .. 30

10 WiFi Power Management ... 31

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 4 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

List of Tables

Table 3: Acronyms and Abbreviations ... 5

Table 3: Revision History .. 32

List of Figures

No table of figures entries found.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 5

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

1 About This Document

1.1 Purpose
This document explains the design of PXA1826 power management mechanisms and
their usage guide.

It contains the low-power modes, the dynamic voltage and frequency change, the QoS
constraints for both of them, and the thermal management. What’s more, the wifi uAP
power management is also addressed.

1.2 Acronyms and Abbreviations

Table 1: Acronyms and Abbreviations

Acronym Description

UE User equipment, target

AP Application processor

CP Communication processor

OPP Operating Performance Point

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 6 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

2 Introduction

This document includes the power and thermal mechanisms supported and all
information required to use them in kernel space and user space (if applicable).

Power management is an evolving part of Linux kernel. PXA1826 solution is based on
openwrt with kernel 3.10, below is the main infrastructure of the whole PXA1826 power
management solution.

Power usage has to be managed throughout all the components of the system: kernel,
low-level software infrastructure, and applications. Here are the various building blocks :

 system suspend to RAM and resume, autosleep based on opportunistic suspend

mechanism.

 cpufreq and devfreq (with clock framework, regulators framework), supporting to

choose the best one among all the voltage and frequency operating modes (OPPs)

supported by PXA1826 system, including CPU and DDR.

 cpuidle, when your CPU is idle, it can switch to deeper and deeper sleep modes,

consuming less power.

 tickless idle, stop periodic tick when idle, only wakes for next "event" or interrupt

 runtime power management (power domain)

 pm QoS

 thermal framework

PXA1826 Power Management

Opportunistic
Suspend

Wakeups
Waklocks

OPPs

CPUfreq
Devfreq

Clocks Regulators

Idle CPU

CPUidle

Tickless

Idle Devices

Runtime PM

PM domains

PM QoS

Idle WiFi

Host Sleep

idle sleep

Thermal

System
Sleep Active Idle Idle Idle

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 7

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

 WiFi subsystem power management and its host-sleep mechanism for interaction to

PXA1826

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 8 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

3 Opportunistic Sleep
When there is opportunity to go to low power state(“opportunistic” sleep), system tries to
hit suspend. It’s an aggressive suspend strategy, where a hardware block should be
powered on only when needed.

Drivers enter low power states as part of system-wide low-power states (suspend-to-
RAM). The device tree is walked in a bottom-up order to suspend devices. A top-down
order is used to resume those devices. The ordering of the device tree is defined by the
order in which devices get registered: a child can never be registered, probed or
resumed before its parent; and can't be removed or suspended after that parent. The
policy is that the device tree should match hardware bus topology.

The device, bus, and class drivers collaborate in entering low power states, have their
own suspend/resume methods, power down hardware and software subsystems, and
wake up without loss of data; some drivers manage wakeup events, which let the system
to wake up.

Wake up events, e.g., could be:

• external event on GPIO

• Onkey, wifi client association

• timer alarm

3.1 Suspend-to-RAM

Knowing in advance that the whole system is not going to be used in the near future,
turn off everything (possibly by force) except for the RAM chips.

Clocks may be gated except for low frequency clock in wakeup domain. Voltages may
be off, except for RAM and wakeup domain.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 9

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

Takes longer then going to idle.

Takes time for clock generators, power regulators to stabilize on resume.

Freezing/thawing of threads.

When the system goes into a sleep state, each device's driver is asked to suspend the
device. Wakeup-enabled devices will usually stay partly functional in order to wake the
system.

When the system leaves that low-power state, the device's driver is asked to resume it
by returning it to full power. The suspend and resume operations always go in paired,
and both are multi-phase operations.

Suspend Sequence(pm_suspend() kernel/power/suspend.c):

1. Call notifiers (while user space is still there).

2. Freeze tasks.

3. 1st phase of suspending devices (.suspend() callbacks).

4. Disable device interrupts.

5. 2nd phase of suspending devices (.suspend noirq() callbacks).

6. Disable non-boot CPUs (using CPU hot-plug).

7. Turn interrupts off.

8. Execute system core callbacks.

9. Turn off the CPU.

Freezing of tasks is needed to prevent below actions:

• filesystems changes while system state being saved;

• memory allocation to threads, as about 50% of RAM is needed to create
hibernation image;

• userspace processes and some kernel threads interaction with suspended
devices.

Power off mode is the last step in suspend sequence when power from all power
domains except of a wakeup power domain.

Resume Sequence:

1. Wakeup signal.

2. Run boot CPU’s wakeup code.

3. Execute system core callbacks.

4. Turn interrupts on.

5. Enable non-boot CPUs (using CPU hot-plug).

6. 1st phase of resuming devices (.resume noirq() callbacks).

7. Enable device interrupts.

8. 2nd phase of suspending devices (.resume() callbacks).

