Creating packages [OpenWrt Wiki] Page 1 of 9

©

Creating packages

Wireless Freedom

One of the things that we've attempted to do with OpenWrt's template system is make it incredibly easy to port software to OpenWrt. If you look at a typical package directory in OpenWrt you'll
find two things:

* package/Makefile
* package/patches
* package/files
The patches directory is optional and typically contains bug fixes or optimizations to reduce the size of the executable. The files directory is optional. It typically includes default config or init files.

The package makefile is the important item because it provides the steps actually needed to download and compile the package.

Looking at one of the package makefiles, you'd hardly recognize it as a makefile. Through what can only be described as blatant disregard and abuse of the traditional make format, the makefile has
been transformed into an object oriented template which simplifies the entire ordeal.

Here for example, is package/bridge/Makefile:
include $(TOPDIR) /rules.mk

PKG_NAME :=bridge
PKG_VERSION:=1.0.6
PKG_RELEAS 1

PKG_BUILD DIR:=$(BUILD_DIR)/bridge-utils-$ (PKG_VERSION)
PKG_SOURCE:=bridge-utils-$ (PKG_VERSION) .tar.gz
PKG_SOURCE_URL:=€SF/bridge
PKG_MD5SUM:=9b7dc52656f5cbec846a7ba3299f73bd
PKG_CAT:=zcat

include $(INCLUDE DIR)/package.mk

define Package/bridge
SECTION:=base
CATEGORY :=Network
TITLE:=Ethernet bridging configuration utility
#DESCRIPTION:=This variable is obsolete. use the Package/name/description define instead!
URL:=http://bridge.sourceforge.net/
endef

define Package/bridge/description

Ethernet bridging configuration utility

Manage ethernet bridging; a way to connect networks together to
form a larger network.

endef

define Build/Configure
$(call Build/Configure/Default,--with-linux-headers=$ (LINUX DIR))
endef
define Package/bridge/install
$ (INSTALL_DIR) $(1)/usr/sbin
S (INSTALL_BIN) $(PKG_BUILD_DIR)/brctl/brctl $(1)/usr/sbin/

endef

$(eval $(call BuildPackage,bridge))

BuildPackage variables

As you can see, there's not much work to be done; everything is hidden in other makefiles and abstracted to the point where you only need to specify a few variables.

PKG_NAME - The name of the package, as seen via menuconfig and ipkg

PKG_VERSION - The upstream version number that we're downloading

PKG_RELEASE - The version of this package Makefile

PKG_LICENSE - The license(s) the package is available under, SPDX form.

PKG_LICENSE_FILE- file containing the license text

PKG_BUILD_DIR - Where to compile the package

PKG_SOURCE - The filename of the original sources

PKG_SOURCE_URL - Whete to download the soutces from (directory)

PKG_MD5SUM - A checksum to validate the download

PKG_CAT - How to decompress the sources (zcat, bzcat, unzip)

PKG_BUILD_DEPENDS - Packages that need to be built before this package, but are not required at runtime. Uses the same syntax as DEPENDS below.
PKG_INSTALL - Setting it to "1" will call the package's original "make install" with prefix set to PKG_INSTALL_DIR

PKG_INSTALL_DIR - Where "make install" copies the compiled files

PKG_FIXUP - ???

PKG_SOURCE_PROTO - the protocol to use for fetching the sources (git, svn)

PKG_REV - the svn revision to use, must be specified if proto is "svn"

PKG_SOURCE_SUBDIR - must be specified if proto is "sva" or "git", e.g. "PKG_SOURCE_SUBDIR:=$(PKG_NAME)-$(PKG_VERSION)"
PKG_SOURCE_VERSION - must be specified if proto is "git", the commit hash to check out

PKG_CONFIG_DEPENDS - specifies which config options depend on this package being selected

http://wiki.openwrt.org/doc/devel/packages 2015/7/22

Creating packages [OpenWrt Wiki]

Page 2 of 9

The PKG_* variables define where to download the package from; @SF is a special keyword for downloading packages from sourceforge. The md5sum is used to verify the package was
downloaded correctly and PKG_BUILD_DIR defines where to find the package after the sources are uncompressed into $(BUILD_DIR). PKG_INSTALL_DIR defines where the files will be

copied after calling "make install" (set with the PKG_INSTALL variable), and after that you can package them in the install section.

