blob: 752497e773b05b6f8d8826303699c88e434c9dc0 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
5 *
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
8
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/sched/signal.h>
12#include <linux/fs.h>
13#include <linux/file.h>
14#include <linux/signal.h>
15#include <linux/errno.h>
16#include <linux/mm.h>
17#include <linux/slab.h>
18#include <linux/poll.h>
19#include <linux/string.h>
20#include <linux/list.h>
21#include <linux/hash.h>
22#include <linux/spinlock.h>
23#include <linux/syscalls.h>
24#include <linux/rbtree.h>
25#include <linux/wait.h>
26#include <linux/eventpoll.h>
27#include <linux/mount.h>
28#include <linux/bitops.h>
29#include <linux/mutex.h>
30#include <linux/anon_inodes.h>
31#include <linux/device.h>
32#include <linux/freezer.h>
33#include <linux/uaccess.h>
34#include <asm/io.h>
35#include <asm/mman.h>
36#include <linux/atomic.h>
37#include <linux/proc_fs.h>
38#include <linux/seq_file.h>
39#include <linux/compat.h>
40#include <linux/rculist.h>
41#include <net/busy_poll.h>
42
43/*
44 * LOCKING:
45 * There are three level of locking required by epoll :
46 *
47 * 1) epmutex (mutex)
48 * 2) ep->mtx (mutex)
49 * 3) ep->lock (rwlock)
50 *
51 * The acquire order is the one listed above, from 1 to 3.
52 * We need a rwlock (ep->lock) because we manipulate objects
53 * from inside the poll callback, that might be triggered from
54 * a wake_up() that in turn might be called from IRQ context.
55 * So we can't sleep inside the poll callback and hence we need
56 * a spinlock. During the event transfer loop (from kernel to
57 * user space) we could end up sleeping due a copy_to_user(), so
58 * we need a lock that will allow us to sleep. This lock is a
59 * mutex (ep->mtx). It is acquired during the event transfer loop,
60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * and ep_free().
63 * This mutex is acquired by ep_free() during the epoll file
64 * cleanup path and it is also acquired by eventpoll_release_file()
65 * if a file has been pushed inside an epoll set and it is then
66 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
67 * It is also acquired when inserting an epoll fd onto another epoll
68 * fd. We do this so that we walk the epoll tree and ensure that this
69 * insertion does not create a cycle of epoll file descriptors, which
70 * could lead to deadlock. We need a global mutex to prevent two
71 * simultaneous inserts (A into B and B into A) from racing and
72 * constructing a cycle without either insert observing that it is
73 * going to.
74 * It is necessary to acquire multiple "ep->mtx"es at once in the
75 * case when one epoll fd is added to another. In this case, we
76 * always acquire the locks in the order of nesting (i.e. after
77 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
78 * before e2->mtx). Since we disallow cycles of epoll file
79 * descriptors, this ensures that the mutexes are well-ordered. In
80 * order to communicate this nesting to lockdep, when walking a tree
81 * of epoll file descriptors, we use the current recursion depth as
82 * the lockdep subkey.
83 * It is possible to drop the "ep->mtx" and to use the global
84 * mutex "epmutex" (together with "ep->lock") to have it working,
85 * but having "ep->mtx" will make the interface more scalable.
86 * Events that require holding "epmutex" are very rare, while for
87 * normal operations the epoll private "ep->mtx" will guarantee
88 * a better scalability.
89 */
90
91/* Epoll private bits inside the event mask */
92#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93
94#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95
96#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
97 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98
99/* Maximum number of nesting allowed inside epoll sets */
100#define EP_MAX_NESTS 4
101
102#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103
104#define EP_UNACTIVE_PTR ((void *) -1L)
105
106#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107
108struct epoll_filefd {
109 struct file *file;
110 int fd;
111} __packed;
112
113/*
114 * Structure used to track possible nested calls, for too deep recursions
115 * and loop cycles.
116 */
117struct nested_call_node {
118 struct list_head llink;
119 void *cookie;
120 void *ctx;
121};
122
123/*
124 * This structure is used as collector for nested calls, to check for
125 * maximum recursion dept and loop cycles.
126 */
127struct nested_calls {
128 struct list_head tasks_call_list;
129 spinlock_t lock;
130};
131
132/*
133 * Each file descriptor added to the eventpoll interface will
134 * have an entry of this type linked to the "rbr" RB tree.
135 * Avoid increasing the size of this struct, there can be many thousands
136 * of these on a server and we do not want this to take another cache line.
137 */
138struct epitem {
139 union {
140 /* RB tree node links this structure to the eventpoll RB tree */
141 struct rb_node rbn;
142 /* Used to free the struct epitem */
143 struct rcu_head rcu;
144 };
145
146 /* List header used to link this structure to the eventpoll ready list */
147 struct list_head rdllink;
148
149 /*
150 * Works together "struct eventpoll"->ovflist in keeping the
151 * single linked chain of items.
152 */
153 struct epitem *next;
154
155 /* The file descriptor information this item refers to */
156 struct epoll_filefd ffd;
157
158 /* Number of active wait queue attached to poll operations */
159 int nwait;
160
161 /* List containing poll wait queues */
162 struct list_head pwqlist;
163
164 /* The "container" of this item */
165 struct eventpoll *ep;
166
167 /* List header used to link this item to the "struct file" items list */
168 struct list_head fllink;
169
170 /* wakeup_source used when EPOLLWAKEUP is set */
171 struct wakeup_source __rcu *ws;
172
173 /* The structure that describe the interested events and the source fd */
174 struct epoll_event event;
175};
176
177/*
178 * This structure is stored inside the "private_data" member of the file
179 * structure and represents the main data structure for the eventpoll
180 * interface.
181 */
182struct eventpoll {
183 /*
184 * This mutex is used to ensure that files are not removed
185 * while epoll is using them. This is held during the event
186 * collection loop, the file cleanup path, the epoll file exit
187 * code and the ctl operations.
188 */
189 struct mutex mtx;
190
191 /* Wait queue used by sys_epoll_wait() */
192 wait_queue_head_t wq;
193
194 /* Wait queue used by file->poll() */
195 wait_queue_head_t poll_wait;
196
197 /* List of ready file descriptors */
198 struct list_head rdllist;
199
200 /* Lock which protects rdllist and ovflist */
201 rwlock_t lock;
202
203 /* RB tree root used to store monitored fd structs */
204 struct rb_root_cached rbr;
205
206 /*
207 * This is a single linked list that chains all the "struct epitem" that
208 * happened while transferring ready events to userspace w/out
209 * holding ->lock.
210 */
211 struct epitem *ovflist;
212
213 /* wakeup_source used when ep_scan_ready_list is running */
214 struct wakeup_source *ws;
215
216 /* The user that created the eventpoll descriptor */
217 struct user_struct *user;
218
219 struct file *file;
220
221 /* used to optimize loop detection check */
222 u64 gen;
223
224#ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id;
227#endif
228};
229
230/* Wait structure used by the poll hooks */
231struct eppoll_entry {
232 /* List header used to link this structure to the "struct epitem" */
233 struct list_head llink;
234
235 /* The "base" pointer is set to the container "struct epitem" */
236 struct epitem *base;
237
238 /*
239 * Wait queue item that will be linked to the target file wait
240 * queue head.
241 */
242 wait_queue_entry_t wait;
243
244 /* The wait queue head that linked the "wait" wait queue item */
245 wait_queue_head_t *whead;
246};
247
248/* Wrapper struct used by poll queueing */
249struct ep_pqueue {
250 poll_table pt;
251 struct epitem *epi;
252};
253
254/* Used by the ep_send_events() function as callback private data */
255struct ep_send_events_data {
256 int maxevents;
257 struct epoll_event __user *events;
258 int res;
259};
260
261/*
262 * Configuration options available inside /proc/sys/fs/epoll/
263 */
264/* Maximum number of epoll watched descriptors, per user */
265static long max_user_watches __read_mostly;
266
267/*
268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
269 */
270static DEFINE_MUTEX(epmutex);
271
272static u64 loop_check_gen = 0;
273
274/* Used to check for epoll file descriptor inclusion loops */
275static struct nested_calls poll_loop_ncalls;
276
277/* Slab cache used to allocate "struct epitem" */
278static struct kmem_cache *epi_cache __read_mostly;
279
280/* Slab cache used to allocate "struct eppoll_entry" */
281static struct kmem_cache *pwq_cache __read_mostly;
282
283/*
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
286 */
287static LIST_HEAD(tfile_check_list);
288
289#ifdef CONFIG_SYSCTL
290
291#include <linux/sysctl.h>
292
293static long long_zero;
294static long long_max = LONG_MAX;
295
296struct ctl_table epoll_table[] = {
297 {
298 .procname = "max_user_watches",
299 .data = &max_user_watches,
300 .maxlen = sizeof(max_user_watches),
301 .mode = 0644,
302 .proc_handler = proc_doulongvec_minmax,
303 .extra1 = &long_zero,
304 .extra2 = &long_max,
305 },
306 { }
307};
308#endif /* CONFIG_SYSCTL */
309
310static const struct file_operations eventpoll_fops;
311
312static inline int is_file_epoll(struct file *f)
313{
314 return f->f_op == &eventpoll_fops;
315}
316
317/* Setup the structure that is used as key for the RB tree */
318static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 struct file *file, int fd)
320{
321 ffd->file = file;
322 ffd->fd = fd;
323}
324
325/* Compare RB tree keys */
326static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 struct epoll_filefd *p2)
328{
329 return (p1->file > p2->file ? +1:
330 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331}
332
333/* Tells us if the item is currently linked */
334static inline int ep_is_linked(struct epitem *epi)
335{
336 return !list_empty(&epi->rdllink);
337}
338
339static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
340{
341 return container_of(p, struct eppoll_entry, wait);
342}
343
344/* Get the "struct epitem" from a wait queue pointer */
345static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
346{
347 return container_of(p, struct eppoll_entry, wait)->base;
348}
349
350/* Get the "struct epitem" from an epoll queue wrapper */
351static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352{
353 return container_of(p, struct ep_pqueue, pt)->epi;
354}
355
356/* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357static inline int ep_op_has_event(int op)
358{
359 return op != EPOLL_CTL_DEL;
360}
361
362/* Initialize the poll safe wake up structure */
363static void ep_nested_calls_init(struct nested_calls *ncalls)
364{
365 INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 spin_lock_init(&ncalls->lock);
367}
368
369/**
370 * ep_events_available - Checks if ready events might be available.
