
Marvell PXA1826 SW

2015

Disclaimer

 No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, including

photocopying and recording, for any purpose, without the express written permission of Marvell. Marvell retains the right to make

changes to this document at any time, without notice. Marvell makes no warranty of any kind, expressed or implied, with regard to any

information contained in this document, including, but not limited to, the implied warranties of merchantability or fitness for any particular

purpose. Further, Marvell does not warrant the accuracy or completeness of the information, text, graphics, or other items contained

within this document.

 Marvell products are not designed for use in life-support equipment or applications that would cause a life-threatening situation if any

such products failed. Do not use Marvell products in these types of equipment or applications.

 With respect to the products described herein, the user or recipient, in the absence of appropriate U.S. government authorization, agrees:

 1) Not to re-export or release any such information consisting of technology, software or source code controlled for national security reasons by the U.S.

Export Control Regulations ("EAR"), to a national of EAR Country Groups D:1 or E:2;

 2) Not to export the direct product of such technology or such software, to EAR Country Groups D:1 or E:2, if such technology or software and direct

products thereof are controlled for national security reasons by the EAR; and,

 3) In the case of technology controlled for national security reasons under the EAR where the direct product of the technology is a complete plant or

component of a plant, not to export to EAR Country Groups D:1 or E:2 the direct product of the plant or major component thereof, if such direct product is

controlled for national security reasons by the EAR, or is subject to controls under the U.S. Munitions List ("USML").

 At all times hereunder, the recipient of any such information agrees that they shall be deemed to have manually signed this document in

connection with their receipt of any such information.

 Copyright © 1999–2013. Marvell International Ltd. All rights reserved. Alaska, ARMADA, CarrierSpan, Kinoma, Link Street, LinkCrypt,

Marvell logo, Marvell, Moving Forward Faster, PISC, Prestera, Qdeo (for chips), QDEO logo (for chips), QuietVideo, Virtual Cable Tester,

Xelerated, and Yukon are registered trademarks of Marvell or its affiliates. Avanta, Avastar, DragonFly, HyperDuo, Kirkwood, Marvell

Smart, Qdeo, QDEO logo, The World as YOU See It, Vmeta and Wirespeed by Design are trademarks of Marvell or its affiliates.

 Patent(s) Pending—Products identified in this document may be covered by one or more Marvell patents and/or patent applications.

General SW overview

Openwrt

OpenWRT Init process

Detailed SW architecture

 File system

Memory map

 SW Package folder Structure

 Telephony Block Diagram

 Services

 System Configuration

 USB

 Audio

GPS connectivity Architecture

WiFi, BT

3

PXA1826 Software Training Agenda (1/2)

Security

NVM

Power Management

Logging (Diag, EEH, RAMDUMP)

FOTA

SW Porting & Adding a new profile

4

PXA1826 Software Training Agenda (2/2)

PXA1826 Components and Interfaces

5

MSA
Cortex

R5

Aux
Cortex

A7

RF Codec PMIC
SSP

I2C

USIM

PXA1826

PC

Board Baundary

PC
Ie

 /
U

S
B

USB

PCIe

H
S

IC
U

A
R

T

2Gb x8/16
NAND

UART

Optional

Antena

1Gbx32b LPDDR2 400MHz

Dig RF 4

Modem HW
Accelarators

S
D

IO

Ethernet

Control
Signals

LCD
I/F

LCD

ACIPC

PXA1826 SW Components

6

HW Platform PXA1826

Uboot

OBM

Boot ROM

SW

HW

Linux Kernel

User Space

PXA1826 SW Components

BootROM
 Check signature (TIM)

 DDR, Flash configuration

 Load OBM

OBM
 Load UBOOT, obm2osl

 Security check for relevant images (Uboot, Kernel)

UBOOT
 Load zImage

 Platform configurations

Kernel 3.10
 Android compatible Kernel

 Device tree

OpenWRT

7

SW Package folder Structure

8

marvell

config

• OpenWRT is becoming “android” of gateway

• Very useful for low memory solutions

• OpenWRT is very scalable and flexible:

• one config file for all SW layers; Kernel, User Space etc.

• Package methodology

• Marvell code is united under dedicated folder

PXA1826 SW Architecture (Cont.)

