b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Pressure stall information for CPU, memory and IO |
| 3 | * |
| 4 | * Copyright (c) 2018 Facebook, Inc. |
| 5 | * Author: Johannes Weiner <hannes@cmpxchg.org> |
| 6 | * |
| 7 | * Polling support by Suren Baghdasaryan <surenb@google.com> |
| 8 | * Copyright (c) 2018 Google, Inc. |
| 9 | * |
| 10 | * When CPU, memory and IO are contended, tasks experience delays that |
| 11 | * reduce throughput and introduce latencies into the workload. Memory |
| 12 | * and IO contention, in addition, can cause a full loss of forward |
| 13 | * progress in which the CPU goes idle. |
| 14 | * |
| 15 | * This code aggregates individual task delays into resource pressure |
| 16 | * metrics that indicate problems with both workload health and |
| 17 | * resource utilization. |
| 18 | * |
| 19 | * Model |
| 20 | * |
| 21 | * The time in which a task can execute on a CPU is our baseline for |
| 22 | * productivity. Pressure expresses the amount of time in which this |
| 23 | * potential cannot be realized due to resource contention. |
| 24 | * |
| 25 | * This concept of productivity has two components: the workload and |
| 26 | * the CPU. To measure the impact of pressure on both, we define two |
| 27 | * contention states for a resource: SOME and FULL. |
| 28 | * |
| 29 | * In the SOME state of a given resource, one or more tasks are |
| 30 | * delayed on that resource. This affects the workload's ability to |
| 31 | * perform work, but the CPU may still be executing other tasks. |
| 32 | * |
| 33 | * In the FULL state of a given resource, all non-idle tasks are |
| 34 | * delayed on that resource such that nobody is advancing and the CPU |
| 35 | * goes idle. This leaves both workload and CPU unproductive. |
| 36 | * |
| 37 | * (Naturally, the FULL state doesn't exist for the CPU resource.) |
| 38 | * |
| 39 | * SOME = nr_delayed_tasks != 0 |
| 40 | * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0 |
| 41 | * |
| 42 | * The percentage of wallclock time spent in those compound stall |
| 43 | * states gives pressure numbers between 0 and 100 for each resource, |
| 44 | * where the SOME percentage indicates workload slowdowns and the FULL |
| 45 | * percentage indicates reduced CPU utilization: |
| 46 | * |
| 47 | * %SOME = time(SOME) / period |
| 48 | * %FULL = time(FULL) / period |
| 49 | * |
| 50 | * Multiple CPUs |
| 51 | * |
| 52 | * The more tasks and available CPUs there are, the more work can be |
| 53 | * performed concurrently. This means that the potential that can go |
| 54 | * unrealized due to resource contention *also* scales with non-idle |
| 55 | * tasks and CPUs. |
| 56 | * |
| 57 | * Consider a scenario where 257 number crunching tasks are trying to |
| 58 | * run concurrently on 256 CPUs. If we simply aggregated the task |
| 59 | * states, we would have to conclude a CPU SOME pressure number of |
| 60 | * 100%, since *somebody* is waiting on a runqueue at all |
| 61 | * times. However, that is clearly not the amount of contention the |
| 62 | * workload is experiencing: only one out of 256 possible exceution |
| 63 | * threads will be contended at any given time, or about 0.4%. |
| 64 | * |
| 65 | * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any |
| 66 | * given time *one* of the tasks is delayed due to a lack of memory. |
| 67 | * Again, looking purely at the task state would yield a memory FULL |
| 68 | * pressure number of 0%, since *somebody* is always making forward |
| 69 | * progress. But again this wouldn't capture the amount of execution |
| 70 | * potential lost, which is 1 out of 4 CPUs, or 25%. |
| 71 | * |
| 72 | * To calculate wasted potential (pressure) with multiple processors, |
| 73 | * we have to base our calculation on the number of non-idle tasks in |
| 74 | * conjunction with the number of available CPUs, which is the number |
| 75 | * of potential execution threads. SOME becomes then the proportion of |
| 76 | * delayed tasks to possibe threads, and FULL is the share of possible |
| 77 | * threads that are unproductive due to delays: |
| 78 | * |
| 79 | * threads = min(nr_nonidle_tasks, nr_cpus) |
| 80 | * SOME = min(nr_delayed_tasks / threads, 1) |
| 81 | * FULL = (threads - min(nr_running_tasks, threads)) / threads |
| 82 | * |
| 83 | * For the 257 number crunchers on 256 CPUs, this yields: |
| 84 | * |
| 85 | * threads = min(257, 256) |
| 86 | * SOME = min(1 / 256, 1) = 0.4% |
| 87 | * FULL = (256 - min(257, 256)) / 256 = 0% |
| 88 | * |
| 89 | * For the 1 out of 4 memory-delayed tasks, this yields: |
| 90 | * |
| 91 | * threads = min(4, 4) |
| 92 | * SOME = min(1 / 4, 1) = 25% |
| 93 | * FULL = (4 - min(3, 4)) / 4 = 25% |
| 94 | * |
| 95 | * [ Substitute nr_cpus with 1, and you can see that it's a natural |
| 96 | * extension of the single-CPU model. ] |
| 97 | * |
| 98 | * Implementation |
| 99 | * |
| 100 | * To assess the precise time spent in each such state, we would have |
| 101 | * to freeze the system on task changes and start/stop the state |
| 102 | * clocks accordingly. Obviously that doesn't scale in practice. |
| 103 | * |
| 104 | * Because the scheduler aims to distribute the compute load evenly |
| 105 | * among the available CPUs, we can track task state locally to each |
| 106 | * CPU and, at much lower frequency, extrapolate the global state for |
| 107 | * the cumulative stall times and the running averages. |
| 108 | * |
| 109 | * For each runqueue, we track: |
| 110 | * |
| 111 | * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) |
| 112 | * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu]) |
| 113 | * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) |
| 114 | * |
| 115 | * and then periodically aggregate: |
| 116 | * |
| 117 | * tNONIDLE = sum(tNONIDLE[i]) |
| 118 | * |
| 119 | * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE |
| 120 | * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE |
| 121 | * |
| 122 | * %SOME = tSOME / period |
| 123 | * %FULL = tFULL / period |
| 124 | * |
| 125 | * This gives us an approximation of pressure that is practical |
| 126 | * cost-wise, yet way more sensitive and accurate than periodic |
| 127 | * sampling of the aggregate task states would be. |
| 128 | */ |
| 129 | |
| 130 | #include "../workqueue_internal.h" |
| 131 | #include <linux/sched/loadavg.h> |
| 132 | #include <linux/seq_file.h> |
| 133 | #include <linux/proc_fs.h> |
| 134 | #include <linux/seqlock.h> |
| 135 | #include <linux/uaccess.h> |
| 136 | #include <linux/cgroup.h> |
| 137 | #include <linux/module.h> |
| 138 | #include <linux/sched.h> |
| 139 | #include <linux/ctype.h> |
| 140 | #include <linux/file.h> |
| 141 | #include <linux/poll.h> |
| 142 | #include <linux/psi.h> |
| 143 | #include "sched.h" |
| 144 | |
| 145 | static int psi_bug __read_mostly; |
| 146 | |
| 147 | DEFINE_STATIC_KEY_FALSE(psi_disabled); |
| 148 | DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); |
| 149 | |
| 150 | #ifdef CONFIG_PSI_DEFAULT_DISABLED |
| 151 | static bool psi_enable; |
| 152 | #else |
| 153 | static bool psi_enable = true; |
| 154 | #endif |
| 155 | static int __init setup_psi(char *str) |
| 156 | { |
| 157 | return kstrtobool(str, &psi_enable) == 0; |
| 158 | } |
| 159 | __setup("psi=", setup_psi); |
| 160 | |
| 161 | /* Running averages - we need to be higher-res than loadavg */ |
| 162 | #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ |
| 163 | #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ |
| 164 | #define EXP_60s 1981 /* 1/exp(2s/60s) */ |
| 165 | #define EXP_300s 2034 /* 1/exp(2s/300s) */ |
| 166 | |
| 167 | /* PSI trigger definitions */ |
| 168 | #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ |
| 169 | #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ |
| 170 | #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ |
| 171 | |
| 172 | /* Sampling frequency in nanoseconds */ |
| 173 | static u64 psi_period __read_mostly; |
| 174 | |
| 175 | /* System-level pressure and stall tracking */ |
| 176 | static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); |
| 177 | struct psi_group psi_system = { |
| 178 | .pcpu = &system_group_pcpu, |
| 179 | }; |
| 180 | |
| 181 | static void psi_avgs_work(struct work_struct *work); |
| 182 | |
| 183 | static void poll_timer_fn(struct timer_list *t); |
| 184 | |
| 185 | static void group_init(struct psi_group *group) |
| 186 | { |
| 187 | int cpu; |
| 188 | |
| 189 | for_each_possible_cpu(cpu) |
| 190 | seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); |
| 191 | group->avg_last_update = sched_clock(); |
| 192 | group->avg_next_update = group->avg_last_update + psi_period; |
| 193 | INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); |
| 194 | mutex_init(&group->avgs_lock); |
| 195 | /* Init trigger-related members */ |
| 196 | mutex_init(&group->trigger_lock); |
| 197 | INIT_LIST_HEAD(&group->triggers); |
| 198 | memset(group->nr_triggers, 0, sizeof(group->nr_triggers)); |
| 199 | group->poll_states = 0; |
| 200 | group->poll_min_period = U32_MAX; |
| 201 | memset(group->polling_total, 0, sizeof(group->polling_total)); |
| 202 | group->polling_next_update = ULLONG_MAX; |
| 203 | group->polling_until = 0; |
| 204 | init_waitqueue_head(&group->poll_wait); |
| 205 | timer_setup(&group->poll_timer, poll_timer_fn, 0); |
| 206 | rcu_assign_pointer(group->poll_task, NULL); |
| 207 | } |
| 208 | |
| 209 | void __init psi_init(void) |
| 210 | { |
| 211 | if (!psi_enable) { |
| 212 | static_branch_enable(&psi_disabled); |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | if (!cgroup_psi_enabled()) |
| 217 | static_branch_disable(&psi_cgroups_enabled); |
| 218 | |
| 219 | psi_period = jiffies_to_nsecs(PSI_FREQ); |
| 220 | group_init(&psi_system); |
| 221 | } |
| 222 | |
| 223 | static bool test_state(unsigned int *tasks, enum psi_states state) |
| 224 | { |
| 225 | switch (state) { |
| 226 | case PSI_IO_SOME: |
| 227 | return tasks[NR_IOWAIT]; |
| 228 | case PSI_IO_FULL: |
| 229 | return tasks[NR_IOWAIT] && !tasks[NR_RUNNING]; |
| 230 | case PSI_MEM_SOME: |
| 231 | return tasks[NR_MEMSTALL]; |
| 232 | case PSI_MEM_FULL: |
| 233 | return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING]; |
| 234 | case PSI_CPU_SOME: |
| 235 | return tasks[NR_RUNNING] > 1; |
| 236 | case PSI_NONIDLE: |
| 237 | return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || |
| 238 | tasks[NR_RUNNING]; |
| 239 | default: |
| 240 | return false; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | static void get_recent_times(struct psi_group *group, int cpu, |
| 245 | enum psi_aggregators aggregator, u32 *times, |
| 246 | u32 *pchanged_states) |
| 247 | { |
| 248 | struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); |
| 249 | u64 now, state_start; |
| 250 | enum psi_states s; |
| 251 | unsigned int seq; |
| 252 | u32 state_mask; |
| 253 | |
| 254 | *pchanged_states = 0; |
| 255 | |
| 256 | /* Snapshot a coherent view of the CPU state */ |
| 257 | do { |
| 258 | seq = read_seqcount_begin(&groupc->seq); |
| 259 | now = cpu_clock(cpu); |
| 260 | memcpy(times, groupc->times, sizeof(groupc->times)); |
| 261 | state_mask = groupc->state_mask; |
| 262 | state_start = groupc->state_start; |
| 263 | } while (read_seqcount_retry(&groupc->seq, seq)); |
| 264 | |
| 265 | /* Calculate state time deltas against the previous snapshot */ |
| 266 | for (s = 0; s < NR_PSI_STATES; s++) { |
| 267 | u32 delta; |
| 268 | /* |
| 269 | * In addition to already concluded states, we also |
| 270 | * incorporate currently active states on the CPU, |
| 271 | * since states may last for many sampling periods. |
| 272 | * |
| 273 | * This way we keep our delta sampling buckets small |
| 274 | * (u32) and our reported pressure close to what's |
| 275 | * actually happening. |
| 276 | */ |
| 277 | if (state_mask & (1 << s)) |
| 278 | times[s] += now - state_start; |