371 *
372 * @ep: Pointer to the eventpoll context.
373 *
374 * Returns: Returns a value different than zero if ready events are available,
375 * or zero otherwise.
376 */
377static inline int ep_events_available(struct eventpoll *ep)
378{
379 return !list_empty_careful(&ep->rdllist) ||
380 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
381}
382
383#ifdef CONFIG_NET_RX_BUSY_POLL
384static bool ep_busy_loop_end(void *p, unsigned long start_time)
385{
386 struct eventpoll *ep = p;
387
388 return ep_events_available(ep) || busy_loop_timeout(start_time);
389}
390
391/*
392 * Busy poll if globally on and supporting sockets found && no events,
393 * busy loop will return if need_resched or ep_events_available.
394 *
395 * we must do our busy polling with irqs enabled
396 */
397static void ep_busy_loop(struct eventpoll *ep, int nonblock)
398{
399 unsigned int napi_id = READ_ONCE(ep->napi_id);
400
401 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
402 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
403}
404
405static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
406{
407 if (ep->napi_id)
408 ep->napi_id = 0;
409}
410
411/*
412 * Set epoll busy poll NAPI ID from sk.
413 */
414static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
415{
416 struct eventpoll *ep;
417 unsigned int napi_id;
418 struct socket *sock;
419 struct sock *sk;
420 int err;
421
422 if (!net_busy_loop_on())
423 return;
424
425 sock = sock_from_file(epi->ffd.file, &err);
426 if (!sock)
427 return;
428
429 sk = sock->sk;
430 if (!sk)
431 return;
432
433 napi_id = READ_ONCE(sk->sk_napi_id);
434 ep = epi->ep;
435
436 /* Non-NAPI IDs can be rejected
437 * or
438 * Nothing to do if we already have this ID
439 */
440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 return;
442
443 /* record NAPI ID for use in next busy poll */
444 ep->napi_id = napi_id;
445}
446
447#else
448
449static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
450{
451}
452
453static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
454{
455}
456
457static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
458{
459}
460
461#endif /* CONFIG_NET_RX_BUSY_POLL */
462
463/**
464 * ep_call_nested - Perform a bound (possibly) nested call, by checking
465 * that the recursion limit is not exceeded, and that
466 * the same nested call (by the meaning of same cookie) is
467 * no re-entered.
468 *
469 * @ncalls: Pointer to the nested_calls structure to be used for this call.
470 * @nproc: Nested call core function pointer.
471 * @priv: Opaque data to be passed to the @nproc callback.
472 * @cookie: Cookie to be used to identify this nested call.
473 * @ctx: This instance context.
474 *
475 * Returns: Returns the code returned by the @nproc callback, or -1 if
476 * the maximum recursion limit has been exceeded.
477 */
478static int ep_call_nested(struct nested_calls *ncalls,
479 int (*nproc)(void *, void *, int), void *priv,
480 void *cookie, void *ctx)
481{
482 int error, call_nests = 0;
483 unsigned long flags;
484 struct list_head *lsthead = &ncalls->tasks_call_list;
485 struct nested_call_node *tncur;
486 struct nested_call_node tnode;
487
488 spin_lock_irqsave(&ncalls->lock, flags);
489
490 /*
491 * Try to see if the current task is already inside this wakeup call.
492 * We use a list here, since the population inside this set is always
493 * very much limited.
494 */
495 list_for_each_entry(tncur, lsthead, llink) {
496 if (tncur->ctx == ctx &&
497 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
498 /*
499 * Ops ... loop detected or maximum nest level reached.
500 * We abort this wake by breaking the cycle itself.
501 */
502 error = -1;
503 goto out_unlock;
504 }
505 }
506
507 /* Add the current task and cookie to the list */
508 tnode.ctx = ctx;
509 tnode.cookie = cookie;
510 list_add(&tnode.llink, lsthead);
511
512 spin_unlock_irqrestore(&ncalls->lock, flags);
513
514 /* Call the nested function */
515 error = (*nproc)(priv, cookie, call_nests);
516
517 /* Remove the current task from the list */
518 spin_lock_irqsave(&ncalls->lock, flags);
519 list_del(&tnode.llink);
520out_unlock:
521 spin_unlock_irqrestore(&ncalls->lock, flags);
522
523 return error;
524}
525
526/*
527 * As described in commit 0ccf831cb lockdep: annotate epoll
528 * the use of wait queues used by epoll is done in a very controlled
529 * manner. Wake ups can nest inside each other, but are never done
530 * with the same locking. For example:
531 *
532 * dfd = socket(...);
533 * efd1 = epoll_create();
534 * efd2 = epoll_create();
535 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
536 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
537 *
538 * When a packet arrives to the device underneath "dfd", the net code will
539 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
540 * callback wakeup entry on that queue, and the wake_up() performed by the
541 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
542 * (efd1) notices that it may have some event ready, so it needs to wake up
543 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
544 * that ends up in another wake_up(), after having checked about the
545 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
546 * avoid stack blasting.
547 *
548 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
549 * this special case of epoll.
550 */
551#ifdef CONFIG_DEBUG_LOCK_ALLOC
552
553static struct nested_calls poll_safewake_ncalls;
554
555static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
556{
557 unsigned long flags;
558 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
559
560 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
561 wake_up_locked_poll(wqueue, EPOLLIN);
562 spin_unlock_irqrestore(&wqueue->lock, flags);
563
564 return 0;
565}
566
567static void ep_poll_safewake(wait_queue_head_t *wq)
568{
569 int this_cpu = get_cpu();
570
571 ep_call_nested(&poll_safewake_ncalls,
572 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
573
574 put_cpu();
575}
576
577#else
578
579static void ep_poll_safewake(wait_queue_head_t *wq)
580{
581 wake_up_poll(wq, EPOLLIN);
582}
583
584#endif
585
586static void ep_remove_wait_queue(struct eppoll_entry *pwq)
587{
588 wait_queue_head_t *whead;
589
590 rcu_read_lock();
591 /*
592 * If it is cleared by POLLFREE, it should be rcu-safe.
593 * If we read NULL we need a barrier paired with
594 * smp_store_release() in ep_poll_callback(), otherwise
595 * we rely on whead->lock.
596 */
597 whead = smp_load_acquire(&pwq->whead);
598 if (whead)
599 remove_wait_queue(whead, &pwq->wait);
600 rcu_read_unlock();
601}
602
603/*
604 * This function unregisters poll callbacks from the associated file
605 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
606 * ep_free).
607 */
608static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
609{
610 struct list_head *lsthead = &epi->pwqlist;
611 struct eppoll_entry *pwq;
612
613 while (!list_empty(lsthead)) {
614 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
615
616 list_del(&pwq->llink);
617 ep_remove_wait_queue(pwq);
618 kmem_cache_free(pwq_cache, pwq);
619 }
620}
621
622/* call only when ep->mtx is held */
623static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
624{
625 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
626}
627
628/* call only when ep->mtx is held */
629static inline void ep_pm_stay_awake(struct epitem *epi)
630{
631 struct wakeup_source *ws = ep_wakeup_source(epi);
632
633 if (ws)
634 __pm_stay_awake(ws);
635}
636
637static inline bool ep_has_wakeup_source(struct epitem *epi)
638{
639 return rcu_access_pointer(epi->ws) ? true : false;
640}
641
642/* call when ep->mtx cannot be held (ep_poll_callback) */
643static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
644{
645 struct wakeup_source *ws;
646
647 rcu_read_lock();
648 ws = rcu_dereference(epi->ws);
649 if (ws)
650 __pm_stay_awake(ws);
651 rcu_read_unlock();
652}
653
654/**
655 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
656 * the scan code, to call f_op->poll(). Also allows for
657 * O(NumReady) performance.
658 *
659 * @ep: Pointer to the epoll private data structure.
660 * @sproc: Pointer to the scan callback.
661 * @priv: Private opaque data passed to the @sproc callback.
662 * @depth: The current depth of recursive f_op->poll calls.
663 * @ep_locked: caller already holds ep->mtx
664 *
665 * Returns: The same integer error code returned by the @sproc callback.