9

UBUS

… Audio

Manager

MBIM TR69 eMBMS FOTA

UI CGI

Web Server

Conn mgr

SMS

PB

SIM STK

OpenWRT Packages

Netfid

UCI

(rpcd)

…

Marvell Power/Thermal

Management

IMSD

Security

RILD

Marvell RIL

AT cmd server

Telephony kernel drivers

CP

Linux IP stack/routing BSP (USB, SD, WIFI…)

Services

Kernel

Baseband

 HW

PC

Diag

EEH

NVM

MRD

PPP

AGPS

Marvell telephony

Applications

Audio

VCM

HW

Marvell Code Kernel Community Code Customer Code OpenWRT Code

OpenWRT

10

OpenWRT

A free and open Linux based SW (FW) for embedded devices (mainly routers)

Version: “Barrier Breaker’

Named “WRT” after the first device that used Linux on it “Linksys WRT45G”

First release: Jan 2004

OpenWRT is becoming “android” of gateway

OpenWRT is very scalable and flexible:

–Very well designed package methodology allows very easy customizations and managements

- one config file for all SW layers; Kernel, User Space etc

–Support independent APP developments, allow .IPK installation and management

–Strong community supports around the world, thousands of APPs

11

OpenWRT Environment

OpenWrt Buildroot environment is a collection of Makefiles, patches and

scripts, which generates the cross-compilation toolchain, downloads

Linux kernel, generates a root file system, manages 3rd party packages,

etc.

The cross-compilation toolchain uses uClibc

 In the OpenWrt Buildroot source tree, there is no Linux kernel or any

source code tarballs of the 3rd party packages. The collection of

Makefiles determines the version of Linux kernel to download, and the

version of the package tarball to download and compiled in to the image.

12

http://www.uclibc.org/

OpenWRT Buildroot Source Tree

13

OpenWRT Buildroot Source Tree

 tools – contains all the build instructions to fetch the image building tools

 toolchain - contains all the build instructions to fetch the kernel headers, the C

library, the bin-utils, the compiler itself and the debugger. If you add a

completely new architecture, you would add a configuration for the C library

here.

 target - build instruction for firmware image generating process and for the

kernel building process; compiles kernel and firmware image utilities, builds

firmware image, generate Image Generator (former called Image Builder)

 package – the OpenWrt Makefiles and patches for all the main packages. The

OpenWrt Makefile has its own syntax, different from the conventional Makefile of

Linux make tool. The OpenWrt Make file defines the meta information of the

package, where to download the package, how to compile, where to installed the

compiled binaries, etc.

 include

 scripts – sh and perl scripts for the OpenWrt package management

14

OpenWRT Buildroot Source Tree

 dl –(down link) Where the package tarballs will be downloaded

 build_dir – where all tools will be cross-compiled

 staging_dir – where the cross-compilation tools will be installed

 feeds – OpenWrt packages management for packages that are not in the

openwrt basic structure.

Possible to create your own package

 bin – where the firmware image will be generated and all the .ipk package files

will be generated

15

Image building steps (once the configuration is done)

1. Download the cross-compilation tools, kernel headers, etc. and

2. Set up the staging directory (staging_dir /). This is where the cross-

compilation toolchain will be installed. If you want to use the same cross-

compilation toolchain for other purposes, such as compiling third-party

applications, you can find the cross-compiler tools in this directory, and then

use arch-linux-gcc to compile your application.

3. Create the download directory (dl/ by default). This is where the tarballs will be

downloaded.

4. Create the build directory (build_dir/). This is where all user-space tools while

be compiled.

5. Create the target directory (build_dir/target-arch/root by default) and the

target filesystem skeleton. This directory will contain the final root filesystem.

6. Install the user-space packages to the root file system and compress the

whole root file system with proper format. The result firmware image is

generated in bin/

16

OpenWRT Compilation options

Download package from network
Package will be downloaded from network in the compilation process (if not

exist)

Compile in build directory

Makefile example: network/services/dropbear/Makefile

Compile from source directory
 In our system, Kernel & Telephony are compiled like that

Compile in source directory (recommended)

– Makefile example: libs/libprop2uci/Makefile

Compile in build directory

– Makefile example: network/services/lte-telephony/Makefile

Changing downloaded package code
 In order to change code of downloaded package, we add patches that during compilation

time are added to the unzipped code.