9. Thaw tasks.

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 10 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

10. Call notifiers (when user space is back).

How to send system to suspend:

echo mem > /sys/power/autosleep

Note: System never sleeps if there is USB cable or charger connected.

3.2 Wake Source and Wakelock

The system stays in suspend state most of the time and should only be awake if
absolutely necessary, i.e. if there is at least one system component that remains active.
Sometimes it is needed to keep system awake to keep the device responsive to user
interaction. Wakelock is used to prevent system from going to suspend, also known as
suspend blocker. Defined in simple terms, a wake lock is a binary kernel object that is
acquired by a subsystem whenever it needs to keep the system awake. The kernel
monitors all wake locks and executes a system suspend only when none of the wake
locks are held.. If – at any point during the suspend procedure – any of the subsystems
requires the system to stay awake, it would acquire its wake lock which would
immediately abort the suspend in progress. The latter mechanism is used in particular by
wakeup interrupts to prevent racing with a suspend request currently in progress.

The kernel uses a wakeup_source object in a device’s power management block (struct
dev_pm_info) to avoid race conditions between wakeup and suspend events. To
manipulate the device’s wakeup_source object, the following kernel functions were
added:

 device_init_wakeup() – when called with enable==1, initialize the device’s

wakeup_source, when called with enable==0, disable the device’s wakeup_sorce

 pm_stay_awake() – notify the system that a device is processing a wakeup event

 pm_relax() – notify the system that a device is no longer processing a wakeup

event

 pm_wakeup_event() – notify the system that the device will be processing the

wakeup event until timeout

All of these functions have an argument representing the device’s struct device object,

indicating the device to which a wakeup_source and wakeup event are associated. The

struct wakeup_source embedded in the device’s struct dev_pm_info field

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 11

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

The autosleep (a.k.a. opportunistic suspend) functionality will automatically trigger a

suspend whenever there are no wakeup sources held. It works in conjunction with driver

suspend/resume (runtime suspend and auto-suspend) hooks to implement power-saving

modes for the system. As long as there are suspend blockers outstanding, the system

will not suspend. Autosleep helps to save power by suspending the entire system

whenever nothing is going on. Note that opportunistic suspend can happen even when

processes are running in user space. In the absence of a suspend blocker, any

computation underway is not considered to be important enough to keep the system

awake. This behavior is a form of defense against poorly-written applications which

might, otherwise, drain a system's battery in a short period of time.

The kernel also has functions that manipulate the wakeup_source object directly:

 wakeup_source_init() – initialize a wakeup source object

 wakeup_source_trash() – de-initialize a wakeup source object

 __pm_stay_awake() – notify the system that a wakeup event is being processed

 __pm_relax() – notify the system that a wakeup event is no longer being

processed

 __pm_wakeup_event() – notify the system that a wakeup event will be processed

until timeout

Here is an example of how wake source is manipulated directly in kernel (The + is the

recommended usage, the “-“ items are the old Android implementation usage).

drivers/staging/android/alarm-dev.c
@@ -25,17 +25,6 @@
 #include <linux/alarmtimer.h>
 #include "android_alarm.h"

-/* XXX - Hack out wakelocks, while they are out of tree */
-struct wake_lock {
- int i;
-};
-#define wake_lock(x)
-#define wake_lock_timeout(x, y)
-#define wake_unlock(x)

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 12 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

-#define WAKE_LOCK_SUSPEND 0
-#define wake_lock_init(x, y, z) ((x)->i = 1)
-#define wake_lock_destroy(x)
-
 #define ANDROID_ALARM_PRINT_INFO (1U << 0)
 #define ANDROID_ALARM_PRINT_IO (1U << 1)
 #define ANDROID_ALARM_PRINT_INT (1U << 2)
@@ -61,7 +50,7 @@ module_param_named(debug_mask, debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);