At the bottom of the file is where the real magic happens, "BuildPackage" is a macro setup by the earlier include statements. BuildPackage only takes one argument directly — the name of the

package to be built, in this case "bridge". All other information is taken from the define blocks. This is a way of providing a level of verbosity, it's inherently clear what the DESCRIPTION variable

in Package/bridge is, which wouldn't be the case if we passed this information directly as the Nth argument to BuildPackage.

PKG_FIXUP

Some/many packages that think autotools is a good idea end up needing "fixes" to work around autotools "accidentally" knowing better and using host tools instead of the build environment tools.

OpenWit defines some PKG_FIXUP rules to help work around this. {JZIFise Mal) snarkiness probably not required

PKG_FIXUP:=autoreconf
PKG_FIXUP:=patch-libtool
PKG_FIXUP:=gettext-version

Any variations of this you see in the wild are simply aliases for these.

autoreconf

This fixup performs

autoreconf -f -1

touch required but maybe missing files

ensures that openwrt-libtool is linked

suppresses autopoint/gettext

patch-libtool

If the shipped automake recipes are broken beyound repair then simply find instances of libtool, detect their version and apply openwrt fix patches to it

gettext-version
This fixup suppress version mismatch errors in automake's gettext support

Tips

Packages that are using Autotools should work with simply "PKG_FIXUP:=autoreconf". However there might be issues with required versions.

1 Instead of patching ./configute one should fix the file from which ./configure is generated in autotools: configure.ac (or configure.in, for very old packages). Another important file is

Makefile.am from which Makefiles (with configure output) are generated.

Package Sourcecode

OpenWrtt Buildroot supports many different ways to download external source code.
Use packed source code archive

Most packages use a packed .tar.gz, .tar.bz2, .tar.xz or similar source code file.

Use repository

PKG_SOURCE_PROTO supports download from various repositories to integrate development versions.

PKG_SOURCE_PROTO:=bzr
PKG_SOURCE_PROTO:=cvs
PKG_SOURCE_PROTO:=darcs
PKG_SOURCE_PROTO:=git
PKG_SOURCE_PROTO:=hg
PKG_SOURCE_PROTO:=svn

Bundle source code with OpenWrt Makefile

It is also possible to have the source code in the package/<packagename> directory. Often a ./src/ subdirectory is used.

Examples: px5g , px5g-standalone
Download override

Bundled source code does not need overriding.
You can download additional data from external sources.

USB_IDS_VERSION:=2013-01-16
USB_IDS_MD5SUM:=222344907b6344£0935c86efaf9de620
USB_IDS_FILE:=usb.ids.$ (USB_IDS_VERSION) .gz

[...parts missing...]

define Download/usb_ids
FILE:=$(USB_IDS_FILE)
URL:=http://mirror2.openwrt.org/sources
MD5SUM:=$ (USB_IDS_MD5SUM)

endef

$(eval $(call Download,usb_ids))

and unpack it or integrate it into the build process

define Build/Prepare
$(Build/Prepare/Default)

http://wiki.openwrt.org/doc/devel/packages

2015/7/22

Creating packages [OpenWrt Wiki] Page 3 of 9

echo '#!/bin/sh' > $(PKG_BUILD DIR)/update-usbids.sh.in
echo 'cp $ (DL _DIR)/$(USB_IDS_FILE) usb.ids.gz' >> $(PKG_BUILD DIR)/update-usbids.sh.in
endef