17

UBUS Concept

 To provide communication between various daemons and applications

 It consists of few parts including daemon, library and some extra helpers.

 The heart of this project is ubusd daemon. It provides interface for other

daemons to register themselves as well as sending messages.

 This interface is implemented using Unix socket and it uses TLV (type-length-

value) messages.

 To simplify development of software using ubus (connecting to it) a library called

libubus has been created.

 Command-line ubus tool

 The ubus command line tool allows to interact with the ubusd server (with all currently registered

services).

 It's useful for investigating/debugging registered namespaces as well as writing shell scripts.

 For calling procedures with parameters and returning responses it uses user-friendly JSON format.

18

OpenWRT Init process

procd

When Kernel boot is finished, procd is called.

procd is OpenWrt process management daemon. It keeps track of processes

started from init scripts (via ubus calls)

Boot stages:

procd: preinit
– Early mount: proc, sysfs, tmpfs (DDR FS)

– Creating needed devices (block, character)

– Console is alive

– Calls preinit and system functions

–Calls inittab – linux script

– that selects the initial script according to the start grade

– production mode modification

–Copy All init scripts from init.d to rc.d

–Run hotplugs

–UBUS init

19

http://en.wikipedia.org/wiki/Process (computing)

OpenWRT Init process

procd: - init –

– Run all scripts located in : located /etc/rc.d according to the grades

– Example: build_dir/target-arm_cortex-a7+neon-vfpv4_uClibc-0.9.33.2_eabi/root-

mmp/etc/init.d/mrvl_init

20

http://wiki.openwrt.org/doc/techref/process.boot

http://wiki.openwrt.org/doc/techref/process.boot

Initramfs

 This is used for actions needed to be performed before the root partition is

mounted.

 Useful if you need to do something special to get your root partition visible

to the kernel.

 InitramFS is currentlly not used in our system, but openWRT supports it.

21

Detailed SW Architecture

22

SW Package folder Structure

 Fully aligned to openwrt base structure

marvell folder contains all Marvell specific modules and services (obm, uboot,

kernel, telephony)

 Config folder contains platform configuration files

23

marvell

config

File System

Currentally:
Read only FS: squashfs (version 4.0)

OverlayFS, NVM: JFFS2 (version 2.2)

Supports UBIFS by configuration

24

Memory MAP - NAND

25

Memory MAP - DDR

26

BLF file

27

MTD
 [1.654357] 0x000000000000-0x000000020000 : "bootloader"

 [1.660736] 0x000000020000-0x000000040000 : "reliabledata"

 [1.667144] 0x000000040000-0x000000060000 : "reliabledata2"

 [1.673767] 0x000000060000-0x0000000a0000 : "mep2"

 [1.679595] 0x0000000a0000-0x0000000e0000 : "dtim"

 [1.685394] 0x0000000e0000-0x000001d60000 : "cpimage"

 [1.691558] 0x000001d60000-0x000001e60000 : "NVM"

 [1.697174] 0x000001e60000-0x000001ee0000 : "u-boot"

 [1.703155] 0x000001ee0000-0x0000022e0000 : "kernel"

 [1.709167] 0x0000022e0000-0x000005780000 : "rootfs"

 [1.715118] mtd: device 9 (rootfs) set to be root filesystem

 [1.721160] mtd: partition "rootfs_data" created automatically, ofs=0x32e0000, len=0x24a0000

 [1.729675] 0x0000032e0000-0x000005780000 : "rootfs_data"

 [1.736083] 0x000005780000-0x000005c80000 : "mdb"

 [1.741943] 0x000005c80000-0x000005d80000 : "misc"

 [1.747711] 0x000005d80000-0x000007d80000 : "OTA"

28

PXA1826 SW Architecture (Cont.)