| 279 | |
| 280 | delta = times[s] - groupc->times_prev[aggregator][s]; |
| 281 | groupc->times_prev[aggregator][s] = times[s]; |
| 282 | |
| 283 | times[s] = delta; |
| 284 | if (delta) |
| 285 | *pchanged_states |= (1 << s); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | static void calc_avgs(unsigned long avg[3], int missed_periods, |
| 290 | u64 time, u64 period) |
| 291 | { |
| 292 | unsigned long pct; |
| 293 | |
| 294 | /* Fill in zeroes for periods of no activity */ |
| 295 | if (missed_periods) { |
| 296 | avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); |
| 297 | avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); |
| 298 | avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); |
| 299 | } |
| 300 | |
| 301 | /* Sample the most recent active period */ |
| 302 | pct = div_u64(time * 100, period); |
| 303 | pct *= FIXED_1; |
| 304 | avg[0] = calc_load(avg[0], EXP_10s, pct); |
| 305 | avg[1] = calc_load(avg[1], EXP_60s, pct); |
| 306 | avg[2] = calc_load(avg[2], EXP_300s, pct); |
| 307 | } |
| 308 | |
| 309 | static void collect_percpu_times(struct psi_group *group, |
| 310 | enum psi_aggregators aggregator, |
| 311 | u32 *pchanged_states) |
| 312 | { |
| 313 | u64 deltas[NR_PSI_STATES - 1] = { 0, }; |
| 314 | unsigned long nonidle_total = 0; |
| 315 | u32 changed_states = 0; |
| 316 | int cpu; |
| 317 | int s; |
| 318 | |
| 319 | /* |
| 320 | * Collect the per-cpu time buckets and average them into a |
| 321 | * single time sample that is normalized to wallclock time. |
| 322 | * |
| 323 | * For averaging, each CPU is weighted by its non-idle time in |
| 324 | * the sampling period. This eliminates artifacts from uneven |
| 325 | * loading, or even entirely idle CPUs. |
| 326 | */ |
| 327 | for_each_possible_cpu(cpu) { |
| 328 | u32 times[NR_PSI_STATES]; |
| 329 | u32 nonidle; |
| 330 | u32 cpu_changed_states; |
| 331 | |
| 332 | get_recent_times(group, cpu, aggregator, times, |
| 333 | &cpu_changed_states); |
| 334 | changed_states |= cpu_changed_states; |
| 335 | |
| 336 | nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); |
| 337 | nonidle_total += nonidle; |
| 338 | |
| 339 | for (s = 0; s < PSI_NONIDLE; s++) |
| 340 | deltas[s] += (u64)times[s] * nonidle; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | * Integrate the sample into the running statistics that are |
| 345 | * reported to userspace: the cumulative stall times and the |
| 346 | * decaying averages. |
| 347 | * |
| 348 | * Pressure percentages are sampled at PSI_FREQ. We might be |
| 349 | * called more often when the user polls more frequently than |
| 350 | * that; we might be called less often when there is no task |
| 351 | * activity, thus no data, and clock ticks are sporadic. The |
| 352 | * below handles both. |
| 353 | */ |
| 354 | |
| 355 | /* total= */ |
| 356 | for (s = 0; s < NR_PSI_STATES - 1; s++) |
| 357 | group->total[aggregator][s] += |
| 358 | div_u64(deltas[s], max(nonidle_total, 1UL)); |
| 359 | |
| 360 | if (pchanged_states) |
| 361 | *pchanged_states = changed_states; |
| 362 | } |
| 363 | |
| 364 | static u64 update_averages(struct psi_group *group, u64 now) |
| 365 | { |
| 366 | unsigned long missed_periods = 0; |
| 367 | u64 expires, period; |
| 368 | u64 avg_next_update; |
| 369 | int s; |
| 370 | |
| 371 | /* avgX= */ |
| 372 | expires = group->avg_next_update; |
| 373 | if (now - expires >= psi_period) |
| 374 | missed_periods = div_u64(now - expires, psi_period); |
| 375 | |
| 376 | /* |
| 377 | * The periodic clock tick can get delayed for various |
| 378 | * reasons, especially on loaded systems. To avoid clock |
| 379 | * drift, we schedule the clock in fixed psi_period intervals. |
| 380 | * But the deltas we sample out of the per-cpu buckets above |
| 381 | * are based on the actual time elapsing between clock ticks. |
| 382 | */ |
| 383 | avg_next_update = expires + ((1 + missed_periods) * psi_period); |
| 384 | period = now - (group->avg_last_update + (missed_periods * psi_period)); |
| 385 | group->avg_last_update = now; |
| 386 | |
| 387 | for (s = 0; s < NR_PSI_STATES - 1; s++) { |
| 388 | u32 sample; |
| 389 | |
| 390 | sample = group->total[PSI_AVGS][s] - group->avg_total[s]; |
| 391 | /* |
| 392 | * Due to the lockless sampling of the time buckets, |
| 393 | * recorded time deltas can slip into the next period, |
| 394 | * which under full pressure can result in samples in |
| 395 | * excess of the period length. |
| 396 | * |
| 397 | * We don't want to report non-sensical pressures in |
| 398 | * excess of 100%, nor do we want to drop such events |
| 399 | * on the floor. Instead we punt any overage into the |
| 400 | * future until pressure subsides. By doing this we |
| 401 | * don't underreport the occurring pressure curve, we |
| 402 | * just report it delayed by one period length. |
| 403 | * |
| 404 | * The error isn't cumulative. As soon as another |
| 405 | * delta slips from a period P to P+1, by definition |
| 406 | * it frees up its time T in P. |
| 407 | */ |
| 408 | if (sample > period) |
| 409 | sample = period; |
| 410 | group->avg_total[s] += sample; |
| 411 | calc_avgs(group->avg[s], missed_periods, sample, period); |
| 412 | } |
| 413 | |
| 414 | return avg_next_update; |
| 415 | } |
| 416 | |
| 417 | static void psi_avgs_work(struct work_struct *work) |
| 418 | { |
| 419 | struct delayed_work *dwork; |
| 420 | struct psi_group *group; |
| 421 | u32 changed_states; |
| 422 | bool nonidle; |
| 423 | u64 now; |
| 424 | |
| 425 | dwork = to_delayed_work(work); |
| 426 | group = container_of(dwork, struct psi_group, avgs_work); |
| 427 | |
| 428 | mutex_lock(&group->avgs_lock); |
| 429 | |
| 430 | now = sched_clock(); |
| 431 | |
| 432 | collect_percpu_times(group, PSI_AVGS, &changed_states); |
| 433 | nonidle = changed_states & (1 << PSI_NONIDLE); |
| 434 | /* |
| 435 | * If there is task activity, periodically fold the per-cpu |