You can modify UNPACK_CMD or call/modify PKG_UNPACK manually in your Build/Prepare section.
UNPACK_CMD=ar -p "$(DL_DIR)/S (PKG_SOURCE)" data.tar.xz | xzcat | tar -C $(1) -xf -

define Build/Prepare
$ (PKG_UNPACK)

we have to download additional stuff before patching
(cd $(PKG_BUILD DIR) && ./contrib/download prerequisites
$(Build/Patch)

endef

Examples: px5g, px5g-standalone, usbutils, debootstrap, gcc,

BuildPackage defines
Package/

matches the argument passed to buildroot, this describes the package the menuconfig and ipkg entries. Within Package/ you can define the following variables:

SECTION - The type of package (currently unused)

CATEGORY - Which menu it appears in menuconfig

TITLE - A short description of the package

DESCRIPTION - (deprecated) A long description of the package

URL - Where to find the original software

MAINTAINER - (required for new packages) Who to contact concerning the package

DEPENDS - (optional) Which packages must be built/installed before this package. See below for the syntax.

USERID - (optional) a username:groupname pair to create at package installation time.
Package/conffiles (optional)

A list of config files installed by this package, one file per line.

Package/description

A free text description of the package

Build/Prepare (optional)

A set of commands to unpack and patch the sources. You may safely leave this undefined.
Build/Configure (optional)

You can leave this undefined if the source doesn't use configure or has a normal config script, otherwise you can put your own commands here or use "$(call Build/Configure/Default,)" as above to

pass in additional arguments for a standard configure script.
Build/Compile (optional)

How to compile the source; in most cases you should leave this undefined, because then the default is used, which calls make. If you want to pass special arguments to make, use e.g. "$(call
Build/Compile/Defaul, FOO=bar)

Build/Install (optional)

How to install the compiled source. The default is to call make install. Again, to pass special arguments or targets, use $(call Build/Install/Default,install install-foo) Note that you need put all the
needed make arguments here. If you just need to add something to the "install" argument, don't forget the 'install' itself.

Build/InstallDev (optional)
For things needed to compile packages against it (static libs, header files), but that are of no use on the target device.
Package/install

A set of commands to copy files into the ipkg which is represented by the $(1) directory. As source you can use relative paths which will install from the unpacked and compiled source, or
$(PKG_INSTALL_DIR) which is where the files in the Build/Install step above end up.

Package/preinst

The actual text of the script which is to be executed before installation. Dont forget to include the #!/bin/sh. If you need to abort installation have the script return false.
Package/postinst

The actual text of the script which is to be executed after installation. Dont forget to include the #!/bin/sh.

Package/prerm

The actual text of the script which is to be executed before removal. Dont forget to include the #!/bin/sh. If you need to abort removal have the script return false.
Package/postrm

The actual text of the script which is to be executed after removal. Dont forget to include the #!/bin/sh.

The reason that some of the defines are prefixed by "Package/" and others are simply "Build" is because of the possibility of generating multiple packages from a single source. OpenWrt works
under the assumption of one source per package makefile, but you can split that source into as many packages as desired. Since you only need to compile the sources once, there's one global set of

"Build" defines, but you can add as many "Package/" defines as you want by adding extra calls to BuildPackage — see the dropbear package for an example.

Dependency Types

Various types of dependencies can be specified, which require a bit of explanation for their differences.

http://wiki.openwrt.org/doc/devel/packages 2015/7/22

Creating packages [OpenWrt Wiki] Page 4 of 9

+<foo> Package will depend on package <foo> and will select it when selected.
<foo> Package will depend on package <foo> and will be invisible until <foo> is selected.
@FOO Package depends on the config symbol CONFIG_FOO and will be invisible unless CONFIG_FOO is set. This usually used for depending on certain Linux versions or targets,

e.g. @TARGET_foo will make a package only available for target foo. You can also use boolean expressions for complex dependencies, e.g. @(TARGET_foo&&!
TARGET_bar) will make the package unavailable for foo and bar.

+FOO:<bar> | Package will depend on <bar> if CONFIG_FOO is set, and will select <bar> when it is selected itself. The typical use case would be if there compile time options for this
package toggling features that depend on external libraries. ® Note that the + replaces the @.

@FOO:<bar> | Package will depend on <bar> if CONFIG_FOO is set, and will be invisible until <bar> is selected when CONFIG_FOO is set.