666 */
667static __poll_t ep_scan_ready_list(struct eventpoll *ep,
668 __poll_t (*sproc)(struct eventpoll *,
669 struct list_head *, void *),
670 void *priv, int depth, bool ep_locked)
671{
672 __poll_t res;
673 int pwake = 0;
674 struct epitem *epi, *nepi;
675 LIST_HEAD(txlist);
676
677 lockdep_assert_irqs_enabled();
678
679 /*
680 * We need to lock this because we could be hit by
681 * eventpoll_release_file() and epoll_ctl().
682 */
683
684 if (!ep_locked)
685 mutex_lock_nested(&ep->mtx, depth);
686
687 /*
688 * Steal the ready list, and re-init the original one to the
689 * empty list. Also, set ep->ovflist to NULL so that events
690 * happening while looping w/out locks, are not lost. We cannot
691 * have the poll callback to queue directly on ep->rdllist,
692 * because we want the "sproc" callback to be able to do it
693 * in a lockless way.
694 */
695 write_lock_irq(&ep->lock);
696 list_splice_init(&ep->rdllist, &txlist);
697 WRITE_ONCE(ep->ovflist, NULL);
698 write_unlock_irq(&ep->lock);
699
700 /*
701 * Now call the callback function.
702 */
703 res = (*sproc)(ep, &txlist, priv);
704
705 write_lock_irq(&ep->lock);
706 /*
707 * During the time we spent inside the "sproc" callback, some
708 * other events might have been queued by the poll callback.
709 * We re-insert them inside the main ready-list here.
710 */
711 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
712 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
713 /*
714 * We need to check if the item is already in the list.
715 * During the "sproc" callback execution time, items are
716 * queued into ->ovflist but the "txlist" might already
717 * contain them, and the list_splice() below takes care of them.
718 */
719 if (!ep_is_linked(epi)) {
720 /*
721 * ->ovflist is LIFO, so we have to reverse it in order
722 * to keep in FIFO.
723 */
724 list_add(&epi->rdllink, &ep->rdllist);
725 ep_pm_stay_awake(epi);
726 }
727 }
728 /*
729 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
730 * releasing the lock, events will be queued in the normal way inside
731 * ep->rdllist.
732 */
733 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
734
735 /*
736 * Quickly re-inject items left on "txlist".
737 */
738 list_splice(&txlist, &ep->rdllist);
739 __pm_relax(ep->ws);
740
741 if (!list_empty(&ep->rdllist)) {
742 /*
743 * Wake up (if active) both the eventpoll wait list and
744 * the ->poll() wait list (delayed after we release the lock).
745 */
746 if (waitqueue_active(&ep->wq))
747 wake_up(&ep->wq);
748 if (waitqueue_active(&ep->poll_wait))
749 pwake++;
750 }
751 write_unlock_irq(&ep->lock);
752
753 if (!ep_locked)
754 mutex_unlock(&ep->mtx);
755
756 /* We have to call this outside the lock */
757 if (pwake)
758 ep_poll_safewake(&ep->poll_wait);
759
760 return res;
761}
762
763static void epi_rcu_free(struct rcu_head *head)
764{
765 struct epitem *epi = container_of(head, struct epitem, rcu);
766 kmem_cache_free(epi_cache, epi);
767}
768
769/*
770 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
771 * all the associated resources. Must be called with "mtx" held.
772 */
773static int ep_remove(struct eventpoll *ep, struct epitem *epi)
774{
775 struct file *file = epi->ffd.file;
776
777 lockdep_assert_irqs_enabled();
778
779 /*
780 * Removes poll wait queue hooks.
781 */
782 ep_unregister_pollwait(ep, epi);
783
784 /* Remove the current item from the list of epoll hooks */
785 spin_lock(&file->f_lock);
786 list_del_rcu(&epi->fllink);
787 spin_unlock(&file->f_lock);
788
789 rb_erase_cached(&epi->rbn, &ep->rbr);
790
791 write_lock_irq(&ep->lock);
792 if (ep_is_linked(epi))
793 list_del_init(&epi->rdllink);
794 write_unlock_irq(&ep->lock);
795
796 wakeup_source_unregister(ep_wakeup_source(epi));
797 /*
798 * At this point it is safe to free the eventpoll item. Use the union
799 * field epi->rcu, since we are trying to minimize the size of
800 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
801 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
802 * use of the rbn field.
803 */
804 call_rcu(&epi->rcu, epi_rcu_free);
805
806 atomic_long_dec(&ep->user->epoll_watches);
807
808 return 0;
809}
810
811static void ep_free(struct eventpoll *ep)
812{
813 struct rb_node *rbp;
814 struct epitem *epi;
815
816 /* We need to release all tasks waiting for these file */
817 if (waitqueue_active(&ep->poll_wait))
818 ep_poll_safewake(&ep->poll_wait);
819
820 /*
821 * We need to lock this because we could be hit by
822 * eventpoll_release_file() while we're freeing the "struct eventpoll".
823 * We do not need to hold "ep->mtx" here because the epoll file
824 * is on the way to be removed and no one has references to it
825 * anymore. The only hit might come from eventpoll_release_file() but
826 * holding "epmutex" is sufficient here.
827 */
828 mutex_lock(&epmutex);
829
830 /*
831 * Walks through the whole tree by unregistering poll callbacks.
832 */
833 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
834 epi = rb_entry(rbp, struct epitem, rbn);
835
836 ep_unregister_pollwait(ep, epi);
837 cond_resched();
838 }
839
840 /*
841 * Walks through the whole tree by freeing each "struct epitem". At this
842 * point we are sure no poll callbacks will be lingering around, and also by
843 * holding "epmutex" we can be sure that no file cleanup code will hit
844 * us during this operation. So we can avoid the lock on "ep->lock".
845 * We do not need to lock ep->mtx, either, we only do it to prevent
846 * a lockdep warning.
847 */
848 mutex_lock(&ep->mtx);
849 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
850 epi = rb_entry(rbp, struct epitem, rbn);
851 ep_remove(ep, epi);
852 cond_resched();
853 }
854 mutex_unlock(&ep->mtx);
855
856 mutex_unlock(&epmutex);
857 mutex_destroy(&ep->mtx);
858 free_uid(ep->user);
859 wakeup_source_unregister(ep->ws);
860 kfree(ep);
861}
862
863static int ep_eventpoll_release(struct inode *inode, struct file *file)
864{
865 struct eventpoll *ep = file->private_data;
866
867 if (ep)
868 ep_free(ep);
869
870 return 0;
871}
872
873static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
874 void *priv);
875static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
876 poll_table *pt);
877
878/*
879 * Differs from ep_eventpoll_poll() in that internal callers already have
880 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
881 * is correctly annotated.
882 */
883static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
884 int depth)
885{
886 struct eventpoll *ep;
887 bool locked;
888
889 pt->_key = epi->event.events;
890 if (!is_file_epoll(epi->ffd.file))
891 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
892
893 ep = epi->ffd.file->private_data;
894 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
895 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
896
897 return ep_scan_ready_list(epi->ffd.file->private_data,
898 ep_read_events_proc, &depth, depth,
899 locked) & epi->event.events;
900}
901
902static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
903 void *priv)
904{
905 struct epitem *epi, *tmp;
906 poll_table pt;
907 int depth = *(int *)priv;
908
909 init_poll_funcptr(&pt, NULL);
910 depth++;
911
912 list_for_each_entry_safe(epi, tmp, head, rdllink) {
913 if (ep_item_poll(epi, &pt, depth)) {
914 return EPOLLIN | EPOLLRDNORM;
915 } else {
916 /*
917 * Item has been dropped into the ready list by the poll
918 * callback, but it's not actually ready, as far as
919 * caller requested events goes. We can remove it here.
920 */
921 __pm_relax(ep_wakeup_source(epi));
922 list_del_init(&epi->rdllink);
923 }
924 }
925
926 return 0;
927}
928
929static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
930{
931 struct eventpoll *ep = file->private_data;
932 int depth = 0;
933
934 /* Insert inside our poll wait queue */
935 poll_wait(file, &ep->poll_wait, wait);
936
937 /*
938 * Proceed to find out if wanted events are really available inside
939 * the ready list.
940 */
941 return ep_scan_ready_list(ep, ep_read_events_proc,
942 &depth, depth, false);
943}
944
945#ifdef CONFIG_PROC_FS
946static void ep_show_fdinfo(struct seq_file *m, struct file *f)
947{
948 struct eventpoll *ep = f->private_data;
949 struct rb_node *rbp;
950
951 mutex_lock(&ep->mtx);
952 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
953 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
954 struct inode *inode = file_inode(epi->ffd.file);
955
956 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
957 " pos:%lli ino:%lx sdev:%x\n",
958 epi->ffd.fd, epi->event.events,
959 (long long)epi->event.data,
960 (long long)epi->ffd.file->f_pos,
961 inode->i_ino, inode->i_sb->s_dev);
962 if (seq_has_overflowed(m))
963 break;
964 }
965 mutex_unlock(&ep->mtx);
966}
967#endif
968
969/* File callbacks that implement the eventpoll file behaviour */
970static const struct file_operations eventpoll_fops = {
971#ifdef CONFIG_PROC_FS
972 .show_fdinfo = ep_show_fdinfo,
973#endif
974 .release = ep_eventpoll_release,
975 .poll = ep_eventpoll_poll,
976 .llseek = noop_llseek,
977};
978
979/*
980 * This is called from eventpoll_release() to unlink files from the eventpoll
981 * interface. We need to have this facility to cleanup correctly files that are
982 * closed without being removed from the eventpoll interface.