| 436 | * times and feed samples into the running averages. If things |
| 437 | * are idle and there is no data to process, stop the clock. |
| 438 | * Once restarted, we'll catch up the running averages in one |
| 439 | * go - see calc_avgs() and missed_periods. |
| 440 | */ |
| 441 | if (now >= group->avg_next_update) |
| 442 | group->avg_next_update = update_averages(group, now); |
| 443 | |
| 444 | if (nonidle) { |
| 445 | schedule_delayed_work(dwork, nsecs_to_jiffies( |
| 446 | group->avg_next_update - now) + 1); |
| 447 | } |
| 448 | |
| 449 | mutex_unlock(&group->avgs_lock); |
| 450 | } |
| 451 | |
| 452 | /* Trigger tracking window manupulations */ |
| 453 | static void window_reset(struct psi_window *win, u64 now, u64 value, |
| 454 | u64 prev_growth) |
| 455 | { |
| 456 | win->start_time = now; |
| 457 | win->start_value = value; |
| 458 | win->prev_growth = prev_growth; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * PSI growth tracking window update and growth calculation routine. |
| 463 | * |
| 464 | * This approximates a sliding tracking window by interpolating |
| 465 | * partially elapsed windows using historical growth data from the |
| 466 | * previous intervals. This minimizes memory requirements (by not storing |
| 467 | * all the intermediate values in the previous window) and simplifies |
| 468 | * the calculations. It works well because PSI signal changes only in |
| 469 | * positive direction and over relatively small window sizes the growth |
| 470 | * is close to linear. |
| 471 | */ |
| 472 | static u64 window_update(struct psi_window *win, u64 now, u64 value) |
| 473 | { |
| 474 | u64 elapsed; |
| 475 | u64 growth; |
| 476 | |
| 477 | elapsed = now - win->start_time; |
| 478 | growth = value - win->start_value; |
| 479 | /* |
| 480 | * After each tracking window passes win->start_value and |
| 481 | * win->start_time get reset and win->prev_growth stores |
| 482 | * the average per-window growth of the previous window. |
| 483 | * win->prev_growth is then used to interpolate additional |
| 484 | * growth from the previous window assuming it was linear. |
| 485 | */ |
| 486 | if (elapsed > win->size) |
| 487 | window_reset(win, now, value, growth); |
| 488 | else { |
| 489 | u32 remaining; |
| 490 | |
| 491 | remaining = win->size - elapsed; |
| 492 | growth += div64_u64(win->prev_growth * remaining, win->size); |
| 493 | } |
| 494 | |
| 495 | return growth; |
| 496 | } |
| 497 | |
| 498 | static void init_triggers(struct psi_group *group, u64 now) |
| 499 | { |
| 500 | struct psi_trigger *t; |
| 501 | |
| 502 | list_for_each_entry(t, &group->triggers, node) |
| 503 | window_reset(&t->win, now, |
| 504 | group->total[PSI_POLL][t->state], 0); |
| 505 | memcpy(group->polling_total, group->total[PSI_POLL], |
| 506 | sizeof(group->polling_total)); |
| 507 | group->polling_next_update = now + group->poll_min_period; |
| 508 | } |
| 509 | |
| 510 | static u64 update_triggers(struct psi_group *group, u64 now) |
| 511 | { |
| 512 | struct psi_trigger *t; |
| 513 | bool new_stall = false; |
| 514 | u64 *total = group->total[PSI_POLL]; |
| 515 | |
| 516 | /* |
| 517 | * On subsequent updates, calculate growth deltas and let |
| 518 | * watchers know when their specified thresholds are exceeded. |
| 519 | */ |
| 520 | list_for_each_entry(t, &group->triggers, node) { |
| 521 | u64 growth; |
| 522 | |
| 523 | /* Check for stall activity */ |
| 524 | if (group->polling_total[t->state] == total[t->state]) |
| 525 | continue; |
| 526 | |
| 527 | /* |
| 528 | * Multiple triggers might be looking at the same state, |
| 529 | * remember to update group->polling_total[] once we've |
| 530 | * been through all of them. Also remember to extend the |
| 531 | * polling time if we see new stall activity. |
| 532 | */ |
| 533 | new_stall = true; |
| 534 | |
| 535 | /* Calculate growth since last update */ |
| 536 | growth = window_update(&t->win, now, total[t->state]); |
| 537 | if (growth < t->threshold) |
| 538 | continue; |
| 539 | |
| 540 | /* Limit event signaling to once per window */ |
| 541 | if (now < t->last_event_time + t->win.size) |
| 542 | continue; |
| 543 | |
| 544 | /* Generate an event */ |
| 545 | if (cmpxchg(&t->event, 0, 1) == 0) |
| 546 | wake_up_interruptible(&t->event_wait); |
| 547 | t->last_event_time = now; |
| 548 | } |
| 549 | |
| 550 | if (new_stall) |
| 551 | memcpy(group->polling_total, total, |
| 552 | sizeof(group->polling_total)); |
| 553 | |
| 554 | return now + group->poll_min_period; |
| 555 | } |
| 556 | |
| 557 | /* Schedule polling if it's not already scheduled. */ |
| 558 | static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay) |
| 559 | { |
| 560 | struct task_struct *task; |
| 561 | |
| 562 | /* |
| 563 | * Do not reschedule if already scheduled. |
| 564 | * Possible race with a timer scheduled after this check but before |
| 565 | * mod_timer below can be tolerated because group->polling_next_update |
| 566 | * will keep updates on schedule. |
| 567 | */ |
| 568 | if (timer_pending(&group->poll_timer)) |
| 569 | return; |
| 570 | |
| 571 | rcu_read_lock(); |
| 572 | |
| 573 | task = rcu_dereference(group->poll_task); |
| 574 | /* |
| 575 | * kworker might be NULL in case psi_trigger_destroy races with |
| 576 | * psi_task_change (hotpath) which can't use locks |
| 577 | */ |
| 578 | if (likely(task)) |
| 579 | mod_timer(&group->poll_timer, jiffies + delay); |
| 580 | |
| 581 | rcu_read_unlock(); |
| 582 | } |
| 583 | |
| 584 | static void psi_poll_work(struct psi_group *group) |
| 585 | { |
| 586 | u32 changed_states; |
| 587 | u64 now; |
| 588 | |
| 589 | mutex_lock(&group->trigger_lock); |
| 590 | |
| 591 | now = sched_clock(); |
| 592 | |
| 593 | collect_percpu_times(group, PSI_POLL, &changed_states); |
| 594 | |
| 595 | if (changed_states & group->poll_states) { |
| 596 | /* Initialize trigger windows when entering polling mode */ |
| 597 | if (now > group->polling_until) |