29

UBUS

… Audio

Manager

MBIM TR69 eMBMS FOTA

UI CGI

Web Server

Conn mgr

SMS

PB

SIM STK

OpenWRT Packages

Netfid

UCI

(rpcd)

…

Marvell Power/Thermal

Management

IMSD

Security

RILD

Marvell RIL

AT cmd server

Telephony kernel drivers

CP

Linux IP stack/routing BSP (USB, SD, WIFI…)

Services

Kernel

Baseband

 HW

PC

Diag

EEH

NVM

MRD

PPP

AGPS

Marvell telephony

Applications

Audio

VCM

HW

Marvell Code Kernel Community Code Customer Code OpenWRT Code

 PXA1826 Telephony Block Diagram

AT Command Server

 Marvell- RIL

Client 1 Client 2 Client 56

RILD

 UBUS

RIL Client RIL Client

services

Phonebook

Service that handles contact storage on SIM
– Allow UBUS interface for saving/pulling numbers from SIM

– UI uses it to display the contacts

Sim manager
Service that implement Sim related functionalities:

– Sim status request

– Enable/enable/change pin

– reset_pin_using_puk

SMS service

Service that implement SMS related functionalities

 Currently support PDU only

Option to list, save, send, delete, move, query SMS.

31

services (cont.)

traffic_stat:
 Statistics

 Data limitation

Wireless
 Wifi configuration

 Mainly used for UI

router_firewall , router_settings
 Rerouting and firewall configuration over UBUS (instead of changing UCI file) – used for UI

netmode_mgr
 Webui for setting and getting network operations (getting cells etc)

mgui/
 GUI for LCD

Charger

32

Services (cont.)

MBIM - Mobile broadband (MB) Identity Morphing. The solution maps the morphing

device’s USB configuration to a set of USB functions. At any point in time, a single set of

functions (by way of a configuration) are exposed to the host. eliminates the need for

distributing the driver package

LWM2M - Lightweight M2M, a protocol from the Open Mobile Alliance

for M2M.

 Provide Device Management functionality over cellular networks

 Transfer service data from the network to devices

 Extend to meet the requirements of most any application

OMA-DM – will be supported after LWM2M.

33

https://en.wikipedia.org/wiki/Machine_to_machine
https://en.wikipedia.org/wiki/Machine_to_machine
https://en.wikipedia.org/wiki/Machine_to_machine

Services (cont.)

TR69 - (Technical Report 069) is a Broad band forum (formerly known as DSL forum).

Automatic configuration and management of modems, routers, gateways by Auto

Configuration Servers (ACS)

eMBMS - Multimedia Broadcast Multicast Services (MBMS) is a point-to-

multipoint interface. Target applications include mobile TV and radio broadcasting.

Connection Manager

34

System Configuration

Pxa1826 configuration is set at compilation and the result is BLF file.

The flags are added to DTIM

OBM reads the configuration and transfer it to UBOOT

UBOOT handle accordingly and notify Kernel by as a cmdline argument

Some configuration are transpose to UCI file

Example: NZA3/cfg_files/pxa1826/ext_blf_cfg_PROD

possible to change this configuration in runtime (changing flags in flash

or cmdline in UBOOT)

 35

Current configuration:

PIPE (0 - router, 1 - pipe mode)

IMSD (with or without IMS)

EEHP(stall or Ramdump)

PROD (0 – normal mode, 1 – production mode)

Plan to support audio, GPS, WiFi and other configuration

(same as pxa1801)

Example:

 IMS (BLF, cmdline, UCI, services.init)

 Prod (BLF, UBOOT, cmdline, UCI)

 36

System Configuration (cont.)

Android wrappers

ml_utilset

 Android utilities wrappers

prop2uci

 Wrappers for getprop, setprop using UCI

 location:

marvell\services\android_wrapper\

37

System data configuration

Router Mode:
fastpath v2

Connection manager

Data path

Data optimization

WebUI (in MiFi only)

38

System data configuration

Pipe Mode :
No fastpath (pipe module instead)

Pipe demon

No WebuUI

CM on target for 1 PDP

CM application on host FOR Multiple PDPs (need

to implement)

39

USB

Two controllers sharing the same PHY:
 USB2 – use the same USB controller as pxa1801 (silicon image IP)

 USB3 (also has USB2 support built-in) – we use only the part of USB3.

For OTG and USB2 we still use USB2 controller.

Frame-work – since our Kernel is Android based, we use Android

USB frame-work.

 USB Configuration:

USB 2/3 detection – start as USB3 and fallback to USB2.

OTG detection – role switch is static according to cable ID.