983 */
984void eventpoll_release_file(struct file *file)
985{
986 struct eventpoll *ep;
987 struct epitem *epi, *next;
988
989 /*
990 * We don't want to get "file->f_lock" because it is not
991 * necessary. It is not necessary because we're in the "struct file"
992 * cleanup path, and this means that no one is using this file anymore.
993 * So, for example, epoll_ctl() cannot hit here since if we reach this
994 * point, the file counter already went to zero and fget() would fail.
995 * The only hit might come from ep_free() but by holding the mutex
996 * will correctly serialize the operation. We do need to acquire
997 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
998 * from anywhere but ep_free().
999 *
1000 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1001 */
1002 mutex_lock(&epmutex);
1003 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1004 ep = epi->ep;
1005 mutex_lock_nested(&ep->mtx, 0);
1006 ep_remove(ep, epi);
1007 mutex_unlock(&ep->mtx);
1008 }
1009 mutex_unlock(&epmutex);
1010}
1011
1012static int ep_alloc(struct eventpoll **pep)
1013{
1014 int error;
1015 struct user_struct *user;
1016 struct eventpoll *ep;
1017
1018 user = get_current_user();
1019 error = -ENOMEM;
1020 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1021 if (unlikely(!ep))
1022 goto free_uid;
1023
1024 mutex_init(&ep->mtx);
1025 rwlock_init(&ep->lock);
1026 init_waitqueue_head(&ep->wq);
1027 init_waitqueue_head(&ep->poll_wait);
1028 INIT_LIST_HEAD(&ep->rdllist);
1029 ep->rbr = RB_ROOT_CACHED;
1030 ep->ovflist = EP_UNACTIVE_PTR;
1031 ep->user = user;
1032
1033 *pep = ep;
1034
1035 return 0;
1036
1037free_uid:
1038 free_uid(user);
1039 return error;
1040}
1041
1042/*
1043 * Search the file inside the eventpoll tree. The RB tree operations
1044 * are protected by the "mtx" mutex, and ep_find() must be called with
1045 * "mtx" held.
1046 */
1047static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1048{
1049 int kcmp;
1050 struct rb_node *rbp;
1051 struct epitem *epi, *epir = NULL;
1052 struct epoll_filefd ffd;
1053
1054 ep_set_ffd(&ffd, file, fd);
1055 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1056 epi = rb_entry(rbp, struct epitem, rbn);
1057 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1058 if (kcmp > 0)
1059 rbp = rbp->rb_right;
1060 else if (kcmp < 0)
1061 rbp = rbp->rb_left;
1062 else {
1063 epir = epi;
1064 break;
1065 }
1066 }
1067
1068 return epir;
1069}
1070
1071#ifdef CONFIG_CHECKPOINT_RESTORE
1072static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1073{
1074 struct rb_node *rbp;
1075 struct epitem *epi;
1076
1077 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1078 epi = rb_entry(rbp, struct epitem, rbn);
1079 if (epi->ffd.fd == tfd) {
1080 if (toff == 0)
1081 return epi;
1082 else
1083 toff--;
1084 }
1085 cond_resched();
1086 }
1087
1088 return NULL;
1089}
1090
1091struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1092 unsigned long toff)
1093{
1094 struct file *file_raw;
1095 struct eventpoll *ep;
1096 struct epitem *epi;
1097
1098 if (!is_file_epoll(file))
1099 return ERR_PTR(-EINVAL);
1100
1101 ep = file->private_data;
1102
1103 mutex_lock(&ep->mtx);
1104 epi = ep_find_tfd(ep, tfd, toff);
1105 if (epi)
1106 file_raw = epi->ffd.file;
1107 else
1108 file_raw = ERR_PTR(-ENOENT);
1109 mutex_unlock(&ep->mtx);
1110
1111 return file_raw;
1112}
1113#endif /* CONFIG_CHECKPOINT_RESTORE */
1114
1115/**
1116 * Adds a new entry to the tail of the list in a lockless way, i.e.
1117 * multiple CPUs are allowed to call this function concurrently.
1118 *
1119 * Beware: it is necessary to prevent any other modifications of the
1120 * existing list until all changes are completed, in other words
1121 * concurrent list_add_tail_lockless() calls should be protected
1122 * with a read lock, where write lock acts as a barrier which
1123 * makes sure all list_add_tail_lockless() calls are fully
1124 * completed.
1125 *
1126 * Also an element can be locklessly added to the list only in one
1127 * direction i.e. either to the tail either to the head, otherwise
1128 * concurrent access will corrupt the list.
1129 *
1130 * Returns %false if element has been already added to the list, %true
1131 * otherwise.
1132 */
1133static inline bool list_add_tail_lockless(struct list_head *new,
1134 struct list_head *head)
1135{
1136 struct list_head *prev;
1137
1138 /*
1139 * This is simple 'new->next = head' operation, but cmpxchg()
1140 * is used in order to detect that same element has been just
1141 * added to the list from another CPU: the winner observes
1142 * new->next == new.
1143 */
1144 if (cmpxchg(&new->next, new, head) != new)
1145 return false;
1146
1147 /*
1148 * Initially ->next of a new element must be updated with the head
1149 * (we are inserting to the tail) and only then pointers are atomically
1150 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1151 * updated before pointers are actually swapped and pointers are
1152 * swapped before prev->next is updated.
1153 */
1154
1155 prev = xchg(&head->prev, new);
1156
1157 /*
1158 * It is safe to modify prev->next and new->prev, because a new element
1159 * is added only to the tail and new->next is updated before XCHG.
1160 */
1161
1162 prev->next = new;
1163 new->prev = prev;
1164
1165 return true;
1166}
1167
1168/**
1169 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1170 * i.e. multiple CPUs are allowed to call this function concurrently.
1171 *
1172 * Returns %false if epi element has been already chained, %true otherwise.
1173 */
1174static inline bool chain_epi_lockless(struct epitem *epi)
1175{
1176 struct eventpoll *ep = epi->ep;
1177
1178 /* Fast preliminary check */
1179 if (epi->next != EP_UNACTIVE_PTR)
1180 return false;
1181
1182 /* Check that the same epi has not been just chained from another CPU */
1183 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1184 return false;
1185
1186 /* Atomically exchange tail */
1187 epi->next = xchg(&ep->ovflist, epi);
1188
1189 return true;
1190}
1191
1192/*
1193 * This is the callback that is passed to the wait queue wakeup
1194 * mechanism. It is called by the stored file descriptors when they
1195 * have events to report.
1196 *
1197 * This callback takes a read lock in order not to content with concurrent
1198 * events from another file descriptors, thus all modifications to ->rdllist
1199 * or ->ovflist are lockless. Read lock is paired with the write lock from
1200 * ep_scan_ready_list(), which stops all list modifications and guarantees
1201 * that lists state is seen correctly.
1202 *
1203 * Another thing worth to mention is that ep_poll_callback() can be called
1204 * concurrently for the same @epi from different CPUs if poll table was inited
1205 * with several wait queues entries. Plural wakeup from different CPUs of a
1206 * single wait queue is serialized by wq.lock, but the case when multiple wait
1207 * queues are used should be detected accordingly. This is detected using
1208 * cmpxchg() operation.
1209 */
1210static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1211{
1212 int pwake = 0;
1213 struct epitem *epi = ep_item_from_wait(wait);
1214 struct eventpoll *ep = epi->ep;
1215 __poll_t pollflags = key_to_poll(key);
1216 unsigned long flags;
1217 int ewake = 0;
1218
1219 read_lock_irqsave(&ep->lock, flags);
1220
1221 ep_set_busy_poll_napi_id(epi);
1222
1223 /*
1224 * If the event mask does not contain any poll(2) event, we consider the
1225 * descriptor to be disabled. This condition is likely the effect of the
1226 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1227 * until the next EPOLL_CTL_MOD will be issued.
1228 */
1229 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1230 goto out_unlock;
1231
1232 /*
1233 * Check the events coming with the callback. At this stage, not
1234 * every device reports the events in the "key" parameter of the
1235 * callback. We need to be able to handle both cases here, hence the
1236 * test for "key" != NULL before the event match test.
1237 */
1238 if (pollflags && !(pollflags & epi->event.events))
1239 goto out_unlock;
1240
1241 /*
1242 * If we are transferring events to userspace, we can hold no locks
1243 * (because we're accessing user memory, and because of linux f_op->poll()
1244 * semantics). All the events that happen during that period of time are
1245 * chained in ep->ovflist and requeued later on.
1246 */
1247 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1248 if (chain_epi_lockless(epi))
1249 ep_pm_stay_awake_rcu(epi);
1250 } else if (!ep_is_linked(epi)) {
1251 /* In the usual case, add event to ready list. */
1252 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1253 ep_pm_stay_awake_rcu(epi);
1254 }
1255
1256 /*
1257 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1258 * wait list.