 static int alarm_opened;
 static DEFINE_SPINLOCK(alarm_slock);
-static struct wake_lock alarm_wake_lock;
+static struct wakeup_source alarm_wake_lock;
 static DECLARE_WAIT_QUEUE_HEAD(alarm_wait_queue);
 static uint32_t alarm_pending;
 static uint32_t alarm_enabled;
@@ -154,7 +143,7 @@ static long alarm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 if (alarm_pending) {
 alarm_pending &= ~alarm_type_mask;
 if (!alarm_pending && !wait_pending)
- wake_unlock(&alarm_wake_lock);
+ __pm_relax(&alarm_wake_lock);
 }
 alarm_enabled &= ~alarm_type_mask;
 spin_unlock_irqrestore(&alarm_slock, flags);
@@ -192,7 +181,7 @@ from_old_alarm_set:
 spin_lock_irqsave(&alarm_slock, flags);
 pr_alarm(IO, "alarm wait\n");
 if (!alarm_pending && wait_pending) {
- wake_unlock(&alarm_wake_lock);
+ __pm_relax(&alarm_wake_lock);
 wait_pending = 0;
 }
 spin_unlock_irqrestore(&alarm_slock, flags);
@@ -284,7 +273,7 @@ static int alarm_release(struct inode *inode, struct file *file)
 if (alarm_pending)
 pr_alarm(INFO, "alarm_release: clear "
 "pending alarms %x\n", alarm_pending);
- wake_unlock(&alarm_wake_lock);
+ __pm_relax(&alarm_wake_lock);
 wait_pending = 0;
 alarm_pending = 0;
 }
@@ -302,7 +291,7 @@ static void devalarm_triggered(struct devalarm *alarm)
 pr_alarm(INT, "devalarm_triggered type %d\n", alarm->type);
 spin_lock_irqsave(&alarm_slock, flags);
 if (alarm_enabled & alarm_type_mask) {
- wake_lock_timeout(&alarm_wake_lock, 5 * HZ);
+ __pm_wakeup_event(&alarm_wake_lock, 5000); /* 5secs */
 alarm_enabled &= ~alarm_type_mask;
 alarm_pending |= alarm_type_mask;
 wake_up(&alarm_wait_queue);
@@ -368,15 +357,14 @@ static int __init alarm_dev_init(void)
 alarms[i].u.hrt.function = devalarm_hrthandler;
 }

- wake_lock_init(&alarm_wake_lock, WAKE_LOCK_SUSPEND, "alarm");
-
+ wakeup_source_init(&alarm_wake_lock, "alarm");
 return 0;
 }

 static void __exit alarm_dev_exit(void)
 {
 misc_deregister(&alarm_device);
- wake_lock_destroy(&alarm_wake_lock);
+ wakeup_source_trash(&alarm_wake_lock);
 }

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 13

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

 module_init(alarm_dev_init);

Wake sources (For history reason, called wake locks in user space) could also

be manipulated from user space through the /sys/power interface using the

following files:

 /sys/power/wake_lock – writing a string to this file would create/acquire a

wake lock with that name

Take wakelock:

echo mylock > /sys/power/wake_lock

Or

echo mylock timeout_ns > /sys/power/wake_lock

 /sys/power/wake_unlock – writing a string to this file would release a wake

lock with that name

Release wakelock:

echo mylock > /sys/power/wake_unlock

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 14 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

4 PM QoS

Power management quality of service.

This interface provides a kernel and user mode interface for registering performance
expectations by drivers, subsystems and user space applications on one of the
parameters.

For each device a list of performance requests is maintained along with an aggregated
target value. The aggregated target value is updated with changes to the request list or
elements of the list. Typically the aggregated target value is simply the max or min of
the request values held in the parameter list elements.

• PM QoS provides a coordination mechanism between the hardware providing a power
managed resource and users with performance needs

• It is a kernel infrastructure to facilitate the communication of latency and throughput
needs among devices, system, and users.

• Automatic power management, at the driver level, is enabled with coordinated device
throttling given the QoS expectations on that device.

Two different PM QoS frameworks are available:

• PM QoS classes for cpu_dma_latency, memory_throughput, network_latency,
network_throughput. This type of QoS is extended to support cpufreq and devfreq
constraints in our solution, will addressed in later in cpufreq and devfreq part.

• the per-device PM QoS framework provides the API to manage the per-device
latency constraints.

So each device driver can use PM QoS framwork to ask power managed resource.
Depending on the QoS class is requested by device driver, the request is delivered by
the PM QoS framework to the registered recipients.

Examples:

PM QoS and cpuidle

The cpu_dma_latency requests are delivered to the cpuidle framework, based on them
cpuidle makes decision to what next C state it will be allowed to put cpu. To receive that
request the cpuidle framework have registered with PM QoS framework for that QoS
class. The cpu_dma_latency is a minimum latency needed by device driver to process
requests in time.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 15

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

PM QoS and platform bus (interconnect).

The memory_ throughput class frequently used to ask platform bus throughput. The
recipient in that case is platform bus and users are device drivers. Depending on the
asked maximum throughput in the request list the proper frequency is set for platform
bus.

per-device PM QoS and runtime_pm.

The devices often support a range of runtime power states, which might use names such
as "off", "sleep", "idle", "active", and so on. As in case with C states in cpuidle, different
power states for device have different latencies based on what the next power state is
chosen.

Devices are often included in power domains that means the power for a device is
gained/retained only when all devices in that power domain are inactive, inother words
they have common power states. Each power state has its own latency and this latency
is main criteria to chose the next power state.

As devices are included in power domains, the next power state in power domain is
chosen depending on biggest latency requested by all devices in the power domain. The
recipient in that case is power domain and users are device drivers.

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 16 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

5 cpufreq
cpufreq refers to the kernel infrastructure that implements CPU frequency scaling. This
technology enables the operating system to scale the CPU speed up or down in order to
save power. CPU frequencies can be scaled automatically depending on the system
load, or manually by user space programs.