Some typical config symbols for (conditional) dependencies are:

TARGET_<foo> Target <foo> is selected

TARGET_<foo>_<bar> If the target <foo> has subtargets, subtarget <foo> is selected. If not, profile <foo> is selected. This is in addition to TARGET_<foo>

TARGET_<foo>_<bar>_<baz> Target <foo> with subtarget <bar> and profile <baz> is selected.

LINUX_3_X Linux version used is 3.x.*

LINUX_2_6_X Linux version used is 2.6.x.* (:1: only used for backfire and earlier)

LINUX_2_4 Limuz wersion iz 2.4 {1 only used in backfire and eatlier, and only for target brem-2.4)

USE_UCLIBC, USE_GLIBC, To (not) depend on a certain libc.

USE_EGLIBC

BROKEN Package doesn't build or work, and should only be visible if "Show broken targets /packages" is selected. Prevents the package from failing builds
by accidentally selecting it.

IPV6 IPv6 support in packages is selected.

Configure a package source

Example:

CONFIGURE ARGS += \
--disable-native-affinity \
--disable-unicode \
--enable-hwloc

CONFIGURE VARS += \
ac_cv_file proc_stat=yes \
ac_cv_file proc meminfo=yes \
ac_cv_func malloc_0 nonnull=yes \
ac_cv_func_realloc_0_nonnull=yes

To set variables (autoconfig internal ones or CPPFLAGS,CFLAGS, CXXFLAGS, LDFLAGS for example) or configure arguments. Setting configure arguments is common. Setting VARS is
needed when the configure.ac autoconf source script does not work well on cross compilation or finding libraries.

Host tools required

If your package needs some private tools built on the host, you can use the following snippet as a pointer of where to look for more info

HOST_BUILD_DEPENDS:=<packagename>/host
PKG_BUILD_DEPENDS:=<packagename>/host
include $(INCLUDE_DIR)/host-build.mk

define Host/Compile
define Host/Install

$(eval $(call HostBuild))
TODO Expand on how to use this, and include examples

Tin Me!)

Extracted from this thead on the devel mailing list: https:/ /lists.openwrt.org/pipermail/openwrt-devel /2014-February/023970.html [hetps://lists.openwrt.otg/pipermail /openwrt-devel /2014-
February/023970.html]

All variables in your pre/post install/removal scripts should have double ($%) instead of a single ($) string characters. This will inform "make" to not interpret the value as a variable, but rather just
ignore the string and replace the double $$ by a single $ — More Info [https://forum.openwrt.org/viewtopic.php?pid=85197#p85197]

After you've created your package Makefile, the new package will automatically show in the menu the next time you run "make menuconfig" and if selected will be built automatically the next time

"make" is run.

DESCRIPTION is obsolete, use Package/PKG_NAME/description.

Adding configuration options

1f you would like configure your package installation/compilation in the menuconfig you can do the following: Add MENU:=1 to your package definition like this:

define Package/mjpg-streamer
SECTION:=multimedia
CATEGORY:=Multimedia
TITLE:=MJPG-streamer
DEPENDS:=@!LINUX 2 4 +libpthread-stubs +jpeg
URL:=http://mjpg-streamer.wiki.sourceforge.net/
MENU:=1

endef

http://wiki.openwrt.org/doc/devel/packages 2015/7/22

Creating packages [OpenWrt Wiki] Page 5 of 9

Create a config key in the Makefile:

define Package/mjpg-streamer/config
source "$ (SOURCE) /Config.in"
endef

Create a Config.in file directory where the Makefile is located with the content like this:

Mjpg-streamer configuration
menu "Configuration"
depends on PACKAGE mjpg-streamer

config MJPEG_STREAMER_AUTOSTART
bool "Autostart enabled"
default n

menu "Input plugins"
depends on PACKAGE mjpg-streamer
config MJPEG_STREAMER INPUT FILE
bool "File input plugin"
help
You can stream pictures from jpg files on the filesystem
default n

config MJPEG_STREAMER INPUT UVC
bool "UVC input plugin"
help
You can stream pictures from an Universal Video Class compatible webcamera
default y

config MJPEG_STREAMER_FPS
depends MJPEG_STREAMER INPUT_UVC
int "Maximum FPS"
default 15

config MJPEG_STREAMER PICT_ HEIGHT
depends MJPEG_STREAMER INPUT_UVC
int "Picture height"
default 640

config MJPEG_STREAMER PICT_ WIDTH
depends MJPEG_STREAMER_ INPUT_UVC
int "Picture width"
default 480

config MJPEG_STREAMER DEVICE
depends MJPEG_STREAMER INPUT_UVC
string "Device"
default /dev/videoO

config MJPEG_STREAMER INPUT GSPCA
bool "GSPCA input plugin"
help
You can stream pictures from a gspca supported webcamera Note this module is deprecated,
default n
endmenu

endmenu
Above you can see examples for various type config parameters.
And finally you can check your configuration parameters in your Makefile in the following way: (Note that you can reference to the parameters value with it name prefixed with CONFIG_)

ifeq ($(CONFIG_MJPEG_STREAMER_INPUT_UVC),y
$(CP) $(PKG_BUILD_DIR)/input uvc.so $(1)/usr/lib
endif

Working on local application source

If you are still working on the application itself, at the same time as you are working on the packaging, it can be very useful to have OpenWrt build your work in progress code, rather than a specific

version+md5sum combination checked out of revision control, or downloaded from your final "release” location. There are a few ways of doing this.
CONFIG_SRC_TREE_OVERRIDE

This is an option in menuconfig. See "Advanced configuration options (for developers)" — "Enable package source tree override"
This allows you to point to a local git tree. (And only git) Say your package is defined in my_cool_feed/awesome_app.

1n -s /path/to/local/awesome_app_tree/.git feeds/my cool_ feed/awesome_ app/git-src
make package/awesome_app/{clean,compile} V=s

Benefits of this approach are that you don't need any special infrastructure in your package makefiles, they stay completely as they would be for a final build. The downside is that it only builds
whatever is currently _committed_ in HEAD of your local tree. (Not master, this could be a private testing branch, but it must be committed it can't be local changes)
This will also use a _separate_ directory for building and checking out the code. So any built objects in your local git tree (for example, build targeting a different architecture) will be left alone, but
whatever _branch_ is checked out in your tree determines where HEAD is.

USE_SOURCE_DIR

http://wiki.openwrt.org/doc/devel/packages 2015/7/22

Creating packages [OpenWrt Wiki] Page 6 of 9

As part of deprecating package-version-override.mk (below) a method to point directly to local source was introduced.

make package/awesome_app/clean V=s
make package/awesome_app/prepare USE SOURCE_DIR=~/src/awesome_src V=s
make package/awesome_app/clean V=s

(V=s is optional above)
This doesn't require any config change to enable rules, and doesn't require that you have a local git tree, and doesn't require any files to be committed.

At least at present however, this has the following problems:

make clean doesn't clean the source link directory, but still seems to be removing a link

make prepare needs to be run every time
make package/awesome_app/ {clean,compile} USE_SOURCE_DIR=~blah doesn't work
Seems to have bad interactions with leaving USE_SOURCE_DIR set for other (dependent?) packages.

See http://www.mail-archive.com/openwrt-devel @lists.openwrt.org /msg23122.html [http://www.mail-archive.com/openwrt-devel @lists.openwrt.org /msg23122.html| for the original discussion of this

new feature
(Deprecated) package-version-override.mk

D Don't use this anymore Support for this style of local source building was removed in: https://dev.openwrt.org/changeset/40392 [https://dev.openwrt.org/ changeset/40392]. This style required a

permanent modification to your package makefile, and then entering a path via menuconfig to where the source was found. It was fairly easy to use, and didn't care whether your local source was in

git or svn or visual source safe even, but it had the major downside that the "clean" target simply didn't work. (As it simply removed a symlink for cleaning)

If you build a current OpenWrt tree, with packages that still attempt to use this style of local building, you _will_ receive errors like so: ERROR: please fix
package /feeds/feed_name/application_name /Makefile - see logs/package/feeds/feed_name/application_name/dump.txt for details

