blob: 980d090e5080599b11b74caca6d5249213b0e752 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/cache.h>
14#include <linux/compiler.h>
15#include <linux/kfence.h>
16#include <linux/module.h>
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
19#include <linux/seq_file.h>
20#include <linux/proc_fs.h>
21#include <linux/debugfs.h>
22#include <asm/cacheflush.h>
23#include <asm/tlbflush.h>
24#include <asm/page.h>
25#include <linux/memcontrol.h>
26
27#define CREATE_TRACE_POINTS
28#include <trace/events/kmem.h>
29
30#include "slab.h"
31
32enum slab_state slab_state;
33LIST_HEAD(slab_caches);
34DEFINE_MUTEX(slab_mutex);
35struct kmem_cache *kmem_cache;
36
37#ifdef CONFIG_HARDENED_USERCOPY
38bool usercopy_fallback __ro_after_init =
39 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
40module_param(usercopy_fallback, bool, 0400);
41MODULE_PARM_DESC(usercopy_fallback,
42 "WARN instead of reject usercopy whitelist violations");
43#endif
44
45static LIST_HEAD(slab_caches_to_rcu_destroy);
46static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
47static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
48 slab_caches_to_rcu_destroy_workfn);
49
50/*
51 * Set of flags that will prevent slab merging
52 */
53#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
54 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
55 SLAB_FAILSLAB | SLAB_KASAN)
56
57#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
58 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
59
60/*
61 * Merge control. If this is set then no merging of slab caches will occur.
62 */
63static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
64
65static int __init setup_slab_nomerge(char *str)
66{
67 slab_nomerge = true;
68 return 1;
69}
70
71#ifdef CONFIG_SLUB
72__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
73#endif
74
75__setup("slab_nomerge", setup_slab_nomerge);
76
77/*
78 * Determine the size of a slab object
79 */
80unsigned int kmem_cache_size(struct kmem_cache *s)
81{
82 return s->object_size;
83}
84EXPORT_SYMBOL(kmem_cache_size);
85
86#ifdef CONFIG_DEBUG_VM
87static int kmem_cache_sanity_check(const char *name, unsigned int size)
88{
89 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
90 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
91 return -EINVAL;
92 }
93
94 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
95 return 0;
96}
97#else
98static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99{
100 return 0;
101}
102#endif
103
104void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105{
106 size_t i;
107
108 for (i = 0; i < nr; i++) {
109 if (s)
110 kmem_cache_free(s, p[i]);
111 else
112 kfree(p[i]);
113 }
114}
115
116int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
117 void **p)
118{
119 size_t i;
120
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
125 return 0;
126 }
127 }
128 return i;
129}
130
131#ifdef CONFIG_MEMCG_KMEM
132
133LIST_HEAD(slab_root_caches);
134static DEFINE_SPINLOCK(memcg_kmem_wq_lock);
135
136static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref);
137
138void slab_init_memcg_params(struct kmem_cache *s)
139{
140 s->memcg_params.root_cache = NULL;
141 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
142 INIT_LIST_HEAD(&s->memcg_params.children);
143 s->memcg_params.dying = false;
144}
145
146static int init_memcg_params(struct kmem_cache *s,
147 struct kmem_cache *root_cache)
148{
149 struct memcg_cache_array *arr;
150
151 if (root_cache) {
152 int ret = percpu_ref_init(&s->memcg_params.refcnt,
153 kmemcg_cache_shutdown,
154 0, GFP_KERNEL);
155 if (ret)
156 return ret;
157
158 s->memcg_params.root_cache = root_cache;
159 INIT_LIST_HEAD(&s->memcg_params.children_node);
160 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
161 return 0;
162 }
163
164 slab_init_memcg_params(s);
165
166 if (!memcg_nr_cache_ids)
167 return 0;
168
169 arr = kvzalloc(sizeof(struct memcg_cache_array) +
170 memcg_nr_cache_ids * sizeof(void *),
171 GFP_KERNEL);
172 if (!arr)
173 return -ENOMEM;
174
175 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
176 return 0;
177}
178
179static void destroy_memcg_params(struct kmem_cache *s)
180{
181 if (is_root_cache(s)) {
182 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
183 } else {
184 mem_cgroup_put(s->memcg_params.memcg);
185 WRITE_ONCE(s->memcg_params.memcg, NULL);
186 percpu_ref_exit(&s->memcg_params.refcnt);
187 }
188}
189
190static void free_memcg_params(struct rcu_head *rcu)
191{
192 struct memcg_cache_array *old;
193
194 old = container_of(rcu, struct memcg_cache_array, rcu);
195 kvfree(old);
196}
197
198static int update_memcg_params(struct kmem_cache *s, int new_array_size)
199{
200 struct memcg_cache_array *old, *new;
201
202 new = kvzalloc(sizeof(struct memcg_cache_array) +
203 new_array_size * sizeof(void *), GFP_KERNEL);
204 if (!new)
205 return -ENOMEM;
206
207 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
208 lockdep_is_held(&slab_mutex));
209 if (old)
210 memcpy(new->entries, old->entries,
211 memcg_nr_cache_ids * sizeof(void *));
212
213 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
214 if (old)
215 call_rcu(&old->rcu, free_memcg_params);
216 return 0;
217}
218
219int memcg_update_all_caches(int num_memcgs)
220{
221 struct kmem_cache *s;
222 int ret = 0;
223
224 mutex_lock(&slab_mutex);
225 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
226 ret = update_memcg_params(s, num_memcgs);
227 /*
228 * Instead of freeing the memory, we'll just leave the caches
229 * up to this point in an updated state.