40

USB

OS detection (works with standard drivers)
• IOS – loading ECM

• Linux*, Win 7 – loading RNDIS

• Win 8 and up – loading MBIM

 In addition, we support the following function by default:

• marvell_diag

• marvell_modem

• Sulog

We can support also mass_storage, ncm_function on demand

 For USB3 - there is end-point limitation so we can only support up to four functions.

 Linux native RNDIS HOST driver support multiple packets up to 2K.

– Causes reduction in throughput.

– Throughput can be increased by applying a patch on the HOST (achieve same throughput as windows)

– In any case, the detection of max transfer size is automatic by SW (it will work also without the patch just

with lower throughput).

usbfs is supported but currently not used.

41

Audio Architecture

42

Standard/Common audio functionality

Standard/Common audio functionality is handled via audioHAL, while triggered

by either AT CMD and/or UBUS application (e.g. IMS)

 Examples:

– Start/stop voice call

– Set audio profile (SPKR, HS, etc’)

– Set volume/mute

– More (HiFi, BT, etc’)

 Since the audio solution is based on tinyALSA (and not include ALSA amixer),

AT CMDs will need to be extended. All pxa1801 functionalities will be supported

through ATCMD

 Flexibility: CODEC control using XML files. (easy to switch CODEC)

43

PCM data streaming

3 bi-directional (playback/record) audio PCM data streaming are available.

Support 2 simultaneously:

1. Apps audio data #1: 8-48 kHz , via BSSP1

2. Apps audio data #2: 8-48 kHz, via BSSP2

3. Comm audio data : 8,16 kHz (WB) , via GSSP (PCM streaming from Apps is also

supported).

 Each interface, physically, can be configured as I2S,PCM, etc’.

44

Standard/Common audio functionality

 Start VC

45

GPS connectivity Architecture

48

48

WiFi + BT

Support for the below Chips:

 8897 – 802.11ac/n/a/g/b 2x2, BT 4.0+HS, NFC (default)

 8887 – 802.11ac/n/a/g/b 1x1, BT 4.0, FM

 8797 – 802.11n/a/g/b 2x2, BT 4.0+HS, FM (Same as in Omer2)

 8787 – 802.11n/a/g/b 1x1, BT 3.0+HS, FM

 8777 - 802.11n/g/b 1x1, BT 4.0, FM

Automatic detection + drivers uploading

Supports AP and AP + STA modes (hotspot).

BT service – carnally support blueZ

The following profiles would be supported in the future:
 HFP

 PBAP A2DP

 AVRCP

 DUN

 OPP

50

Security in PXA1826

Security is the concept of maintaining the root of trust (RoT)

 It consist of few entities

 Trusted Boot: the first step of establishing the RoT

Marvell provided security libraries: implementing security standards and are checked at

boot .

 PXA1826 SoC Security Building Blocks

 BootROM

 GEU – Generic Encryption and Fuse Unit

 Fuse, Life Cycle State (LCS)

 PXA1826 Security Solutions

 WTPSP – library that use users pace security related functions to GEU

 Trusted Boot

 Secure OTA

 Secure MRD

51

MRD - Marvell Reliable Data

MRD is a data area in flash

The MRD data is encrypted and integrity protected.

MRD content is read from flash, integrity-checked and decrypted and then

copied to the DDR on each boot.

MRD contains target-specific (unique and non-unique) sensitive data.

MRD content:
– RF calibration results

– Serial Number - Optional

– IMEI

– MEP (SIM Lock) data – Optional

– WiFi MAC address - Optional

– BT-ID - Optional

52

PXA1826 Trusted boot overview

Trusted boot is a package of hardware and software components that

allow an OEM to perform security validation on a platform at boot time.

Boot ROM uses SHA1 hash and the Digital Signature of images stored

in flash to establish the root of trust.

The security parameters are stored in flash using a data structure called

TIM.

Validation always starts with the BootROM.

A RSA asymmetric key is required and also secured provisioning of this

key into one-time programmable fuses before the device is deployed.

53

PXA1826 Trusted Boot Flow

Boot process starts with reset and ends with FFOS

upload and running

Main functions:
 load validated code from flash to DDR

 configure platform HW prior to loading OS

54

OBM OS Loader FFOS Boot-ROM

55

Detailed CA7-Core0 Trusted Boot Flow and Trust Chain

BootROM

OBM TIM

Kernel uboot

CP Images

System Telephony, WTPSP

DTIM.p

Secure MRD Data DTIM.cp

AP released from reset

BootROM

1.Initialize platform (DDR)

2.validate OEM pub key in tim

against fuse;

3.validate tim sig using OEM pub key;

4.load and validate OBM according

to tim;

5.transfer control to OBM in DDR in

case all above steps succeed;

6.wait for download or dead-loop

depending on the download disable

fuse bits.