1f you need/want to keep using this style, where it's available, make sure you include without failing if it was missing:

-include $(INCLUDE DIR) /package-version-override.mk

Creating packages for kernel modules

A kernel module [http:/ /www.digitalhermit.com/linux/ Kernel-Build-HOWTO.html| is an installable program which extends the behavior of the linux kernel. A kernel module gets loaded after the kernel

itself, (e.g. using insmod).
Many kernel programs are included in the linux source distribution; typically the kernel build may be configured to, for each program,
1. compile it into the kernel as a built-in,

2. compile it as a loadable kernel module, or
3. ignore it.

See FIX:Ci iingthekernelopti iing the kernel options for including it in the kernel.

<

onfiguration). If your favorite kernel module does not

appear in the OpenWrt configuration menus, you must add a stanza to one of the files in the package /kernel/linux/modules directory. Here is an example extracted from .../modules/block.mk:

define KernelPackage/loop
SUBMENU:=$ (BLOCK_MENU)
TITLE:=Loopback device support
KCONFIG:= \

CONFIG BLK DEV LOOP \

CONFIG_BLK DEV_CRYPTOLOOP=n
FILES:=$ (LINUX_ DIR)/drivers/block/loop.ko
AUTOLOAD:=$ (call AutoLoad, 30,loop)

endef

define KernelPackage/loop/description
Kernel module for loopback device support
endef

$(eval $(call KernelPackage, loop))

Changes to the *.mk files are not automatically picked up by the build system. To force re-reading the meta data either touch the kernel package Makefile using touch
package/kernel/linux/Makefile (on older revisions touch package/kernel/Makefile) or to delete the tmp/ directory of the buildroot.

You can also add kernel modules which are nof part of the linux source distribution. In this case, a kemel module appears in the package/ directory, just as any other package does. The
package /Makefile uses

KernelPackage/xxx
definitions in place of
Package/xxx

For example, here is package/madwifi/Makefile:

Copyright (C) 2006 OpenWrt.org

This is free software, licensed under the GNU General Public License v2.
See /LICENSE for more information.

W S oW HE FE A

Ids

include $(TOPDIR) /rules.mk
include $(INCLUDE_DIR)/kernel.mk

PKG_NAME :=madwifi

PKG_VERSION:=0.9.2
PKG_RELEASE:=1

http://wiki.openwrt.org/doc/devel/packages 2015/7/22

Creating packages [OpenWrt Wiki]

PKG_SOURCE:=$ (PKG_NAME) -$ (PKG_VERSION) .tar.bz2
PKG_SOURCE_URL:=@SF/$ (PKG_NAME)

PKG_MD5SUM: =a75baacbe07085ddc5cb28elfb43edbb
PKG_CAT:=bzcat

PKG BUILD DIR:=$ (KERNEL BUILD DIR)/$(PKG NAME)-$ (PKG VERSION)
include $(INCLUDE DIR)/package.mk
RATE_CONTROL:=sample

ifeg ($(ARCH),mips)
HAL TARGET:=mips-be-elf
endif
ifeqg ($(ARCH),mipsel)
HAL TARGET:=mips-le-elf
endif
ifeq ($(ARCH),1386)
HAL TARGET:=1i386-elf
endif
ifeqg ($(ARCH), armeb)
HAL_TARGET:=xscale-be-elf
endif
ifeq ($(ARCH), powerpc)
HAL_TARGET:=powerpc-be-elf

endif

BUS:=PCI

ifneq ($(CONFIG_LINUX 2 4 AR531X),)
BUS :=AHB

endif

ifneq ($(CONFIG_LINUX 2_6_ARUBA),)
BUS:=PCI AHB # no suitable HAL for AHB yet.
endif