| 598 | init_triggers(group, now); |
| 599 | |
| 600 | /* |
| 601 | * Keep the monitor active for at least the duration of the |
| 602 | * minimum tracking window as long as monitor states are |
| 603 | * changing. |
| 604 | */ |
| 605 | group->polling_until = now + |
| 606 | group->poll_min_period * UPDATES_PER_WINDOW; |
| 607 | } |
| 608 | |
| 609 | if (now > group->polling_until) { |
| 610 | group->polling_next_update = ULLONG_MAX; |
| 611 | goto out; |
| 612 | } |
| 613 | |
| 614 | if (now >= group->polling_next_update) |
| 615 | group->polling_next_update = update_triggers(group, now); |
| 616 | |
| 617 | psi_schedule_poll_work(group, |
| 618 | nsecs_to_jiffies(group->polling_next_update - now) + 1); |
| 619 | |
| 620 | out: |
| 621 | mutex_unlock(&group->trigger_lock); |
| 622 | } |
| 623 | |
| 624 | static int psi_poll_worker(void *data) |
| 625 | { |
| 626 | struct psi_group *group = (struct psi_group *)data; |
| 627 | struct sched_param param = { |
| 628 | .sched_priority = 1, |
| 629 | }; |
| 630 | |
| 631 | sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); |
| 632 | |
| 633 | while (true) { |
| 634 | wait_event_interruptible(group->poll_wait, |
| 635 | atomic_cmpxchg(&group->poll_wakeup, 1, 0) || |
| 636 | kthread_should_stop()); |
| 637 | if (kthread_should_stop()) |
| 638 | break; |
| 639 | |
| 640 | psi_poll_work(group); |
| 641 | } |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | static void poll_timer_fn(struct timer_list *t) |
| 646 | { |
| 647 | struct psi_group *group = from_timer(group, t, poll_timer); |
| 648 | |
| 649 | atomic_set(&group->poll_wakeup, 1); |
| 650 | wake_up_interruptible(&group->poll_wait); |
| 651 | } |
| 652 | |
| 653 | static void record_times(struct psi_group_cpu *groupc, int cpu, |
| 654 | bool memstall_tick) |
| 655 | { |
| 656 | u32 delta; |
| 657 | u64 now; |
| 658 | |
| 659 | now = cpu_clock(cpu); |
| 660 | delta = now - groupc->state_start; |
| 661 | groupc->state_start = now; |
| 662 | |
| 663 | if (groupc->state_mask & (1 << PSI_IO_SOME)) { |
| 664 | groupc->times[PSI_IO_SOME] += delta; |
| 665 | if (groupc->state_mask & (1 << PSI_IO_FULL)) |
| 666 | groupc->times[PSI_IO_FULL] += delta; |
| 667 | } |
| 668 | |
| 669 | if (groupc->state_mask & (1 << PSI_MEM_SOME)) { |
| 670 | groupc->times[PSI_MEM_SOME] += delta; |
| 671 | if (groupc->state_mask & (1 << PSI_MEM_FULL)) |
| 672 | groupc->times[PSI_MEM_FULL] += delta; |
| 673 | else if (memstall_tick) { |
| 674 | u32 sample; |
| 675 | /* |
| 676 | * Since we care about lost potential, a |
| 677 | * memstall is FULL when there are no other |
| 678 | * working tasks, but also when the CPU is |
| 679 | * actively reclaiming and nothing productive |
| 680 | * could run even if it were runnable. |
| 681 | * |
| 682 | * When the timer tick sees a reclaiming CPU, |
| 683 | * regardless of runnable tasks, sample a FULL |
| 684 | * tick (or less if it hasn't been a full tick |
| 685 | * since the last state change). |
| 686 | */ |
| 687 | sample = min(delta, (u32)jiffies_to_nsecs(1)); |
| 688 | groupc->times[PSI_MEM_FULL] += sample; |
| 689 | } |
| 690 | } |
| 691 | |
| 692 | if (groupc->state_mask & (1 << PSI_CPU_SOME)) |
| 693 | groupc->times[PSI_CPU_SOME] += delta; |
| 694 | |
| 695 | if (groupc->state_mask & (1 << PSI_NONIDLE)) |
| 696 | groupc->times[PSI_NONIDLE] += delta; |
| 697 | } |
| 698 | |
| 699 | static u32 psi_group_change(struct psi_group *group, int cpu, |
| 700 | unsigned int clear, unsigned int set) |
| 701 | { |
| 702 | struct psi_group_cpu *groupc; |
| 703 | unsigned int t, m; |
| 704 | enum psi_states s; |
| 705 | u32 state_mask = 0; |
| 706 | |
| 707 | groupc = per_cpu_ptr(group->pcpu, cpu); |
| 708 | |
| 709 | /* |
| 710 | * First we assess the aggregate resource states this CPU's |
| 711 | * tasks have been in since the last change, and account any |
| 712 | * SOME and FULL time these may have resulted in. |
| 713 | * |
| 714 | * Then we update the task counts according to the state |
| 715 | * change requested through the @clear and @set bits. |
| 716 | */ |
| 717 | write_seqcount_begin(&groupc->seq); |
| 718 | |
| 719 | record_times(groupc, cpu, false); |
| 720 | |
| 721 | for (t = 0, m = clear; m; m &= ~(1 << t), t++) { |
| 722 | if (!(m & (1 << t))) |
| 723 | continue; |
| 724 | if (groupc->tasks[t] == 0 && !psi_bug) { |
| 725 | printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n", |
| 726 | cpu, t, groupc->tasks[0], |
| 727 | groupc->tasks[1], groupc->tasks[2], |
| 728 | clear, set); |
| 729 | psi_bug = 1; |
| 730 | } |
| 731 | groupc->tasks[t]--; |
| 732 | } |
| 733 | |
| 734 | for (t = 0; set; set &= ~(1 << t), t++) |
| 735 | if (set & (1 << t)) |
| 736 | groupc->tasks[t]++; |
| 737 | |
| 738 | /* Calculate state mask representing active states */ |
| 739 | for (s = 0; s < NR_PSI_STATES; s++) { |
| 740 | if (test_state(groupc->tasks, s)) |
| 741 | state_mask |= (1 << s); |
| 742 | } |
| 743 | groupc->state_mask = state_mask; |
| 744 | |
| 745 | write_seqcount_end(&groupc->seq); |
| 746 | |
| 747 | return state_mask; |
| 748 | } |
| 749 | |
| 750 | static struct psi_group *iterate_groups(struct task_struct *task, void **iter) |
| 751 | { |
| 752 | if (*iter == &psi_system) |
| 753 | return NULL; |
| 754 | |
| 755 | #ifdef CONFIG_CGROUPS |
| 756 | if (static_branch_likely(&psi_cgroups_enabled)) { |
| 757 | struct cgroup *cgroup = NULL; |
| 758 | |
| 759 | if (!*iter) |
| 760 | cgroup = task->cgroups->dfl_cgrp; |
| 761 | else |
| 762 | cgroup = cgroup_parent(*iter); |
| 763 | |
| 764 | if (cgroup && cgroup_parent(cgroup)) { |
| 765 | *iter = cgroup; |
| 766 | return cgroup_psi(cgroup); |
| 767 | } |
| 768 | } |
| 769 | #endif |
| 770 | *iter = &psi_system; |
| 771 | return &psi_system; |
| 772 | } |
| 773 | |
| 774 | void psi_task_change(struct task_struct *task, int clear, int set) |
| 775 | { |
| 776 | int cpu = task_cpu(task); |
| 777 | struct psi_group *group; |