• Cpufreq framework is used to trigger core freg-chg with low level clock operation
support.

• Several common CPUfreq governors(ondemand, interactive, etc) are provided
by open source to calculate the workload of the cpu every sampling window and
get the max workload as reference for next frequency.

• Several file nodes could be used by userspace to limit the min/max cpu
frequency or adjust governor or profiling parameters to get better power and
performance balance.

• Kernel side also provides min/max cpu qos constraints for drivers to limit the
core frequency.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 17

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

• Two kinds of cpu frequency qos constraints are provided. Qos min is used to
limit the min frequency of cpu; QoS max is used to limit the max frequency of
cpu.

• They are both used by kernel driver and have lower priority than usespace
requirement from cpufreq governor parameters scaling_min_freq and
scaling_max_freq.

• It is also not recommended for driver to use qos max to limit max cpu freq due to
performance impact. Driver/userspace requesting the frequency change in short
latency(boosting) can limit the min frequency of cpu via QoS

There are various kernel governors available for use with the cpufreq subsystem
(/Documentation/cpu-freq/governors.txt). These governors set the processor frequency
based on certain criteria; some dynamically change the frequency as inputs are changed
either by the system or the user. Here are several typical governors, and the interactive
governor is set as default after system boot up.

Userspace governor: Manual frequencies

Next there is the userspace governor, which allows you to select and set a frequency
manually. This governor also works with processor frequency daemons running in
userspace to control frequency. This governor is useful for setting a unique power policy
that is not preset or available from the other governors; you can also use it to experiment
with policies.

Note that the userspace governor itself does not dynamically change the frequency;
rather, it allows you or a userspace program to dynamically select the processor
frequency.

Ondemand governor: Frequency change based on porcessor use

The ondemand governor was the first in-kernel governor to dynamically change
processor frequency based on processor utilization. The ondemand governor checks the
processor utilization and if it exceeds the threshold, the governor will set the frequency
to the highest available. If the governor finds the utilization to be less than the threshold,
it steps down the frequency to the next available. If the system continues to be
underutilized, the governor will continue stepping down the frequency until the lowest
available is set.

You can control the range of frequencies available, the rate at which the governor
checks utilization on the system, and the utilization threshold.

Interactive Governor: Enhanced Ondemand

Much like the OnDemand governor, the Interactive governor dynamically scales CPU
clockspeed in response to the workload placed on the CPU by the user. This is where
the similarities end. Interactive is significantly more responsive than ondemand, because
it's faster at scaling to maximum frequency.

You can control the range of frequencies available, the rate at which the governor
checks utilization on the system, the utilization thresholds, and the frequency step rate.

$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

conservative ondemand powersave userspace interactive performance

$ cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies

312000 416000 624000 832000 1248000

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 18 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

Dynamic voltage and frequency scaling (DVFS) is based on cpufreq/devfreq and
integrated to clock framework to trigger voltage change.

Each components(clock node) such as core/ddr that has voltage requirement should
register its frequency to voltage requirement at init stage. DVFS will use voltage up-to
model to implement and centralize to manage max voltage requirement from all
components.

Note: the duty cycle statistics interface is /sys/kernel/debug/pxa/stat/cpu_dc_stat

5.1 CPUfreq Qos

• Cpufreq governor request/Qos min notifier/Qos max notifier all call
cpufreq_driver->target function to change core frequency.

• Cpufreq_driver->target function usually will call cpufreq helper function to find a
recommend frequency that already considered the policy->min and policy->max.
And the same time target function also should get Qos min and max request to
made final decision.

• Code is like below, it will make sure final frequency will NOT lower than
Qos_min/policy->min or higher than Qos_max/policy->max.

target_freq = max((unsigned int)pm_qos_request(PM_QOS_CPU_FREQ_MIN),
target_freq);

target_freq = min((unsigned int)pm_qos_request(PM_QOS_CPU_FREQ_MAX),
target_freq);

cpufreq_frequency_table_target(policy, freq_table, target_freq, relation, &index); --
helper function considers policy min&max

target_freq = freq_table[index].frequency;

There are two sets of QoS interfaces for user space. One is the original misc device
based interfaces (e.g. /dev/cpu_freq*, /dev/ddr_devfreq*) can only have one user at
same time. The other is the new developed sysfile interface which can support multiple
requests.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 19