BUS_MODULES :=

ifeq ($(findstring AHB, $ (BUS)),AHB)
BUSiMODULES+:$(PKGiBUILDiDIR)/ath/athiahb.$(LINUX7KMOD75UFFIX)

endif

ifeq ($(findstring PCI, $(BUS)),PCI
BUSiMODULES+:$(PKGiBUILDiDIR)/ath/athipci.$(LINUX7KMOD75UFFIX)

endif

MADWIFI_AUTOLOAD:= \
wlan \
wlan scan_ap \
wlan scan_sta \
ath _hal \
ath_rate_ $(RATE_CONTROL) \
wlan _acl \
wlan _ccmp \
wlan tkip \
wlan wep \
wlan_xauth

ifeq ($(findstring AHB, $ (BUS)),AHB)
MADWIFI_AUTOLOAD += ath_ahb

endif

ifeq ($(findstring PCI, $(BUS)),PCI
MADWIFI_AUTOLOAD += ath_pci

endif

define KernelPackage/madwifi
SUBMENU:=Wireless Drivers
DEFAULT:=y if LINUX 2 6 BRCM | LINUX 2 6 ARUBA | LINUX 2 4 AR531X
TITLE:=Driver for Atheros wireless chipsets
DESCRIPTION:=\

This package contains a driver for Atheros 802.l1la/b/g chipsets.

URL:=http://madwifi.org/
VERSION:ZS(LINUXivERSION)+S(PKGivERSION)*S(BOARD)*S(PKGiRELEASE)
FILES:= \
$ (PKG BUILD DIR)/ath/ath hal.$ (LINUX KMOD SUFFIX) \
S(BUSiMODULES) \

$(PKG_BUILD DIR)/ath rate/$ (RATE_CONTROL) /ath_rate_$ (RATE_CONTROL) . $ (LINUX_KMOD_ SUFFIX)

$ (PKG_BUILD DIR) /net80211/wlan*.$ (LINUX_ KMOD_SUFFIX)
AUTOLOAD:=$ (call AutoLoad,50,$ (MADWIFI_AUTOLOAD))
endef

MADWIFI_MAKEOPTS= -C $(PKG_BUILD_DIR) \
PATH="$ (TARGET PATH)" \
ARCH="$ (LINUX_KARCH)" \
CROSS_COMPILE="$ (TARGET CROSS)" \
TARGET="$ (HAL_TARGET)" \
TOOLPREFIX="$ (KERNEL CROSS)" \
TOOLPATH="$ (KERNEL_CROSS) " \
KERNELPATH="$ (LINUX_DIR)" \

LDOPTS=" " \
ATH_RATE="ath rate/$(RATE_CONTROL)" \
DOMULTI=1

http://wiki.openwrt.org/doc/devel/packages

LINUX 2 6 XSCALE, m if ALL

\

Page 7 of 9

2015/7/22

Creating packages [OpenWrt Wiki]

ifeq ($(findstring AHB, $ (BUS)),AHB)
define Build/Compile/ahb
$(MAKE) $ (MADWIFI_MAKEOPTS) BUS="AHB" all
endef
endif

ifeq ($(findstring PCI, $(BUS)),PCI
define Build/Compile/pci
$(MAKE) $ (MADWIFI_MAKEOPTS) BUS="PCI" all
endef
endif

define Build/Compile
$(call Build/Compile/ahb)
$(call Build/Compile/pci)
endef

define Build/InstallDev
$ (INSTALL DIR) $(STAGING_DIR)/usr/include/madwifi
$(CP) $(PKG_BUILD_DIR)/include $(STAGING_DIR)/usr/include/madwifi/
$ (INSTALL DIR) $(STAGING_DIR)/usr/include/madwifi/net80211
$(CP) $(PKG_BUILD DIR)/net80211/*.h $(STAGING DIR)/usr/include/madwifi/net80211/

endef

define KernelPackage/madwifi/install
$ (INSTALL_DIR) $(1)/etc/init.d
$ (INSTALL_DIR) S(l)/lib/modules/s(LINUXivERSION)
(INSTALL_DIR) $(1)/usr/sbin
(INSTALL_BIN) ./files/madwifi.init $(1)/etc/init.d/madwifi
(
endef

$(eval $(call KernelPackage,madwifi))