OBM
1.get TIM left by BootROM

2.Load images according to TIM.

3.validate DTIM pub key’s sig

using OEM pub key in TIM

4.validate DTIM’s sig using DTIM

pub key

5.load and validate uboot, kernel,

according to dtim

6.transfer control and pass

OBM2OSL to uboot

7.dead-loop in case boot paths

fails

uboot

1.Load Zimage

2.Set ATAG params

3.Build Kernel cmdline

4.Dead-loop in case

both paths fails

Kernel

User Space

CP loader:
1.Loades and

validates CP

images including:

2.Arbel, MSA, RF and

reliable data

3.validate CP images

through WTPSP -

DTIM

CP boot
1.CP released from reset

Marvell TZ / TEE

 TZ stands for Trust Zone, a section in DDR that considers secured.

 This is ARM feature allows configuring a range of capabilities to protect certain DDR

sections in a way that will not allow Hackers to access it.

 Not supported in this project

 TEE – this is the SW package for TZ .

59

NVM

 NVM is data storage area in flash for CP usage.

As CP cannot access directly to flash, AP is responsible to sync the

actual code to flash (CP writes to DDR)

Mainly used by the comm
– Comm. configuration

– RF calibration

– Protocol stack related files

– Audio configuration files

Possible design change

60

App. subsystem Comm. subsystem

Debug & Logging - DIAG

Part of the Telephony. It is a diagnostic module that collect traces from the

SW (MSA, APPS) and according to configuration:
– Sends them over USB to a PC running the CATStudio tool

– Saves them on the flash/SD card (offline logging).

– Saves them in the DDR (cyclic buffers)

Once the SD log files get to the PC (CATStudio, SD Card Reader, FTP)

they can be opened using the CATStudio

Currently we do not support diag over IP

Solution for Linux HOST will be based on tty

61

Debug & Logging - Error Handler (EEH)

COM EEH: handle COM errors and notify the APPS.

 When the COMM has an unrecoverable event, the COMM DDR is written

to the flash and can be read later via the debug/host I/F.

APP EEH: handle APP errors, logging COM & APP error information in the

memory and preform system recovery.

 On an unrecoverable event, the entire DDR is written to the flash and can

be read later via the debug/host I/F – (RAMDUMP).

Debug & Logging - Sulog

Super Log

Sulog is a new debug tool (HW) implemented in CP side

and capable to debug both HW and SW events

AP core is responsible to stream out Sulog log information

from DDR using either:

USB

SD card

AP Sulog application boots by default but doesn’t effect

system performance until actual Sulog debug begins

63

RUMDUMP

RAMDump is a feature that upon a failure causes all the DDR area to be

compressed and written to the memory.

Contains:
One image (APPS, COMM & MSA) + a brief problem description file.

 Complete information for APPS debug: COM debug info.

– All Linux state is available: can analyze system state.

– With Full kernel code/data: can analyze kernel state with symbol table.

– All processes are available: can see call stack

– Log available in kernel panic cases.

 COM debug info.

64

RAMDUMP process

 SEM originated errors (COMM or APPS)

 Stage 1 – preparation

– Stream all debug info from COM side to APP side.

– Compressed all logs in DDR.

– Save APP debug info to DDR

– Reset is preformed (GPIO reset to keep DDR content)

 Stage 2 – copying

– Uboot is running in special mode

– Uboot compressed the DDR and copy it to SD card.

– Full power reset is preformed

 Stage 3 – Normal state

– Normal boot

 Example:

 Apps assert: echo p > /dev/ramdump_ctl OR eeh –T panic

 CP assert: echo a > /dev/acipc OR eeh -T cpassert

65

Debug & Logging

SEM management

Config (stall/Ramdump)

Groups

GDB:
Gdb on target

Gdb on Linux machine

66

FOTA service

 Done in OBM

 OTAD is OTA-related daemon process. This process main responsibility is to do firmware

upgrade involves common things. Such as FBF file integrity checking, Flash burning etc.