| 778 | bool wake_clock = true; |
| 779 | void *iter = NULL; |
| 780 | |
| 781 | if (!task->pid) |
| 782 | return; |
| 783 | |
| 784 | if (((task->psi_flags & set) || |
| 785 | (task->psi_flags & clear) != clear) && |
| 786 | !psi_bug) { |
| 787 | printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", |
| 788 | task->pid, task->comm, cpu, |
| 789 | task->psi_flags, clear, set); |
| 790 | psi_bug = 1; |
| 791 | } |
| 792 | |
| 793 | task->psi_flags &= ~clear; |
| 794 | task->psi_flags |= set; |
| 795 | |
| 796 | /* |
| 797 | * Periodic aggregation shuts off if there is a period of no |
| 798 | * task changes, so we wake it back up if necessary. However, |
| 799 | * don't do this if the task change is the aggregation worker |
| 800 | * itself going to sleep, or we'll ping-pong forever. |
| 801 | */ |
| 802 | if (unlikely((clear & TSK_RUNNING) && |
| 803 | (task->flags & PF_WQ_WORKER) && |
| 804 | wq_worker_last_func(task) == psi_avgs_work)) |
| 805 | wake_clock = false; |
| 806 | |
| 807 | while ((group = iterate_groups(task, &iter))) { |
| 808 | u32 state_mask = psi_group_change(group, cpu, clear, set); |
| 809 | |
| 810 | if (state_mask & group->poll_states) |
| 811 | psi_schedule_poll_work(group, 1); |
| 812 | |
| 813 | if (wake_clock && !delayed_work_pending(&group->avgs_work)) |
| 814 | schedule_delayed_work(&group->avgs_work, PSI_FREQ); |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void psi_memstall_tick(struct task_struct *task, int cpu) |
| 819 | { |
| 820 | struct psi_group *group; |
| 821 | void *iter = NULL; |
| 822 | |
| 823 | while ((group = iterate_groups(task, &iter))) { |
| 824 | struct psi_group_cpu *groupc; |
| 825 | |
| 826 | groupc = per_cpu_ptr(group->pcpu, cpu); |
| 827 | write_seqcount_begin(&groupc->seq); |
| 828 | record_times(groupc, cpu, true); |
| 829 | write_seqcount_end(&groupc->seq); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | /** |
| 834 | * psi_memstall_enter - mark the beginning of a memory stall section |
| 835 | * @flags: flags to handle nested sections |
| 836 | * |
| 837 | * Marks the calling task as being stalled due to a lack of memory, |
| 838 | * such as waiting for a refault or performing reclaim. |
| 839 | */ |
| 840 | void psi_memstall_enter(unsigned long *flags) |
| 841 | { |
| 842 | struct rq_flags rf; |
| 843 | struct rq *rq; |
| 844 | |
| 845 | if (static_branch_likely(&psi_disabled)) |
| 846 | return; |
| 847 | |
| 848 | *flags = current->flags & PF_MEMSTALL; |
| 849 | if (*flags) |
| 850 | return; |
| 851 | /* |
| 852 | * PF_MEMSTALL setting & accounting needs to be atomic wrt |
| 853 | * changes to the task's scheduling state, otherwise we can |
| 854 | * race with CPU migration. |
| 855 | */ |
| 856 | rq = this_rq_lock_irq(&rf); |
| 857 | |
| 858 | current->flags |= PF_MEMSTALL; |
| 859 | psi_task_change(current, 0, TSK_MEMSTALL); |
| 860 | |
| 861 | rq_unlock_irq(rq, &rf); |
| 862 | } |
| 863 | |
| 864 | /** |
| 865 | * psi_memstall_leave - mark the end of an memory stall section |
| 866 | * @flags: flags to handle nested memdelay sections |
| 867 | * |
| 868 | * Marks the calling task as no longer stalled due to lack of memory. |
| 869 | */ |
| 870 | void psi_memstall_leave(unsigned long *flags) |
| 871 | { |
| 872 | struct rq_flags rf; |
| 873 | struct rq *rq; |
| 874 | |
| 875 | if (static_branch_likely(&psi_disabled)) |
| 876 | return; |
| 877 | |
| 878 | if (*flags) |
| 879 | return; |
| 880 | /* |
| 881 | * PF_MEMSTALL clearing & accounting needs to be atomic wrt |
| 882 | * changes to the task's scheduling state, otherwise we could |
| 883 | * race with CPU migration. |
| 884 | */ |
| 885 | rq = this_rq_lock_irq(&rf); |
| 886 | |
| 887 | current->flags &= ~PF_MEMSTALL; |
| 888 | psi_task_change(current, TSK_MEMSTALL, 0); |
| 889 | |
| 890 | rq_unlock_irq(rq, &rf); |
| 891 | } |
| 892 | |
| 893 | #ifdef CONFIG_CGROUPS |
| 894 | int psi_cgroup_alloc(struct cgroup *cgroup) |
| 895 | { |
| 896 | if (static_branch_likely(&psi_disabled)) |
| 897 | return 0; |
| 898 | |
| 899 | cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu); |
| 900 | if (!cgroup->psi.pcpu) |
| 901 | return -ENOMEM; |
| 902 | group_init(&cgroup->psi); |
| 903 | return 0; |
| 904 | } |
| 905 | |
| 906 | void psi_cgroup_free(struct cgroup *cgroup) |
| 907 | { |
| 908 | if (static_branch_likely(&psi_disabled)) |
| 909 | return; |
| 910 | |
| 911 | cancel_delayed_work_sync(&cgroup->psi.avgs_work); |
| 912 | free_percpu(cgroup->psi.pcpu); |
| 913 | /* All triggers must be removed by now */ |
| 914 | WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n"); |
| 915 | } |
| 916 | |
| 917 | /** |
| 918 | * cgroup_move_task - move task to a different cgroup |
| 919 | * @task: the task |
| 920 | * @to: the target css_set |
| 921 | * |
| 922 | * Move task to a new cgroup and safely migrate its associated stall |
| 923 | * state between the different groups. |
| 924 | * |
| 925 | * This function acquires the task's rq lock to lock out concurrent |
| 926 | * changes to the task's scheduling state and - in case the task is |
| 927 | * running - concurrent changes to its stall state. |
| 928 | */ |
| 929 | void cgroup_move_task(struct task_struct *task, struct css_set *to) |
| 930 | { |
| 931 | unsigned int task_flags = 0; |
| 932 | struct rq_flags rf; |
| 933 | struct rq *rq; |
| 934 | |
| 935 | if (static_branch_likely(&psi_disabled)) { |
| 936 | /* |
| 937 | * Lame to do this here, but the scheduler cannot be locked |
| 938 | * from the outside, so we move cgroups from inside sched/. |
| 939 | */ |
| 940 | rcu_assign_pointer(task->cgroups, to); |
| 941 | return; |
| 942 | } |
| 943 | |
| 944 | rq = task_rq_lock(task, &rf); |
| 945 | |
| 946 | if (task_on_rq_queued(task)) |
| 947 | task_flags = TSK_RUNNING; |
| 948 | else if (task->in_iowait) |
| 949 | task_flags = TSK_IOWAIT; |
| 950 | |
| 951 | if (task->flags & PF_MEMSTALL) |
| 952 | task_flags |= TSK_MEMSTALL; |
| 953 | |