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

5.1.1 PM QoS user space interface
root@OpenWrt:/# ls /sys/power/cpu_freq_*qos

/sys/power/cpu_freq_max_pm_qos

/sys/power/cpu_freq_min_pm_qos

root@OpenWrt:/# ls /sys/power/cpu_freq_*unqos

/sys/power/cpu_freq_max_pm_unqos

/sys/power/cpu_freq_min_pm_unqos

To add a cpu freq qos constraint in appA,

echo appA 832000 > /sys/power/cpu_freq_min_pm_qos

With timeout in ns unit

echo appA 832000 2000000 > /sys/power/cpu_freq_min_pm_qos

To update a existing qos constraint,

echo appA 624000 > /sys/power/cpu_freq_min_pm_qos

To remove the cpu freq qos constraint (only works correctly for a existing constraint)

echo appA > /sys/power/cpu_freq_min_pm_unqos

To check the existing constraints from user space

cat /sys/power/cpu_freq_min_pm_qos

To check details of all the active QoS constraints from both user space and kernel space,

cat /sys/kernel/debug/cpufreq_qos

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 20 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

6 devfreq for DDR
devfreq is a generic DVFS framework with device-specific OPPs

With OPPs, a device may have multiple operable frequency and voltage sets. However,
there can be multiple possible operable sets and a system will need to choose one from
them. In order to reduce the power consumption (by reducing frequency and voltage)
without affecting the performance too much, a Dynamic Voltage and Frequency Scaling
(DVFS) scheme may be used.

DVFS is a technique whereby the frequency and supplied voltage of a device is adjusted
on-the-fly. DVFS usually sets the frequency as low as possible with given conditions
(such as QoS assurance) and adjusts voltage according to the chosen frequency in
order to reduce power consumption and heat dissipation.

Normally, DVFS mechanism controls frequency based on the demand for the device,
and then, chooses voltage based on the chosen frequency. devfreq also controls the
frequency based on the governor's frequency recommendation and let OPP pick up the
pair of frequency and voltage based on the recommended frequency. Then, the chosen
OPP is passed to device driver's "target" callback.

The generic DVFS for devices, devfreq, is quite similar with /drivers/cpufreq.

 It doesn’t support governor dynamic changing, the profile governor of each device is
determined by kernel build configuration

Simple_ondemand governor is used to collect DDR data ratio in one sample window to
determine next windows DDR frequency, so that DDR freq is adaptive to its workload

Note: the duty cycle statistics interface is /sys/kernel/debug/pxa/stat/ddr_dc_stat

6.1 devfreq PM QoS interface

PM QoS framework is extended to support devfreq QoS constraint, it’s similar to cpufreq
QoS constraints. Here is the example on how to use it in user space.

root@OpenWrt:/# ls /sys/power/ddr_devfreq_*_qos

/sys/power/ddr_devfreq_max_pm_qos

/sys/power/ddr_devfreq_min_pm_qos

root@OpenWrt:/# ls /sys/power/ddr_devfreq_*_unqos

/sys/power/ddr_devfreq_max_pm_unqos

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 21

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

/sys/power/ddr_devfreq_min_pm_unqos

To add a ddr freq qos constraint in appA,

echo appA 400000 > /sys/power/ddr_devfreq_min_pm_qos

With timeout in ns unit

echo appA 400000 2000000 > /sys/power/ddr_devfreq_min_pm_qos

To update a existing qos constraint,

echo appA 312000 > /sys/power/ddr_devfreq_min_pm_qos

To remove the ddr freq qos constraint (only works correctly for a existing constraint)

echo appA > /sys/power/ddr_devfreq_min_pm_qos

To check the existing constraints from user space

cat /sys/power/ddr_devfreq_min_pm_qos

To check details of all the active QoS constraints from both user space and kernel space,

cat /sys/kernel/debug/ddrfreq_qos

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 22 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

7 cpuidle

Processor power management can be classified into two classes:

• Processor active – various states a processor can be in while actively executing
and retiring instructions(processors running at different frequencies)

• Processor idle – various states a processor can be in while it is idle and not
retiring any instructions

If there is no tasks to run, scheduler chooses idle task.

 for (;;) {

 do_noting();

 }

But it just wastes power. CPUs are capable to be suspended (power down, sleep, wfi
instructions). What proccesor does in idle is architecture dependent. There are usually
several levels of sleep varies depending on the hardware, could be for example:

cpu clock off

cpu clock off, voltage reduced to retention voltage

cpu clock off, voltage off, content of memory retained, voltage on memory is on

Processors support multiple processor idle states with varying amounts of power
consumed in those idle states. Each such state will have an entry-exit latency associated
with it. In typical system usage models, processor(s) spend a lot of their time idling. Thus
any power saved when system is idle will have big returns interms of battery life, heat
generated in the system, need for cooling, etc

Each of the cpu idle states (C-states) is characterized by its power consumption and
wakeup latency, and also based on preservation of the processor state, while in this C-
state. A platform can dynamically change the number of C-states supported, based on
different platform parameters such as whether it is running on battery or AC power.

The cpuidle framework consists of two key components:

• A governor that decides the target C-state of the system.