 OTAD interact with other APP through UBUS. OTAD implemented method call and

notification.

 APP can launch firmware upgrade through method call. APP can listen notification get

download process information.

 In addition to providing common service for other APP using, OTAD also achieve Marvell

defined new firmware discovery protocol.

67

OTAD diagram

68

 End user has three ways to upgrade device:

1.Device auto detect new firmware through internet. Such as TR069 ACS or other OTA

protocol

2.Upgrade device through WEB UI

3.Firmware store on SD card

 flash flag is used for indication to OBM to perform FOTA process.

 Partial FOTA:

 - possible in groups due to security

SW Porting

Pin Mux file for the new device

Update kernel Device Tree (dts files)

Add a new profile and Build accordingly using defconfig file

Add specific HW support drivers etc. (optional)

Add specific applications (optional)

69

Adding a new profile

1. Add a new profile entry in: “target/linux/mmp/pxa1826/profiles/marvell.mk”

2. Create a dts file for the board, dts_filename.dts in: “

/marvell/linux/arch/arm/boot/dts”

3. Add “dts_filename.dtb“ to create dtb file in: “arch/arm/boot/dts/Makefile”

4. Create a defconfig file in “config/” with your desired configuration,

5. Add new entry in “target/linux/mmp/image/Makefile”:

6. Align “rules.mk” with the new profile

 Additional steps (optional):

If you want to be able to identify your board from the console (TeraTerm),

Then, in file: “target/linux/mmp/base-files/lib/pxa182x.sh”

Function: pxa182x_board_detect()

You need to add a case for your board (profile).

Detailed doc

70

~$w to create a new profile to Nezha 3.docx

Back-up

71

Hardware Block Diagrams - Mainstream configuration #1

 WIFI is using

SDIO, <300Mbps

 Support USB3

72

Hardware Block Diagrams – Mainstream configuration #2

 WIFI is using PCIe

with 8897, up to

500Mbps

 No USB3

73

Hardware Block Diagrams – Lowest MIFI configuration #3

 SW Feature are limited

 Only have 24MB DDR

74

Hardware Block Diagrams – Dongle/Module configuration #4

75

Software Block Diagram – Dongle with MBIM

76

Software Block Diagram – Dongle without MBIM

This is for customers who only need modem and the TCP/IP/NAT is

not in 1826 side

77

Software Block Diagram – Mainstream and Lowest MIFI

For lowest MIFI, architecture is same but the features will be limited
78

MRD API

The MRD API is in charge of the following tasks:

– General purpose: Read “file” from MRD.

– General purpose: Add “file” to MRD.

– General purpose: Remove “file” from MRD.

All the commands are received from the AT server.

The MRD API is a service of the telephony process which is

executed as follows:
– r/w in production mode.

–r/o in normal mode.

79

Platform Binding and Verification (on Target)-

80

OEM Pub Key
Hashing Algorithm

 (SHA1)
Fuses

OEM Pub Key
Hashing Algorithm

 (SHA1)

Production mode -ONLY

Each boot

Equal
?

Fuses

TIM in Flash

TIM in Flash

TIM Authentication

81

TIM Hashing Algorithm

 (SHA1)

Signing Algorithm

 PKCS1

Secret OEM Private Key

OEM Public Key

Decrypted

Hashed TIM

Equal
?

Hashed TIM Digital

Signiture

of TIM

Signing Algorithm

 PKCS1
DS TIM Hashing Algorithm

 (SHA1)

Calculated

Hashed TIM

Production

Each boot

Done Off-line (TBB)

On Target

Flash

TBB input file

Flash
Flash

All other Image Verification

82

Production

On each boot, for every image in TIM/DTIM

Image Object Code Hashing Algorithm

 (SHA1)
Digest Stored in TIM/DTIM

Digest From TIM/DTIM

Equal
?

Image from Flash Hashing Algorithm

 (SHA1)
Hashed image

Done Off-line (TBB)

On Target

Flash

Netifd

netifd is an RPC-capable daemon written in C for better access to kernel APIs with the ability to listen

on netlink events. Netifd has replaced the old OpenWrt-network configuration scripts, the actual scripts

that configured the network, e.g.