| 954 | if (task_flags) |
| 955 | psi_task_change(task, task_flags, 0); |
| 956 | |
| 957 | /* See comment above */ |
| 958 | rcu_assign_pointer(task->cgroups, to); |
| 959 | |
| 960 | if (task_flags) |
| 961 | psi_task_change(task, 0, task_flags); |
| 962 | |
| 963 | task_rq_unlock(rq, task, &rf); |
| 964 | } |
| 965 | #endif /* CONFIG_CGROUPS */ |
| 966 | |
| 967 | int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) |
| 968 | { |
| 969 | int full; |
| 970 | u64 now; |
| 971 | |
| 972 | if (static_branch_likely(&psi_disabled)) |
| 973 | return -EOPNOTSUPP; |
| 974 | |
| 975 | /* Update averages before reporting them */ |
| 976 | mutex_lock(&group->avgs_lock); |
| 977 | now = sched_clock(); |
| 978 | collect_percpu_times(group, PSI_AVGS, NULL); |
| 979 | if (now >= group->avg_next_update) |
| 980 | group->avg_next_update = update_averages(group, now); |
| 981 | mutex_unlock(&group->avgs_lock); |
| 982 | |
| 983 | for (full = 0; full < 2 - (res == PSI_CPU); full++) { |
| 984 | unsigned long avg[3]; |
| 985 | u64 total; |
| 986 | int w; |
| 987 | |
| 988 | for (w = 0; w < 3; w++) |
| 989 | avg[w] = group->avg[res * 2 + full][w]; |
| 990 | total = div_u64(group->total[PSI_AVGS][res * 2 + full], |
| 991 | NSEC_PER_USEC); |
| 992 | |
| 993 | seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", |
| 994 | full ? "full" : "some", |
| 995 | LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), |
| 996 | LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), |
| 997 | LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), |
| 998 | total); |
| 999 | } |
| 1000 | |
| 1001 | return 0; |
| 1002 | } |
| 1003 | |
| 1004 | static int psi_io_show(struct seq_file *m, void *v) |
| 1005 | { |
| 1006 | return psi_show(m, &psi_system, PSI_IO); |
| 1007 | } |
| 1008 | |
| 1009 | static int psi_memory_show(struct seq_file *m, void *v) |
| 1010 | { |
| 1011 | return psi_show(m, &psi_system, PSI_MEM); |
| 1012 | } |
| 1013 | |
| 1014 | static int psi_cpu_show(struct seq_file *m, void *v) |
| 1015 | { |
| 1016 | return psi_show(m, &psi_system, PSI_CPU); |
| 1017 | } |
| 1018 | |
| 1019 | static int psi_io_open(struct inode *inode, struct file *file) |
| 1020 | { |
| 1021 | return single_open(file, psi_io_show, NULL); |
| 1022 | } |
| 1023 | |
| 1024 | static int psi_memory_open(struct inode *inode, struct file *file) |
| 1025 | { |
| 1026 | return single_open(file, psi_memory_show, NULL); |
| 1027 | } |
| 1028 | |
| 1029 | static int psi_cpu_open(struct inode *inode, struct file *file) |
| 1030 | { |
| 1031 | return single_open(file, psi_cpu_show, NULL); |
| 1032 | } |
| 1033 | |
| 1034 | struct psi_trigger *psi_trigger_create(struct psi_group *group, |
| 1035 | char *buf, size_t nbytes, enum psi_res res) |
| 1036 | { |
| 1037 | struct psi_trigger *t; |
| 1038 | enum psi_states state; |
| 1039 | u32 threshold_us; |
| 1040 | u32 window_us; |
| 1041 | |
| 1042 | if (static_branch_likely(&psi_disabled)) |
| 1043 | return ERR_PTR(-EOPNOTSUPP); |
| 1044 | |
| 1045 | if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) |
| 1046 | state = PSI_IO_SOME + res * 2; |
| 1047 | else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) |
| 1048 | state = PSI_IO_FULL + res * 2; |
| 1049 | else |
| 1050 | return ERR_PTR(-EINVAL); |
| 1051 | |
| 1052 | if (state >= PSI_NONIDLE) |
| 1053 | return ERR_PTR(-EINVAL); |
| 1054 | |
| 1055 | if (window_us < WINDOW_MIN_US || |
| 1056 | window_us > WINDOW_MAX_US) |
| 1057 | return ERR_PTR(-EINVAL); |
| 1058 | |
| 1059 | /* Check threshold */ |
| 1060 | if (threshold_us == 0 || threshold_us > window_us) |
| 1061 | return ERR_PTR(-EINVAL); |
| 1062 | |
| 1063 | t = kmalloc(sizeof(*t), GFP_KERNEL); |
| 1064 | if (!t) |
| 1065 | return ERR_PTR(-ENOMEM); |
| 1066 | |
| 1067 | t->group = group; |
| 1068 | t->state = state; |
| 1069 | t->threshold = threshold_us * NSEC_PER_USEC; |
| 1070 | t->win.size = window_us * NSEC_PER_USEC; |
| 1071 | window_reset(&t->win, 0, 0, 0); |
| 1072 | |
| 1073 | t->event = 0; |
| 1074 | t->last_event_time = 0; |
| 1075 | init_waitqueue_head(&t->event_wait); |
| 1076 | |
| 1077 | mutex_lock(&group->trigger_lock); |
| 1078 | |
| 1079 | if (!rcu_access_pointer(group->poll_task)) { |
| 1080 | struct task_struct *task; |
| 1081 | |
| 1082 | task = kthread_create(psi_poll_worker, group, "psimon"); |
| 1083 | if (IS_ERR(task)) { |
| 1084 | kfree(t); |
| 1085 | mutex_unlock(&group->trigger_lock); |
| 1086 | return ERR_CAST(task); |
| 1087 | } |
| 1088 | atomic_set(&group->poll_wakeup, 0); |
| 1089 | wake_up_process(task); |
| 1090 | rcu_assign_pointer(group->poll_task, task); |
| 1091 | } |
| 1092 | |
| 1093 | list_add(&t->node, &group->triggers); |
| 1094 | group->poll_min_period = min(group->poll_min_period, |
| 1095 | div_u64(t->win.size, UPDATES_PER_WINDOW)); |
| 1096 | group->nr_triggers[t->state]++; |
| 1097 | group->poll_states |= (1 << t->state); |
| 1098 | |
| 1099 | mutex_unlock(&group->trigger_lock); |
| 1100 | |
| 1101 | return t; |
| 1102 | } |
| 1103 | |
| 1104 | void psi_trigger_destroy(struct psi_trigger *t) |
| 1105 | { |
| 1106 | struct psi_group *group; |
| 1107 | struct task_struct *task_to_destroy = NULL; |
| 1108 | |
| 1109 | /* |
| 1110 | * We do not check psi_disabled since it might have been disabled after |
| 1111 | * the trigger got created. |
| 1112 | */ |
| 1113 | if (!t) |
| 1114 | return; |
| 1115 | |
| 1116 | group = t->group; |
| 1117 | /* |
| 1118 | * Wakeup waiters to stop polling and clear the queue to prevent it from |
| 1119 | * being accessed later. Can happen if cgroup is deleted from under a |
| 1120 | * polling process. |
| 1121 | */ |
| 1122 | wake_up_pollfree(&t->event_wait); |
| 1123 | |
| 1124 | mutex_lock(&group->trigger_lock); |
| 1125 | |
| 1126 | if (!list_empty(&t->node)) { |
| 1127 | struct psi_trigger *tmp; |
| 1128 | u64 period = ULLONG_MAX; |
| 1129 | |
| 1130 | list_del(&t->node); |
| 1131 | group->nr_triggers[t->state]--; |