File installation macros

Page 8 of 9

CP) $(PKG_BUILD DIR)/tools/{madwifi multi,8021ldebug,80211lstats,athchans,athctrl,athdebug,athkey,athstats,wlanconfig} £

INSTALL_DIR, INSTALL_BIN, INSTALL_DATA are used for creating a directory, copying an executable, or a data file. +x is set on the target file for INSTALL_BIN, independent of it's mode

on the host.
From the big document:

Package/<name>/install:

A set of commands to copy files out of the compiled source and into the ipkg which is represented by the $(1) directory. Note that there are currently 4 defined install macros:

INSTALL_DIR
install -d -m0755
INSTALL_BIN
install -m0755
INSTALL_DATA
install -m0644
INSTALL_CONF
install -m0600

Packaging a service

If you want to install a service, (something that should start/stop at boot time, that has a /etc/init.d/blah script), you should make sure that the init.d script can be run on the host. At image build

time, all init.d scripts found are run on the host, looking for the START=20/STOP=99 lines.

This is what installs the symlinks in /etc/rc.d, so they are only created when you rebuild the entire image. If you want the symlinks to be created when a package is installed, such as via opkg, you

should add a postinstall script which runs

/etc/init.d/foo enable

if SIPKG_INSTROOT is empty.

When $SIPKG_INSTROOT is defined, you run within the buildroot, if it is empty you run on the target.
Example makefile snippet to install/remove symlinks.

define Package/mrelay/postinst

#!/bin/sh

check if we are on real system

if [-z "S$S{IPKG_INSTROOT}"]; then
echo "Enabling rc.d symlink for mrelay"
/etc/init.d/mrelay enable

fi

exit 0

endef

define Package/mrelay/prerm

#!/bin/sh

check if we are on real system

if [-z "SS{IPKG_INSTROOT}"]; then
echo "Removing rc.d symlink for mrelay"
/etc/init.d/mrelay disable

fi

exit 0

endef

Very basic example of a suitable init.d script

http://wiki.openwrt.org/doc/devel/packages

2015/7/22

Creating packages [OpenWrt Wiki]

Page 9 of 9

@ procd style init is used in some init.d scripts since: https://dev.openwrt.org/changeset/38023 [https://dev.openwrt.ore/ changeset/38023] . See http:/ /wiki.openwrt.org/inbox/procd-init-scripts

[http:/ /wiki.openwrt.org/inbox/procd-init-scripts| for more details on that

#!/bin/sh /etc/rc.common
"new(er)" style init script

Look at /lib/functions/service.sh on a running system for explanations of what other SERVICE_
options you can use, and when you might want them.

START=80
APP=mrelay
SERVICE_WRITE_PID=1
SERVICE_DAEMONIZE=1

start () {
service_start /usr/bin/$APP

stop () {
service_stop /usr/bin/$APP
}

#!/bin/sh /etc/rc.common

FHERE R AR R R R R R R R
NOTE - this is an old style init script
FHEHE R AR R R R R R R R R

START=80
APP=mrelay

PID_FILE=/var/run/$APP.pid

start () {

start-stop-daemon -S -x $APP -p SPID_FILE -m -b

stop () {

start-stop-daemon -K -n $APP -p $PID FILE -s TERM

rm -rf SPID FILE

How To Submit Patches to OpenWrt

Packages are maintained in a separate repository to reduce maintennance overhead. The general guidelines for OpenWrt still apply, but see the README in the packages repository for latest

information.

* https://github.com/openwrt/packages [https://github.com/openwrt/packages|

* hittps://dev.openwrt.org/wiki/SubmittingPatches [https://dev.openwrt.org/wiki/SubmittingPatches]

See https://lists.openwrt.org/pipermail/openwrt-devel /2014-June/025810.html [https: //lists.openwrt.org/pipermail /openwrt-devel /2014-June /025810.html| for the original announcement of this change

http://wiki.openwrt.org/doc/devel/packages

doc/devel /packages.txt - Last modified: 2015/04/21 21:16 by RyanLindeman

2015/7/22