1259 */
1260 if (waitqueue_active(&ep->wq)) {
1261 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1262 !(pollflags & POLLFREE)) {
1263 switch (pollflags & EPOLLINOUT_BITS) {
1264 case EPOLLIN:
1265 if (epi->event.events & EPOLLIN)
1266 ewake = 1;
1267 break;
1268 case EPOLLOUT:
1269 if (epi->event.events & EPOLLOUT)
1270 ewake = 1;
1271 break;
1272 case 0:
1273 ewake = 1;
1274 break;
1275 }
1276 }
1277 if (sync)
1278 wake_up_sync(&ep->wq);
1279 else
1280 wake_up(&ep->wq);
1281 }
1282 if (waitqueue_active(&ep->poll_wait))
1283 pwake++;
1284
1285out_unlock:
1286 read_unlock_irqrestore(&ep->lock, flags);
1287
1288 /* We have to call this outside the lock */
1289 if (pwake)
1290 ep_poll_safewake(&ep->poll_wait);
1291
1292 if (!(epi->event.events & EPOLLEXCLUSIVE))
1293 ewake = 1;
1294
1295 if (pollflags & POLLFREE) {
1296 /*
1297 * If we race with ep_remove_wait_queue() it can miss
1298 * ->whead = NULL and do another remove_wait_queue() after
1299 * us, so we can't use __remove_wait_queue().
1300 */
1301 list_del_init(&wait->entry);
1302 /*
1303 * ->whead != NULL protects us from the race with ep_free()
1304 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1305 * held by the caller. Once we nullify it, nothing protects
1306 * ep/epi or even wait.
1307 */
1308 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1309 }
1310
1311 return ewake;
1312}
1313
1314/*
1315 * This is the callback that is used to add our wait queue to the
1316 * target file wakeup lists.
1317 */
1318static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1319 poll_table *pt)
1320{
1321 struct epitem *epi = ep_item_from_epqueue(pt);
1322 struct eppoll_entry *pwq;
1323
1324 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1325 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1326 pwq->whead = whead;
1327 pwq->base = epi;
1328 if (epi->event.events & EPOLLEXCLUSIVE)
1329 add_wait_queue_exclusive(whead, &pwq->wait);
1330 else
1331 add_wait_queue(whead, &pwq->wait);
1332 list_add_tail(&pwq->llink, &epi->pwqlist);
1333 epi->nwait++;
1334 } else {
1335 /* We have to signal that an error occurred */
1336 epi->nwait = -1;
1337 }
1338}
1339
1340static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1341{
1342 int kcmp;
1343 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1344 struct epitem *epic;
1345 bool leftmost = true;
1346
1347 while (*p) {
1348 parent = *p;
1349 epic = rb_entry(parent, struct epitem, rbn);
1350 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1351 if (kcmp > 0) {
1352 p = &parent->rb_right;
1353 leftmost = false;
1354 } else
1355 p = &parent->rb_left;
1356 }
1357 rb_link_node(&epi->rbn, parent, p);
1358 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1359}
1360
1361
1362
1363#define PATH_ARR_SIZE 5
1364/*
1365 * These are the number paths of length 1 to 5, that we are allowing to emanate
1366 * from a single file of interest. For example, we allow 1000 paths of length
1367 * 1, to emanate from each file of interest. This essentially represents the
1368 * potential wakeup paths, which need to be limited in order to avoid massive
1369 * uncontrolled wakeup storms. The common use case should be a single ep which
1370 * is connected to n file sources. In this case each file source has 1 path
1371 * of length 1. Thus, the numbers below should be more than sufficient. These
1372 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1373 * and delete can't add additional paths. Protected by the epmutex.
1374 */
1375static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1376static int path_count[PATH_ARR_SIZE];
1377
1378static int path_count_inc(int nests)
1379{
1380 /* Allow an arbitrary number of depth 1 paths */
1381 if (nests == 0)
1382 return 0;
1383
1384 if (++path_count[nests] > path_limits[nests])
1385 return -1;
1386 return 0;
1387}
1388
1389static void path_count_init(void)
1390{
1391 int i;
1392
1393 for (i = 0; i < PATH_ARR_SIZE; i++)
1394 path_count[i] = 0;
1395}
1396
1397static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1398{
1399 int error = 0;
1400 struct file *file = priv;
1401 struct file *child_file;
1402 struct epitem *epi;
1403
1404 /* CTL_DEL can remove links here, but that can't increase our count */
1405 rcu_read_lock();
1406 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1407 child_file = epi->ep->file;
1408 if (is_file_epoll(child_file)) {
1409 if (list_empty(&child_file->f_ep_links)) {
1410 if (path_count_inc(call_nests)) {
1411 error = -1;
1412 break;
1413 }
1414 } else {
1415 error = ep_call_nested(&poll_loop_ncalls,
1416 reverse_path_check_proc,
1417 child_file, child_file,
1418 current);
1419 }
1420 if (error != 0)
1421 break;
1422 } else {
1423 printk(KERN_ERR "reverse_path_check_proc: "
1424 "file is not an ep!\n");
1425 }
1426 }
1427 rcu_read_unlock();
1428 return error;
1429}
1430
1431/**
1432 * reverse_path_check - The tfile_check_list is list of file *, which have
1433 * links that are proposed to be newly added. We need to
1434 * make sure that those added links don't add too many
1435 * paths such that we will spend all our time waking up
1436 * eventpoll objects.
1437 *
1438 * Returns: Returns zero if the proposed links don't create too many paths,
1439 * -1 otherwise.
1440 */
1441static int reverse_path_check(void)
1442{
1443 int error = 0;
1444 struct file *current_file;
1445
1446 /* let's call this for all tfiles */
1447 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1448 path_count_init();
1449 error = ep_call_nested(&poll_loop_ncalls,
1450 reverse_path_check_proc, current_file,
1451 current_file, current);
1452 if (error)
1453 break;
1454 }
1455 return error;
1456}
1457
1458static int ep_create_wakeup_source(struct epitem *epi)
1459{
1460 struct name_snapshot n;
1461 struct wakeup_source *ws;
1462
1463 if (!epi->ep->ws) {
1464 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1465 if (!epi->ep->ws)
1466 return -ENOMEM;
1467 }
1468
1469 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1470 ws = wakeup_source_register(NULL, n.name.name);
1471 release_dentry_name_snapshot(&n);
1472
1473 if (!ws)
1474 return -ENOMEM;
1475 rcu_assign_pointer(epi->ws, ws);
1476
1477 return 0;
1478}
1479
1480/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1481static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1482{
1483 struct wakeup_source *ws = ep_wakeup_source(epi);
1484
1485 RCU_INIT_POINTER(epi->ws, NULL);
1486
1487 /*
1488 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1489 * used internally by wakeup_source_remove, too (called by
1490 * wakeup_source_unregister), so we cannot use call_rcu
1491 */
1492 synchronize_rcu();
1493 wakeup_source_unregister(ws);
1494}
1495
1496/*
1497 * Must be called with "mtx" held.
1498 */
1499static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1500 struct file *tfile, int fd, int full_check)
1501{
1502 int error, pwake = 0;
1503 __poll_t revents;
1504 long user_watches;
1505 struct epitem *epi;
1506 struct ep_pqueue epq;
1507
1508 lockdep_assert_irqs_enabled();
1509
1510 user_watches = atomic_long_read(&ep->user->epoll_watches);
1511 if (unlikely(user_watches >= max_user_watches))
1512 return -ENOSPC;
1513 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1514 return -ENOMEM;
1515
1516 /* Item initialization follow here ... */
1517 INIT_LIST_HEAD(&epi->rdllink);
1518 INIT_LIST_HEAD(&epi->fllink);
1519 INIT_LIST_HEAD(&epi->pwqlist);
1520 epi->ep = ep;
1521 ep_set_ffd(&epi->ffd, tfile, fd);
1522 epi->event = *event;
1523 epi->nwait = 0;
1524 epi->next = EP_UNACTIVE_PTR;
1525 if (epi->event.events & EPOLLWAKEUP) {
1526 error = ep_create_wakeup_source(epi);
1527 if (error)
1528 goto error_create_wakeup_source;
1529 } else {
1530 RCU_INIT_POINTER(epi->ws, NULL);
1531 }
1532
1533 /* Add the current item to the list of active epoll hook for this file */
1534 spin_lock(&tfile->f_lock);
1535 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1536 spin_unlock(&tfile->f_lock);
1537
1538 /*
1539 * Add the current item to the RB tree. All RB tree operations are
1540 * protected by "mtx", and ep_insert() is called with "mtx" held.
1541 */
1542 ep_rbtree_insert(ep, epi);
1543
1544 /* now check if we've created too many backpaths */
1545 error = -EINVAL;
1546 if (full_check && reverse_path_check())
1547 goto error_remove_epi;
1548
1549 /* Initialize the poll table using the queue callback */
1550 epq.epi = epi;
1551 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1552
1553 /*
1554 * Attach the item to the poll hooks and get current event bits.
1555 * We can safely use the file* here because its usage count has
1556 * been increased by the caller of this function. Note that after
1557 * this operation completes, the poll callback can start hitting
1558 * the new item.
1559 */
1560 revents = ep_item_poll(epi, &epq.pt, 1);
1561
1562 /*
1563 * We have to check if something went wrong during the poll wait queue
1564 * install process. Namely an allocation for a wait queue failed due
1565 * high memory pressure.