/lib/network/*.sh,

/sbin/ifup

some scripts in /etc/hotplug.d.)

netifd is intended to stay compatible with the existing format of /etc/config/network, the only exceptions

being rare special cases like aliases or the overlay variables in /var/state (though even most of those can

be easily emulated).

83

http://en.wikipedia.org/wiki/Remote procedure call
http://en.wikipedia.org/wiki/Daemon (computing)
http://en.wikipedia.org/wiki/C (programming language)
http://en.wikipedia.org/wiki/Netlink
http://wiki.openwrt.org/doc/uci/network

The UCI System

84

The abbreviation UCI stands for Unified Configuration Interface and is

intended to centralize the configuration of OpenWrt.

Configuration should be easy and straightforward, making life easier! UCI

is all about that.

http://wiki.openwrt.org/doc/techref/uci

 ipk file

IPK, or Itsy Package is a compressed archive

format file derived from the Debian package

format. It is used for handheld software

installations.

85

Life cycle states

 Life cycle states (LCS):

1. Chip is manufactured - LCS = 0, does not contain any secret (key). JTAG debug is enabled.

2. After initial provisioning (Marvell FAB) - LCS = CM (1), RKEK exist in the chip

3. After customer provisioning – LCS = DM (2), public key is burned to fuses & boot memory is

selected.

4. Product is handed for end user – LCS =DD (3), JTAG is disabled.

5. OEM sends the deceive to Marvell as RMA – LCS =FA (4). JTAG is enabled.

86

87

RKEK use, RKEK read, and JTAG availability Vs LCS

87

New Chip
(All Zero)

CM
Chip Manufacturing

DM
Device Manufacturing

DD
Device Deployment

FA

Failure Analysis

JPD
JTAG Permanently

Disabled

RKEK

Use
Zero Value

Programmed

Keys

Programmed

Keys

Programmed

Keys
Not loadable

Programmed

Keys

RKEK

Read
Readable

Readable /

Not Readable

Depends on ap[61]

Readable /

Not Readable

Depends on ap[61]

Not

Readable

with ap[61] blown

Not

Readable

Not

Readable

Seagull

JTAG
Available Available

1) Available

2) Not Available at power

up but SW may enable per

power cycle

1) Available

2) Not Available at power

up but SW may enable per

power cycle

Available
Not

Available

Cortex

JTAG
Available Available

1) Available

2) Not Available at power

up but SW may enable per

power cycle

1) Available

2) Not Available at power

up but SW may enable per

power cycle

Available
Not

Available

88

LCS State Transition & JTAG Access Status

88

 VIRGIN or

Non-Secure Part

-Passed WAFER level test

-No OTP programmed

-All JTAG is not blocked

directly blown LCS OTP via JTAG in Fab
 CM

-Silicon packetized & tested

-Case 1: Marvell Blow RKEK

-FUSE/RKEK has been blown,

- DUID FUSE burned

-Case 2: OEM Blow RKEK & DUID at DM

-SoC JTAG is not blocked

LIFE_CYCLE_ADVANCE

Or directly blown LCS OTP in Fab

LIFE_CYCLE_ADVANCE

DD

-Device key has been provisioned

-SoC JTAG is blocked

FA

-RKEK “blocked”  neither

 readable nor usable

-SoC JTAG accessible

JTAG authorization successfully completed &

{OTP_RKEK_BLOCKED ==True}

DD

-Device key has been provisioned

-SoC JTAG is authorized and

 then re-enabled at current

 power cycle

JTAG Challenge/Response

Authorization Protocol
Reset

 DM

-Silicon packetized & tested

-Case 1: Marvell Blow RKEK at CM

-Case 2: OEM Blow RKEK at DM

-OBM blow RKEK

-OBM blow DUID

-OBM blow OEM Key & JTAG Key hash

into FUSE blocks

OMA-DM - Open Mobile Alliance (OMA) Device Management (DM). Mmanagement

of mobile devices. Device management is intended to support the following uses:

• Provisioning – Configuration of the device (including first time use), enabling and disabling

features

• Device Configuration – Allow changes to settings and parameters of the device

• SW Upgrades – Provide for new software and/or bug fixes to be loaded on the device,

including applications and system software

• Fault Management - Report errors from the device, query about status of device

91