• A driver that implements the functions to transition to target C-state.

cpuidle governors implement the policy side of cpuidle. The kernel allows the existence
of multiple governors at any given time, though only one will be in control of a given CPU
at any time. When making its decision, the governor should pay attention to the current
latency requirements expressed by other code in the system. The mechanism for the
registration of these requirements is the "pm_qos" subsystem. A number of quality-of-
service requirements can be registered with this system, but the one most relevant for
cpuidle governors is the CPU latency requirement. That information can be obtained with:

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 23

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

 #include <linux/pm_qos_params.h>

 int max_latency = pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY);

The cpuidle driver registers itself with the framework during boot-up and populates the
C-sates with exit latency, target residency (minimum period for which the state should be
maintained for it to be useful) and flag to check the bus activity.

A C-state is used to identify the power state supported through the cpu idle loop. Each
C-state is characterized by its:

• Power consumption

• Wakeup latency

• Preservation of processor state while in 'the' state.

The cpuidle governor makes decision to choose C state based on that:

• Scheduler knows when the system is idle, as it had chosen idle task.

• Scheduler knows when the next timer expires.

• Wake up latency is known from PM QoS

• cpu latency is also known

What C states do we have:

root@OpenWrt:/# ls /sys/devices/system/cpu/cpu0/cpuidle/

state0 state1 state2 state3

The description of the C states on PXA1826:

$ cat /sys/devices/system/cpu/cpu0/cpuidle/state*/desc

C1: Core internal clock gated

C2: Core power down

D1p: AP idle state

D1: Chip idle state

Corresponds to C1, C2, C3, C4

What is inside of a state:

root@OpenWrt:/# ls /sys/devices/system/cpu/cpu0/cpuidle/state3

desc disable latency name power time usage

The name of a state:

root@OpenWrt:/# cat /sys/devices/system/cpu/cpu0/cpuidle/state3/name

D1

How much time is spent in a state:

cat /sys/devices/system/cpu/cpu0/cpuidle/state3/time

141650728838

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 24 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

How many times we hit a state:

#cat /sys/devices/system/cpu/cpu0/cpuidle/state3/usage

747250

How to disable a state:

echo 1 > /sys/devices/system/cpu/cpu0/cpuidle/state3/disable

• menu and ladder governors aims to select proper low power state when system
is idle. Only menu governor is used because the tickles idle is enabled.

• ladder - steps down or up sleep states one at a time depending on the
time spent in the last idle period. It works well with a regular timer tick, but
not with dynamic tick.

• menu - selects sleep state based on expected idle time. Works well with
dynamic tick systems.

• cpuidle QoS constraints are used for components that block low power modes.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 25

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

7.1 cpuidle QoS Constraints

We have Three kinds of constraints because AXI, DDR and VCTCXO are shut down in
order (D1P, D1, D2).

• Peripherals that are accessing AXI fabric need a constraint to block D1P
since AXI clock will be off in that or deeper mode. Especially some
peripherals interrupts rely on axi fabric, such as USB.

• Peripherals that are accessing DDR need a constraint to block D1 since
DDR clock will be off in that or deeper mode.

• Peripherals that use VCTCXO as clock source need a constraint to block
D2 since VCTCXO is off in that mode.

PM QoS will be used for these three kinds of constraints.

• One new PM_QOS_CPUIDLE_BLOCK will be added.

• Three different QoS value:

 PM_QOS_CPUIDLE_BLOCK_AXI_VALUE ,
PM_QOS_CPUIDLE_BLOCK_DDR_VALUE and
PM_QOS_CPUIDLE_BLOCK_VCTCXO_VALUE.

Devices drivers interface for QoS operations:

pm_qos_add_request

pm_qos_update_request

pm_qos_remove_request

Devices SDH USB SSP Serial I2C LCD GEU SPI KEYPAD

D1P
QOS

Yes Yes Yes Yes Yes Yes

D1 QOS Yes Yes Yes

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 26 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

7.2 Tickless idle
Tickless kernel, dynamic ticks or NO_HZ is a config option that enables a kernel to run
without a regular timer tick. The timer tick is a timer interrupt that is usually generated HZ
times per second, with the value of HZ being set at compile time and varying between
around 100 to 1500. Running without a timer tick means the kernel does less work when
idle and can potentially save power because it does not have to wake up regularly just to
service the timer. Eliminating idle periodic ticks causes kernel process scheduler not do
idle balance as frequently as it would do otherwise.

No periodic timer interrupts(“the timer tick”), allows CPU stay in chosen C state until
some event happens.

The kernel seeks to avoid processor wakeups by turning off the period timer tick when
nothing is happening. Before stopping the clock, the kernel must decide when it should
wake up again; this decision involves looking at the timer queue to see when the next
timer expires. In the absence of other events (hardware interrupts, for example), the
system will sleep until the nearest timer is due. When a CPU goes into idle state, timer
framework evaluates the next scheduled timer event and in case that the next event is
further away than the next periodic tick, it reprograms the per-CPU clock-event device to
this future event. This will allow the idle CPU to go into longer idle sleeps without the
unnecessary interruption by the periodic tick.