1566 */
1567 error = -ENOMEM;
1568 if (epi->nwait < 0)
1569 goto error_unregister;
1570
1571 /* We have to drop the new item inside our item list to keep track of it */
1572 write_lock_irq(&ep->lock);
1573
1574 /* record NAPI ID of new item if present */
1575 ep_set_busy_poll_napi_id(epi);
1576
1577 /* If the file is already "ready" we drop it inside the ready list */
1578 if (revents && !ep_is_linked(epi)) {
1579 list_add_tail(&epi->rdllink, &ep->rdllist);
1580 ep_pm_stay_awake(epi);
1581
1582 /* Notify waiting tasks that events are available */
1583 if (waitqueue_active(&ep->wq))
1584 wake_up(&ep->wq);
1585 if (waitqueue_active(&ep->poll_wait))
1586 pwake++;
1587 }
1588
1589 write_unlock_irq(&ep->lock);
1590
1591 atomic_long_inc(&ep->user->epoll_watches);
1592
1593 /* We have to call this outside the lock */
1594 if (pwake)
1595 ep_poll_safewake(&ep->poll_wait);
1596
1597 return 0;
1598
1599error_unregister:
1600 ep_unregister_pollwait(ep, epi);
1601error_remove_epi:
1602 spin_lock(&tfile->f_lock);
1603 list_del_rcu(&epi->fllink);
1604 spin_unlock(&tfile->f_lock);
1605
1606 rb_erase_cached(&epi->rbn, &ep->rbr);
1607
1608 /*
1609 * We need to do this because an event could have been arrived on some
1610 * allocated wait queue. Note that we don't care about the ep->ovflist
1611 * list, since that is used/cleaned only inside a section bound by "mtx".
1612 * And ep_insert() is called with "mtx" held.
1613 */
1614 write_lock_irq(&ep->lock);
1615 if (ep_is_linked(epi))
1616 list_del_init(&epi->rdllink);
1617 write_unlock_irq(&ep->lock);
1618
1619 wakeup_source_unregister(ep_wakeup_source(epi));
1620
1621error_create_wakeup_source:
1622 kmem_cache_free(epi_cache, epi);
1623
1624 return error;
1625}
1626
1627/*
1628 * Modify the interest event mask by dropping an event if the new mask
1629 * has a match in the current file status. Must be called with "mtx" held.
1630 */
1631static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1632 const struct epoll_event *event)
1633{
1634 int pwake = 0;
1635 poll_table pt;
1636
1637 lockdep_assert_irqs_enabled();
1638
1639 init_poll_funcptr(&pt, NULL);
1640
1641 /*
1642 * Set the new event interest mask before calling f_op->poll();
1643 * otherwise we might miss an event that happens between the
1644 * f_op->poll() call and the new event set registering.
1645 */
1646 epi->event.events = event->events; /* need barrier below */
1647 epi->event.data = event->data; /* protected by mtx */
1648 if (epi->event.events & EPOLLWAKEUP) {
1649 if (!ep_has_wakeup_source(epi))
1650 ep_create_wakeup_source(epi);
1651 } else if (ep_has_wakeup_source(epi)) {
1652 ep_destroy_wakeup_source(epi);
1653 }
1654
1655 /*
1656 * The following barrier has two effects:
1657 *
1658 * 1) Flush epi changes above to other CPUs. This ensures
1659 * we do not miss events from ep_poll_callback if an
1660 * event occurs immediately after we call f_op->poll().
1661 * We need this because we did not take ep->lock while
1662 * changing epi above (but ep_poll_callback does take
1663 * ep->lock).
1664 *
1665 * 2) We also need to ensure we do not miss _past_ events
1666 * when calling f_op->poll(). This barrier also
1667 * pairs with the barrier in wq_has_sleeper (see
1668 * comments for wq_has_sleeper).
1669 *
1670 * This barrier will now guarantee ep_poll_callback or f_op->poll
1671 * (or both) will notice the readiness of an item.
1672 */
1673 smp_mb();
1674
1675 /*
1676 * Get current event bits. We can safely use the file* here because
1677 * its usage count has been increased by the caller of this function.
1678 * If the item is "hot" and it is not registered inside the ready
1679 * list, push it inside.
1680 */
1681 if (ep_item_poll(epi, &pt, 1)) {
1682 write_lock_irq(&ep->lock);
1683 if (!ep_is_linked(epi)) {
1684 list_add_tail(&epi->rdllink, &ep->rdllist);
1685 ep_pm_stay_awake(epi);
1686
1687 /* Notify waiting tasks that events are available */
1688 if (waitqueue_active(&ep->wq))
1689 wake_up(&ep->wq);
1690 if (waitqueue_active(&ep->poll_wait))
1691 pwake++;
1692 }
1693 write_unlock_irq(&ep->lock);
1694 }
1695
1696 /* We have to call this outside the lock */
1697 if (pwake)
1698 ep_poll_safewake(&ep->poll_wait);
1699
1700 return 0;
1701}
1702
1703static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1704 void *priv)
1705{
1706 struct ep_send_events_data *esed = priv;
1707 __poll_t revents;
1708 struct epitem *epi, *tmp;
1709 struct epoll_event __user *uevent = esed->events;
1710 struct wakeup_source *ws;
1711 poll_table pt;
1712
1713 init_poll_funcptr(&pt, NULL);
1714 esed->res = 0;
1715
1716 /*
1717 * We can loop without lock because we are passed a task private list.
1718 * Items cannot vanish during the loop because ep_scan_ready_list() is
1719 * holding "mtx" during this call.
1720 */
1721 lockdep_assert_held(&ep->mtx);
1722
1723 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1724 if (esed->res >= esed->maxevents)
1725 break;
1726
1727 /*
1728 * Activate ep->ws before deactivating epi->ws to prevent
1729 * triggering auto-suspend here (in case we reactive epi->ws
1730 * below).
1731 *
1732 * This could be rearranged to delay the deactivation of epi->ws
1733 * instead, but then epi->ws would temporarily be out of sync
1734 * with ep_is_linked().
1735 */
1736 ws = ep_wakeup_source(epi);
1737 if (ws) {
1738 if (ws->active)
1739 __pm_stay_awake(ep->ws);
1740 __pm_relax(ws);
1741 }
1742
1743 list_del_init(&epi->rdllink);
1744
1745 /*
1746 * If the event mask intersect the caller-requested one,
1747 * deliver the event to userspace. Again, ep_scan_ready_list()
1748 * is holding ep->mtx, so no operations coming from userspace
1749 * can change the item.
1750 */
1751 revents = ep_item_poll(epi, &pt, 1);
1752 if (!revents)
1753 continue;
1754
1755 if (__put_user(revents, &uevent->events) ||
1756 __put_user(epi->event.data, &uevent->data)) {
1757 list_add(&epi->rdllink, head);
1758 ep_pm_stay_awake(epi);
1759 if (!esed->res)
1760 esed->res = -EFAULT;
1761 return 0;
1762 }
1763 esed->res++;
1764 uevent++;
1765 if (epi->event.events & EPOLLONESHOT)
1766 epi->event.events &= EP_PRIVATE_BITS;
1767 else if (!(epi->event.events & EPOLLET)) {
1768 /*
1769 * If this file has been added with Level
1770 * Trigger mode, we need to insert back inside
1771 * the ready list, so that the next call to
1772 * epoll_wait() will check again the events
1773 * availability. At this point, no one can insert
1774 * into ep->rdllist besides us. The epoll_ctl()
1775 * callers are locked out by
1776 * ep_scan_ready_list() holding "mtx" and the
1777 * poll callback will queue them in ep->ovflist.
1778 */
1779 list_add_tail(&epi->rdllink, &ep->rdllist);
1780 ep_pm_stay_awake(epi);
1781 }
1782 }
1783
1784 return 0;
1785}
1786
1787static int ep_send_events(struct eventpoll *ep,
1788 struct epoll_event __user *events, int maxevents)
1789{
1790 struct ep_send_events_data esed;
1791
1792 esed.maxevents = maxevents;
1793 esed.events = events;
1794
1795 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1796 return esed.res;
1797}
1798
1799static inline struct timespec64 ep_set_mstimeout(long ms)
1800{
1801 struct timespec64 now, ts = {
1802 .tv_sec = ms / MSEC_PER_SEC,
1803 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1804 };
1805
1806 ktime_get_ts64(&now);
1807 return timespec64_add_safe(now, ts);
1808}
1809
1810/*
1811 * autoremove_wake_function, but remove even on failure to wake up, because we
1812 * know that default_wake_function/ttwu will only fail if the thread is already
1813 * woken, and in that case the ep_poll loop will remove the entry anyways, not
1814 * try to reuse it.
1815 */
1816static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1817 unsigned int mode, int sync, void *key)
1818{
1819 int ret = default_wake_function(wq_entry, mode, sync, key);
1820
1821 /*
1822 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1823 * iterations see the cause of this wakeup.
1824 */
1825 list_del_init_careful(&wq_entry->entry);
1826 return ret;
1827}
1828
1829/**
1830 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1831 * event buffer.
1832 *
1833 * @ep: Pointer to the eventpoll context.
1834 * @events: Pointer to the userspace buffer where the ready events should be
1835 * stored.
1836 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1837 * @timeout: Maximum timeout for the ready events fetch operation, in
1838 * milliseconds. If the @timeout is zero, the function will not block,
1839 * while if the @timeout is less than zero, the function will block
1840 * until at least one event has been retrieved (or an error
1841 * occurred).
1842 *
1843 * Returns: Returns the number of ready events which have been fetched, or an
1844 * error code, in case of error.