| 1132 | if (!group->nr_triggers[t->state]) |
| 1133 | group->poll_states &= ~(1 << t->state); |
| 1134 | /* reset min update period for the remaining triggers */ |
| 1135 | list_for_each_entry(tmp, &group->triggers, node) |
| 1136 | period = min(period, div_u64(tmp->win.size, |
| 1137 | UPDATES_PER_WINDOW)); |
| 1138 | group->poll_min_period = period; |
| 1139 | /* Destroy poll_task when the last trigger is destroyed */ |
| 1140 | if (group->poll_states == 0) { |
| 1141 | group->polling_until = 0; |
| 1142 | task_to_destroy = rcu_dereference_protected( |
| 1143 | group->poll_task, |
| 1144 | lockdep_is_held(&group->trigger_lock)); |
| 1145 | rcu_assign_pointer(group->poll_task, NULL); |
| 1146 | del_timer(&group->poll_timer); |
| 1147 | } |
| 1148 | } |
| 1149 | |
| 1150 | mutex_unlock(&group->trigger_lock); |
| 1151 | |
| 1152 | /* |
| 1153 | * Wait for psi_schedule_poll_work RCU to complete its read-side |
| 1154 | * critical section before destroying the trigger and optionally the |
| 1155 | * poll_task. |
| 1156 | */ |
| 1157 | synchronize_rcu(); |
| 1158 | /* |
| 1159 | * Stop kthread 'psimon' after releasing trigger_lock to prevent a |
| 1160 | * deadlock while waiting for psi_poll_work to acquire trigger_lock |
| 1161 | */ |
| 1162 | if (task_to_destroy) { |
| 1163 | /* |
| 1164 | * After the RCU grace period has expired, the worker |
| 1165 | * can no longer be found through group->poll_task. |
| 1166 | */ |
| 1167 | kthread_stop(task_to_destroy); |
| 1168 | } |
| 1169 | kfree(t); |
| 1170 | } |
| 1171 | |
| 1172 | __poll_t psi_trigger_poll(void **trigger_ptr, |
| 1173 | struct file *file, poll_table *wait) |
| 1174 | { |
| 1175 | __poll_t ret = DEFAULT_POLLMASK; |
| 1176 | struct psi_trigger *t; |
| 1177 | |
| 1178 | if (static_branch_likely(&psi_disabled)) |
| 1179 | return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; |
| 1180 | t = smp_load_acquire(trigger_ptr); |
| 1181 | if (!t) |
| 1182 | return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; |
| 1183 | |
| 1184 | poll_wait(file, &t->event_wait, wait); |
| 1185 | |
| 1186 | if (cmpxchg(&t->event, 1, 0) == 1) |
| 1187 | ret |= EPOLLPRI; |
| 1188 | |
| 1189 | return ret; |
| 1190 | } |
| 1191 | |
| 1192 | static ssize_t psi_write(struct file *file, const char __user *user_buf, |
| 1193 | size_t nbytes, enum psi_res res) |
| 1194 | { |
| 1195 | char buf[32]; |
| 1196 | size_t buf_size; |
| 1197 | struct seq_file *seq; |
| 1198 | struct psi_trigger *new; |
| 1199 | |
| 1200 | if (static_branch_likely(&psi_disabled)) |
| 1201 | return -EOPNOTSUPP; |
| 1202 | |
| 1203 | if (!nbytes) |
| 1204 | return -EINVAL; |
| 1205 | |
| 1206 | buf_size = min(nbytes, sizeof(buf)); |
| 1207 | if (copy_from_user(buf, user_buf, buf_size)) |
| 1208 | return -EFAULT; |
| 1209 | |
| 1210 | buf[buf_size - 1] = '\0'; |
| 1211 | |
| 1212 | seq = file->private_data; |
| 1213 | |
| 1214 | /* Take seq->lock to protect seq->private from concurrent writes */ |
| 1215 | mutex_lock(&seq->lock); |
| 1216 | |
| 1217 | /* Allow only one trigger per file descriptor */ |
| 1218 | if (seq->private) { |
| 1219 | mutex_unlock(&seq->lock); |
| 1220 | return -EBUSY; |
| 1221 | } |
| 1222 | |
| 1223 | new = psi_trigger_create(&psi_system, buf, nbytes, res); |
| 1224 | if (IS_ERR(new)) { |
| 1225 | mutex_unlock(&seq->lock); |
| 1226 | return PTR_ERR(new); |
| 1227 | } |
| 1228 | |
| 1229 | smp_store_release(&seq->private, new); |
| 1230 | mutex_unlock(&seq->lock); |
| 1231 | |
| 1232 | return nbytes; |
| 1233 | } |
| 1234 | |
| 1235 | static ssize_t psi_io_write(struct file *file, const char __user *user_buf, |
| 1236 | size_t nbytes, loff_t *ppos) |
| 1237 | { |
| 1238 | return psi_write(file, user_buf, nbytes, PSI_IO); |
| 1239 | } |
| 1240 | |
| 1241 | static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, |
| 1242 | size_t nbytes, loff_t *ppos) |
| 1243 | { |
| 1244 | return psi_write(file, user_buf, nbytes, PSI_MEM); |
| 1245 | } |
| 1246 | |
| 1247 | static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, |
| 1248 | size_t nbytes, loff_t *ppos) |
| 1249 | { |
| 1250 | return psi_write(file, user_buf, nbytes, PSI_CPU); |
| 1251 | } |
| 1252 | |
| 1253 | static __poll_t psi_fop_poll(struct file *file, poll_table *wait) |
| 1254 | { |
| 1255 | struct seq_file *seq = file->private_data; |
| 1256 | |
| 1257 | return psi_trigger_poll(&seq->private, file, wait); |
| 1258 | } |
| 1259 | |
| 1260 | static int psi_fop_release(struct inode *inode, struct file *file) |
| 1261 | { |
| 1262 | struct seq_file *seq = file->private_data; |
| 1263 | |
| 1264 | psi_trigger_destroy(seq->private); |
| 1265 | return single_release(inode, file); |
| 1266 | } |
| 1267 | |
| 1268 | static const struct file_operations psi_io_fops = { |
| 1269 | .open = psi_io_open, |
| 1270 | .read = seq_read, |
| 1271 | .llseek = seq_lseek, |
| 1272 | .write = psi_io_write, |
| 1273 | .poll = psi_fop_poll, |
| 1274 | .release = psi_fop_release, |
| 1275 | }; |
| 1276 | |
| 1277 | static const struct file_operations psi_memory_fops = { |
| 1278 | .open = psi_memory_open, |
| 1279 | .read = seq_read, |
| 1280 | .llseek = seq_lseek, |
| 1281 | .write = psi_memory_write, |
| 1282 | .poll = psi_fop_poll, |
| 1283 | .release = psi_fop_release, |
| 1284 | }; |
| 1285 | |
| 1286 | static const struct file_operations psi_cpu_fops = { |
| 1287 | .open = psi_cpu_open, |
| 1288 | .read = seq_read, |
| 1289 | .llseek = seq_lseek, |
| 1290 | .write = psi_cpu_write, |
| 1291 | .poll = psi_fop_poll, |
| 1292 | .release = psi_fop_release, |
| 1293 | }; |
| 1294 | |
| 1295 | static int __init psi_proc_init(void) |
| 1296 | { |
| 1297 | proc_mkdir("pressure", NULL); |
| 1298 | proc_create("pressure/io", 0, NULL, &psi_io_fops); |
| 1299 | proc_create("pressure/memory", 0, NULL, &psi_memory_fops); |
| 1300 | proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops); |
| 1301 | return 0; |
| 1302 | } |
| 1303 | module_init(psi_proc_init); |