Deferrable timers

Many of kernel timers should run as soon as the requested period has expired. Others,
however, are less important - to the point that they are not worth waking up the
processor. These non-critical timeouts can run some fraction of a second later (when the
processor wakes up for other reasons) and nobody will notice the difference.

Deferrable timers work as usual timers when system is busy, and they will fire at the
scheduled time. In idle deferrable timers wait in queue until system wakes up due to a
non-deferrable timer expires or any other interrupt wakes up the CPU.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 27

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

8 runtime PM

Runtime power management (runtime pm) manages the suspending and resuming of
individual system components at run time, which is a framework through which device
drivers can implement autonomous power management when idle. Run-time PM allows
devices to be automatically idled or auto-suspended upon inactivity, independently of
one another instead of having all devices suspended together using the standard static
suspend techniques.

Device that are not used during run time could be powered off to save power.

- while the system is running devices may be put to low power states independently of
other power management activity.

- a parent device cannot be suspended unless all of its child devices have been
suspended

- device local suspend/resume, Fine granularity PM, not like whole system sleep

- user application is not required to be frozen as system sleep

- Transparent to user space

Many devices are able to dynamically power down while the system is still running. This
feature is useful for devices that are not being used, and can offer significant power
savings on a running system. These devices often support a range of runtime power
states, which might use names such as "off", "sleep", "idle", "active", and so on. Those
states will in some cases (like PCI) be partially constrained by the bus the device uses,
and will usually include hardware states that are also used in system sleep states.

• Subsystems and drivers provide callbacks (struct dev_pm_ops)

• Subsystems and drivers handle remote wakeup.

• The core handles concurrency (locking etc.).

• The core takes care of device dependencies (parents vs children).

• The core provides reference counting facilities (detection of idleness).

• The core provides helpers (e.g. pm_runtime_suspend()).

e.g.

• USB: please check suspend/resume functions in
drivers/usb/gadget/mv_udc_core.c

• LCD.

• SDH

• PCIE

Note: cpuidle can be seen as a special case of runtime PM for CPU

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 28 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

8.1 Runtime PM V.S. autosleep

System sleep and runtime PM are related to each other, but they are not the same thing.
In some situations they may bring the system to the same physical state, but they do
that in different ways. Runtime power management (Runtime PM) turns off (stop clock or
remove power) hardware components that aren’t going to be used in the near future,
transparently from the user space’s viewpoint. System sleep assumes or knows in
advance that the whole system is not going to be used in the near future, turn off
everything (possibly by force) except for the RAM chips and wakeup source generators.

In autosleep (opportunistic suspend) approach the natural state of the system is a sleep
state, in which energy is only used for refreshing memory and providing power to a few
devices that can generate wakeup signals. The working state, in which the CPUs are
executing instructions and the system is generally doing some useful work, is only
entered in response to a wakeup signal from one of the selected devices. The system
stays in that state only as long as necessary to do certain work requested by the user.
When the work has been completed, the system automatically goes back to the sleep
state.This approach can be referred to as opportunistic suspend to emphasize the fact
that it causes the system to suspend every time there is an opportunity to do so.

To implement it effectively one has to address a number of issues, including possible
race conditions between system suspend and wakeup events (i.e. events that cause the
system to wake up from sleep states). Namely, one of the first things done during
system suspend is to freeze user space processes (except for the suspend process itself)
and after that's been completed user space cannot react to any events signaled by the
kernel. In consequence, if a wakeup event occurs exactly at the time the suspend
process is started, user space may be frozen before it will have a chance to consume
the event, which will be delivered to it only after the system is woken up from the sleep
state as a result of another wakeup event. Unfortunately, on a cell phone the "deferred"
wakeup event may be a very important incoming call, so the above scenario is hardly
acceptable for this type of device.

For this reason, one may think that it's better not to suspend the system at all and use
the cpuidle framework for the entire system power management. This approach appears
to allow some systems to be put into a low-power state resembling a sleep state.
However, it may not guarantee that the system will be put into that state sufficiently often
because of applications using busy loops to excess and kernel timers. PM quality of
service (QoS) requests may also prevent cpuidle from using deep low-power state of the
CPUs. Moreover, while only a few selected devices are enabled to signal wakeup during
system suspend, the runtime power management routines that may be used
by cpuidle for suspending I/O devices tend to enable all of them to signal wakeup. Thus
the system wakes up from low-power states entered as a result of cpuidle transitions
relatively more often than from "real" sleep states, so its ability to save energy is limited.
This basically means that cpuidle-based system power management may not be
sufficient to save as much energy as opportunistic suspend on the same system.

If you predict that you will be idle for a long enough period of time then cpuidle is
perfectly valid for you to hit your deepest sleep state in the cpuidle path.(it can be the
lowest power state as system suspend). However, it’s not that ideal case in reality
because of the issues mentioned above.