1845 */
1846static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1847 int maxevents, long timeout)
1848{
1849 int res = 0, eavail, timed_out = 0;
1850 u64 slack = 0;
1851 wait_queue_entry_t wait;
1852 ktime_t expires, *to = NULL;
1853
1854 lockdep_assert_irqs_enabled();
1855
1856 if (timeout > 0) {
1857 struct timespec64 end_time = ep_set_mstimeout(timeout);
1858
1859 slack = select_estimate_accuracy(&end_time);
1860 to = &expires;
1861 *to = timespec64_to_ktime(end_time);
1862 } else if (timeout == 0) {
1863 /*
1864 * Avoid the unnecessary trip to the wait queue loop, if the
1865 * caller specified a non blocking operation. We still need
1866 * lock because we could race and not see an epi being added
1867 * to the ready list while in irq callback. Thus incorrectly
1868 * returning 0 back to userspace.
1869 */
1870 timed_out = 1;
1871
1872 write_lock_irq(&ep->lock);
1873 eavail = ep_events_available(ep);
1874 write_unlock_irq(&ep->lock);
1875
1876 goto send_events;
1877 }
1878
1879fetch_events:
1880
1881 if (!ep_events_available(ep))
1882 ep_busy_loop(ep, timed_out);
1883
1884 eavail = ep_events_available(ep);
1885 if (eavail)
1886 goto send_events;
1887
1888 /*
1889 * Busy poll timed out. Drop NAPI ID for now, we can add
1890 * it back in when we have moved a socket with a valid NAPI
1891 * ID onto the ready list.
1892 */
1893 ep_reset_busy_poll_napi_id(ep);
1894
1895 do {
1896 /*
1897 * Internally init_wait() uses autoremove_wake_function(),
1898 * thus wait entry is removed from the wait queue on each
1899 * wakeup. Why it is important? In case of several waiters
1900 * each new wakeup will hit the next waiter, giving it the
1901 * chance to harvest new event. Otherwise wakeup can be
1902 * lost. This is also good performance-wise, because on
1903 * normal wakeup path no need to call __remove_wait_queue()
1904 * explicitly, thus ep->lock is not taken, which halts the
1905 * event delivery.
1906 *
1907 * In fact, we now use an even more aggressive function that
1908 * unconditionally removes, because we don't reuse the wait
1909 * entry between loop iterations. This lets us also avoid the
1910 * performance issue if a process is killed, causing all of its
1911 * threads to wake up without being removed normally.
1912 */
1913 init_wait(&wait);
1914 wait.func = ep_autoremove_wake_function;
1915 write_lock_irq(&ep->lock);
1916 /*
1917 * Barrierless variant, waitqueue_active() is called under
1918 * the same lock on wakeup ep_poll_callback() side, so it
1919 * is safe to avoid an explicit barrier.
1920 */
1921 __set_current_state(TASK_INTERRUPTIBLE);
1922
1923 /*
1924 * Do the final check under the lock. ep_scan_ready_list()
1925 * plays with two lists (->rdllist and ->ovflist) and there
1926 * is always a race when both lists are empty for short
1927 * period of time although events are pending, so lock is
1928 * important.
1929 */
1930 eavail = ep_events_available(ep);
1931 if (!eavail) {
1932 if (signal_pending(current))
1933 res = -EINTR;
1934 else
1935 __add_wait_queue_exclusive(&ep->wq, &wait);
1936 }
1937 write_unlock_irq(&ep->lock);
1938
1939 if (!eavail && !res)
1940 timed_out = !freezable_schedule_hrtimeout_range(to, slack,
1941 HRTIMER_MODE_ABS);
1942
1943 /*
1944 * We were woken up, thus go and try to harvest some events.
1945 * If timed out and still on the wait queue, recheck eavail
1946 * carefully under lock, below.
1947 */
1948 eavail = 1;
1949 } while (0);
1950
1951 __set_current_state(TASK_RUNNING);
1952
1953 if (!list_empty_careful(&wait.entry)) {
1954 write_lock_irq(&ep->lock);
1955 /*
1956 * If the thread timed out and is not on the wait queue, it
1957 * means that the thread was woken up after its timeout expired
1958 * before it could reacquire the lock. Thus, when wait.entry is
1959 * empty, it needs to harvest events.
1960 */
1961 if (timed_out)
1962 eavail = list_empty(&wait.entry);
1963 __remove_wait_queue(&ep->wq, &wait);
1964 write_unlock_irq(&ep->lock);
1965 }
1966
1967send_events:
1968 if (fatal_signal_pending(current)) {
1969 /*
1970 * Always short-circuit for fatal signals to allow
1971 * threads to make a timely exit without the chance of
1972 * finding more events available and fetching
1973 * repeatedly.
1974 */
1975 res = -EINTR;
1976 }
1977 /*
1978 * Try to transfer events to user space. In case we get 0 events and
1979 * there's still timeout left over, we go trying again in search of
1980 * more luck.
1981 */
1982 if (!res && eavail &&
1983 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1984 goto fetch_events;
1985
1986 return res;
1987}
1988
1989/**
1990 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1991 * API, to verify that adding an epoll file inside another
1992 * epoll structure, does not violate the constraints, in
1993 * terms of closed loops, or too deep chains (which can
1994 * result in excessive stack usage).
1995 *
1996 * @priv: Pointer to the epoll file to be currently checked.
1997 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1998 * data structure pointer.
1999 * @call_nests: Current dept of the @ep_call_nested() call stack.
2000 *
2001 * Returns: Returns zero if adding the epoll @file inside current epoll
2002 * structure @ep does not violate the constraints, or -1 otherwise.
2003 */
2004static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
2005{
2006 int error = 0;
2007 struct file *file = priv;
2008 struct eventpoll *ep = file->private_data;
2009 struct eventpoll *ep_tovisit;
2010 struct rb_node *rbp;
2011 struct epitem *epi;
2012
2013 mutex_lock_nested(&ep->mtx, call_nests + 1);
2014 ep->gen = loop_check_gen;
2015 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2016 epi = rb_entry(rbp, struct epitem, rbn);
2017 if (unlikely(is_file_epoll(epi->ffd.file))) {
2018 ep_tovisit = epi->ffd.file->private_data;
2019 if (ep_tovisit->gen == loop_check_gen)
2020 continue;
2021 error = ep_call_nested(&poll_loop_ncalls,
2022 ep_loop_check_proc, epi->ffd.file,
2023 ep_tovisit, current);
2024 if (error != 0)
2025 break;
2026 } else {
2027 /*
2028 * If we've reached a file that is not associated with
2029 * an ep, then we need to check if the newly added
2030 * links are going to add too many wakeup paths. We do
2031 * this by adding it to the tfile_check_list, if it's
2032 * not already there, and calling reverse_path_check()
2033 * during ep_insert().
2034 */
2035 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
2036 if (get_file_rcu(epi->ffd.file))
2037 list_add(&epi->ffd.file->f_tfile_llink,
2038 &tfile_check_list);
2039 }
2040 }
2041 }
2042 mutex_unlock(&ep->mtx);
2043
2044 return error;
2045}
2046
2047/**
2048 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2049 * another epoll file (represented by @ep) does not create
2050 * closed loops or too deep chains.
2051 *
2052 * @ep: Pointer to the epoll private data structure.
2053 * @file: Pointer to the epoll file to be checked.
2054 *
2055 * Returns: Returns zero if adding the epoll @file inside current epoll
2056 * structure @ep does not violate the constraints, or -1 otherwise.
2057 */
2058static int ep_loop_check(struct eventpoll *ep, struct file *file)
2059{
2060 return ep_call_nested(&poll_loop_ncalls,
2061 ep_loop_check_proc, file, ep, current);
2062}
2063
2064static void clear_tfile_check_list(void)
2065{
2066 struct file *file;
2067
2068 /* first clear the tfile_check_list */
2069 while (!list_empty(&tfile_check_list)) {
2070 file = list_first_entry(&tfile_check_list, struct file,
2071 f_tfile_llink);
2072 list_del_init(&file->f_tfile_llink);
2073 fput(file);
2074 }
2075 INIT_LIST_HEAD(&tfile_check_list);
2076}
2077
2078/*
2079 * Open an eventpoll file descriptor.
2080 */
2081static int do_epoll_create(int flags)
2082{
2083 int error, fd;
2084 struct eventpoll *ep = NULL;
2085 struct file *file;
2086
2087 /* Check the EPOLL_* constant for consistency. */
2088 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2089
2090 if (flags & ~EPOLL_CLOEXEC)
2091 return -EINVAL;
2092 /*
2093 * Create the internal data structure ("struct eventpoll").
2094 */
2095 error = ep_alloc(&ep);
2096 if (error < 0)
2097 return error;
2098 /*
2099 * Creates all the items needed to setup an eventpoll file. That is,
2100 * a file structure and a free file descriptor.
2101 */
2102 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2103 if (fd < 0) {
2104 error = fd;
2105 goto out_free_ep;
2106 }
2107 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2108 O_RDWR | (flags & O_CLOEXEC));
2109 if (IS_ERR(file)) {
2110 error = PTR_ERR(file);
2111 goto out_free_fd;
2112 }
2113 ep->file = file;
2114 fd_install(fd, file);
2115 return fd;
2116
2117out_free_fd:
2118 put_unused_fd(fd);
2119out_free_ep:
2120 ep_free(ep);
2121 return error;
2122}
2123
2124SYSCALL_DEFINE1(epoll_create1, int, flags)
2125{
2126 return do_epoll_create(flags);
2127}
2128
2129SYSCALL_DEFINE1(epoll_create, int, size)
2130{
2131 if (size <= 0)
2132 return -EINVAL;
2133
2134 return do_epoll_create(0);
2135}
2136
2137/*
2138 * The following function implements the controller interface for
2139 * the eventpoll file that enables the insertion/removal/change of
2140 * file descriptors inside the interest set.
2141 */
2142SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2143 struct epoll_event __user *, event)
2144{
2145 int error;
2146 int full_check = 0;
2147 struct fd f, tf;
2148 struct eventpoll *ep;
2149 struct epitem *epi;
2150 struct epoll_event epds;
2151 struct eventpoll *tep = NULL;
2152
2153 error = -EFAULT;
2154 if (ep_op_has_event(op) &&
2155 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2156 goto error_return;
2157
2158 error = -EBADF;
2159 f = fdget(epfd);
2160 if (!f.file)
2161 goto error_return;
2162
2163 /* Get the "struct file *" for the target file */
2164 tf = fdget(fd);
2165 if (!tf.file)
2166 goto error_fput;
2167
2168 /* The target file descriptor must support poll */
2169 error = -EPERM;
2170 if (!file_can_poll(tf.file))
2171 goto error_tgt_fput;
2172
2173 /* Check if EPOLLWAKEUP is allowed */
2174 if (ep_op_has_event(op))
2175 ep_take_care_of_epollwakeup(&epds);
2176
2177 /*
2178 * We have to check that the file structure underneath the file descriptor
2179 * the user passed to us _is_ an eventpoll file. And also we do not permit
2180 * adding an epoll file descriptor inside itself.
2181 */
2182 error = -EINVAL;
2183 if (f.file == tf.file || !is_file_epoll(f.file))
2184 goto error_tgt_fput;
2185
2186 /*
2187 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2188 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2189 * Also, we do not currently supported nested exclusive wakeups.
2190 */
2191 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2192 if (op == EPOLL_CTL_MOD)
2193 goto error_tgt_fput;
2194 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2195 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2196 goto error_tgt_fput;
2197 }
2198
2199 /*
2200 * At this point it is safe to assume that the "private_data" contains
2201 * our own data structure.
2202 */
2203 ep = f.file->private_data;
2204
2205 /*
2206 * When we insert an epoll file descriptor, inside another epoll file
2207 * descriptor, there is the change of creating closed loops, which are
2208 * better be handled here, than in more critical paths. While we are
2209 * checking for loops we also determine the list of files reachable
2210 * and hang them on the tfile_check_list, so we can check that we
2211 * haven't created too many possible wakeup paths.
2212 *
2213 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2214 * the epoll file descriptor is attaching directly to a wakeup source,
2215 * unless the epoll file descriptor is nested. The purpose of taking the
2216 * 'epmutex' on add is to prevent complex toplogies such as loops and
2217 * deep wakeup paths from forming in parallel through multiple
2218 * EPOLL_CTL_ADD operations.
2219 */
2220 mutex_lock_nested(&ep->mtx, 0);
2221 if (op == EPOLL_CTL_ADD) {
2222 if (!list_empty(&f.file->f_ep_links) ||
2223 ep->gen == loop_check_gen ||
2224 is_file_epoll(tf.file)) {
2225 full_check = 1;
2226 mutex_unlock(&ep->mtx);
2227 mutex_lock(&epmutex);
2228 if (is_file_epoll(tf.file)) {
2229 error = -ELOOP;
2230 if (ep_loop_check(ep, tf.file) != 0)
2231 goto error_tgt_fput;
2232 } else {
2233 get_file(tf.file);
2234 list_add(&tf.file->f_tfile_llink,
2235 &tfile_check_list);
2236 }
2237 mutex_lock_nested(&ep->mtx, 0);
2238 if (is_file_epoll(tf.file)) {
2239 tep = tf.file->private_data;
2240 mutex_lock_nested(&tep->mtx, 1);
2241 }
2242 }
2243 }
2244
2245 /*
2246 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2247 * above, we can be sure to be able to use the item looked up by
2248 * ep_find() till we release the mutex.
2249 */
2250 epi = ep_find(ep, tf.file, fd);
2251
2252 error = -EINVAL;
2253 switch (op) {
2254 case EPOLL_CTL_ADD:
2255 if (!epi) {
2256 epds.events |= EPOLLERR | EPOLLHUP;
2257 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2258 } else
2259 error = -EEXIST;
2260 break;
2261 case EPOLL_CTL_DEL:
2262 if (epi)
2263 error = ep_remove(ep, epi);
2264 else
2265 error = -ENOENT;
2266 break;
2267 case EPOLL_CTL_MOD:
2268 if (epi) {
2269 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2270 epds.events |= EPOLLERR | EPOLLHUP;
2271 error = ep_modify(ep, epi, &epds);
2272 }
2273 } else
2274 error = -ENOENT;
2275 break;
2276 }
2277 if (tep != NULL)
2278 mutex_unlock(&tep->mtx);
2279 mutex_unlock(&ep->mtx);
2280
2281error_tgt_fput:
2282 if (full_check) {
2283 clear_tfile_check_list();
2284 loop_check_gen++;
2285 mutex_unlock(&epmutex);
2286 }
2287
2288 fdput(tf);
2289error_fput:
2290 fdput(f);
2291error_return:
2292
2293 return error;
2294}
2295
2296/*
2297 * Implement the event wait interface for the eventpoll file. It is the kernel
2298 * part of the user space epoll_wait(2).
2299 */
2300static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2301 int maxevents, int timeout)
2302{
2303 int error;
2304 struct fd f;
2305 struct eventpoll *ep;
2306
2307 /* The maximum number of event must be greater than zero */
2308 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2309 return -EINVAL;
2310
2311 /* Verify that the area passed by the user is writeable */
2312 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2313 return -EFAULT;
2314
2315 /* Get the "struct file *" for the eventpoll file */
2316 f = fdget(epfd);
2317 if (!f.file)
2318 return -EBADF;
2319
2320 /*
2321 * We have to check that the file structure underneath the fd
2322 * the user passed to us _is_ an eventpoll file.
2323 */
2324 error = -EINVAL;
2325 if (!is_file_epoll(f.file))
2326 goto error_fput;
2327
2328 /*
2329 * At this point it is safe to assume that the "private_data" contains
2330 * our own data structure.
2331 */
2332 ep = f.file->private_data;
2333
2334 /* Time to fish for events ... */
2335 error = ep_poll(ep, events, maxevents, timeout);
2336
2337error_fput:
2338 fdput(f);
2339 return error;
2340}
2341
2342SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2343 int, maxevents, int, timeout)
2344{
2345 return do_epoll_wait(epfd, events, maxevents, timeout);
2346}
2347
2348/*
2349 * Implement the event wait interface for the eventpoll file. It is the kernel
2350 * part of the user space epoll_pwait(2).
2351 */
2352SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2353 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2354 size_t, sigsetsize)
2355{
2356 int error;
2357
2358 /*
2359 * If the caller wants a certain signal mask to be set during the wait,
2360 * we apply it here.
2361 */
2362 error = set_user_sigmask(sigmask, sigsetsize);
2363 if (error)
2364 return error;
2365
2366 error = do_epoll_wait(epfd, events, maxevents, timeout);
2367 restore_saved_sigmask_unless(error == -EINTR);
2368
2369 return error;
2370}
2371
2372#ifdef CONFIG_COMPAT
2373COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2374 struct epoll_event __user *, events,
2375 int, maxevents, int, timeout,
2376 const compat_sigset_t __user *, sigmask,
2377 compat_size_t, sigsetsize)
2378{
2379 long err;
2380
2381 /*
2382 * If the caller wants a certain signal mask to be set during the wait,
2383 * we apply it here.
2384 */
2385 err = set_compat_user_sigmask(sigmask, sigsetsize);
2386 if (err)
2387 return err;
2388
2389 err = do_epoll_wait(epfd, events, maxevents, timeout);
2390 restore_saved_sigmask_unless(err == -EINTR);
2391
2392 return err;
2393}
2394#endif
2395
2396static int __init eventpoll_init(void)
2397{
2398 struct sysinfo si;
2399
2400 si_meminfo(&si);
2401 /*
2402 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2403 */
2404 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2405 EP_ITEM_COST;
2406 BUG_ON(max_user_watches < 0);
2407
2408 /*
2409 * Initialize the structure used to perform epoll file descriptor
2410 * inclusion loops checks.
2411 */
2412 ep_nested_calls_init(&poll_loop_ncalls);
2413
2414#ifdef CONFIG_DEBUG_LOCK_ALLOC
2415 /* Initialize the structure used to perform safe poll wait head wake ups */
2416 ep_nested_calls_init(&poll_safewake_ncalls);
2417#endif
2418
2419 /*
2420 * We can have many thousands of epitems, so prevent this from
2421 * using an extra cache line on 64-bit (and smaller) CPUs
2422 */
2423 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2424
2425 /* Allocates slab cache used to allocate "struct epitem" items */
2426 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2427 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2428
2429 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2430 pwq_cache = kmem_cache_create("eventpoll_pwq",
2431 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2432
2433 return 0;
2434}
2435fs_initcall(eventpoll_init);