Thus, it does seem more common for suspend to target a deeper hardware sleep state
than the deepest possible cpuidle state for a given platform. Then why we need both
idle and suspend mechanisms? Answer is that the runtime PM and cpuidle help to save
power when autosleep is blocked by wakeup sources.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 29

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

Runtime PM

The .runtime_suspend() callback operates on a device that’s already quiescent.

Device driver has control on when to suspend/resume

System suspend

The .suspend() callback’s role is to quiescent the device.

The .suspend_noirq() callback operates on a device quiescent by .suspend().

Often .runtime_suspend() and .suspend_noirq() can point to the same routine,
while .suspend() is specific to system suspend.

8.2 Hardware v.s. Software
Another critical thing to understand is the difference of hardware and software power-
saving behaviors.

The low-power states that the silicon can achieve which varies in how much power they
save with trade-offs such increased wake-up latency, loss of context/cache, etc. WFI is
the gateway to low-power states in ARM hardware (from the perspective of the Linux
kernel). A plain WFI without any extra steps will gate the CPUs clocks. With some extra
steps (programming target power domain state, etc) then WFI can trigger lower voltages
supplied by the PMIC/regulators, or total power gating for power domains/island
resulting in increased energy savings but costlier wake-up time and loss of context.

The software behavior is what the Linux OS tries to do to save power. Runtime PM and
cpuilde and system suspend all are such behaviors.

Idle is "oh, the device/cpu is doing nothing, it can enter low power state to save power".
Note that idle does not aim to affect the business of the Linux scheduler. E.g. it ideally
should not impact performance, as it is only going to target a low power hardware idle
state opportunistically based on naturally occurring idle time from the scheduler.

Suspend is "I don't want the whole system to do anything until I press power button,
force sleep to save power". It *forces* idleness upon the OS until a wake-up event
resumes the OS from suspend. Imagine closing the lid on your laptop while it is running.
That is suspend. Processes are frozen regardless of whether we have lots of work
scheduled or not. Typically system suspend targeting the deepest hardware idle state,
but it doesn't have to.

There is nothing stopping a platform from suspending to RAM and leaving everything
powered up and only clock gating the CPUs with a WFI. That is possible and indicates
the separation of software and hardware idling. When that happens, we have a bug to
be fixed to make them match.

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 30 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

9 Thermel Management
For the definition and basic abstraction concepts (Documentation/thermal/sysfs-api.txt).

• Concepts of thermal zones, trip points and cooling devices.

• Framework to register thermal zone and cooling devices.

Cooling devices:

• cpufreq: opensource already support it; but it’s use scaling_max which will be over
written by others easily, so it’s changed to use cpufreq max QoS

• DDRfreq: use ddr_devfreq QoS to add max constraint.

Bi_direction cooling governor.

• Driver add both up and down thresholds (T1…t1…)

• governor will get trend by cur_temperature and last_temperature;

• governor get next cooling state with (T1, T2,..) or (t1, t2,…) based on the trend

• governor call framework API, the related cooling instance will be updated

Below diagram takes the cpufreq cooling device as example to explain the bi-direction
governor

• Different hardware design may have different thermal characteristics

• No user space governor, all policy decided by kernel space

• Power down when software failed to cool the system.

Revision History

Copyright © 2015 Marvell Confidential Doc. No. MV-Sxxxxx-xx Rev. y

July 27, 2015, Preliminary Document Classification: Proprietary Information Page 31

DO NOT DISTRIBUTE Not Approved by Document Control. For Review Only. MARVELL INTERNAL USE ONLY

10 WiFi Power Management

• WiFi uAP will be turned off by host after 10mins in idle mode (configurable via
webui). So that wifi chip will goes to sleep mode to save power.

• no timeout when USB/charger exist

• restart the timer at charger plug in/out events

• recover the uAP at ONKEY_EVENT or webUI operation

• Host sleep mechanism

It’s the mechanism in wifi driver and wifi firmware to notify each other’s idle state and
wakeup each other. Host (PXA1826) will be in sleep mode if there is no wifi traffic. Any
wakeup event or STA transaction can wake up the host system as long as the wifi chip is
not enter sleep state (not timeout)

PXA1826 Openwrt – Power Management Guide

Doc. No. MV-Sxxxxx-xx Rev. y Confidential Copyright © 2015 Marvell

Page 32 Document Classification: Proprietary Information July 27, 2015, Preliminary

MARVELL INTERNAL USE ONLY Not Approved by Document Control. For Review Only. DO NOT DISTRIBUTE

A Revision History

Table 2: Revision History

Document No

and Revision

Int Rev Description Date

0.1 Initial version July 18, 2015

0.2 Add 8.1 and 8.2 to clarify the relationship of idle and

suspend, rephrase the runtime pm description.

July 22, 2015

Marvell Semiconductor, Inc.
5488 Marvell Lane

Santa Clara, CA 95054, USA

Tel: 1.408.222.2500
Fax: 1.408.988.8279

www.marvell.com

Marvell. Moving Forward Faster