230 */
231 if (ret)
232 break;
233 }
234 mutex_unlock(&slab_mutex);
235 return ret;
236}
237
238void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg)
239{
240 if (is_root_cache(s)) {
241 list_add(&s->root_caches_node, &slab_root_caches);
242 } else {
243 css_get(&memcg->css);
244 s->memcg_params.memcg = memcg;
245 list_add(&s->memcg_params.children_node,
246 &s->memcg_params.root_cache->memcg_params.children);
247 list_add(&s->memcg_params.kmem_caches_node,
248 &s->memcg_params.memcg->kmem_caches);
249 }
250}
251
252static void memcg_unlink_cache(struct kmem_cache *s)
253{
254 if (is_root_cache(s)) {
255 list_del(&s->root_caches_node);
256 } else {
257 list_del(&s->memcg_params.children_node);
258 list_del(&s->memcg_params.kmem_caches_node);
259 }
260}
261#else
262static inline int init_memcg_params(struct kmem_cache *s,
263 struct kmem_cache *root_cache)
264{
265 return 0;
266}
267
268static inline void destroy_memcg_params(struct kmem_cache *s)
269{
270}
271
272static inline void memcg_unlink_cache(struct kmem_cache *s)
273{
274}
275#endif /* CONFIG_MEMCG_KMEM */
276
277/*
278 * Figure out what the alignment of the objects will be given a set of
279 * flags, a user specified alignment and the size of the objects.
280 */
281static unsigned int calculate_alignment(slab_flags_t flags,
282 unsigned int align, unsigned int size)
283{
284 /*
285 * If the user wants hardware cache aligned objects then follow that
286 * suggestion if the object is sufficiently large.
287 *
288 * The hardware cache alignment cannot override the specified
289 * alignment though. If that is greater then use it.
290 */
291 if (flags & SLAB_HWCACHE_ALIGN) {
292 unsigned int ralign;
293
294 ralign = cache_line_size();
295 while (size <= ralign / 2)
296 ralign /= 2;
297 align = max(align, ralign);
298 }
299
300 if (align < ARCH_SLAB_MINALIGN)
301 align = ARCH_SLAB_MINALIGN;
302
303 return ALIGN(align, sizeof(void *));
304}
305
306/*
307 * Find a mergeable slab cache
308 */
309int slab_unmergeable(struct kmem_cache *s)
310{
311 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
312 return 1;
313
314 if (!is_root_cache(s))
315 return 1;
316
317 if (s->ctor)
318 return 1;
319
320 if (s->usersize)
321 return 1;
322
323 /*
324 * We may have set a slab to be unmergeable during bootstrap.
325 */
326 if (s->refcount < 0)
327 return 1;
328
329 return 0;
330}
331
332struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
333 slab_flags_t flags, const char *name, void (*ctor)(void *))
334{
335 struct kmem_cache *s;
336
337 if (slab_nomerge)
338 return NULL;
339
340 if (ctor)
341 return NULL;
342
343 size = ALIGN(size, sizeof(void *));
344 align = calculate_alignment(flags, align, size);
345 size = ALIGN(size, align);
346 flags = kmem_cache_flags(size, flags, name, NULL);
347
348 if (flags & SLAB_NEVER_MERGE)
349 return NULL;
350
351 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
352 if (slab_unmergeable(s))
353 continue;
354
355 if (size > s->size)
356 continue;
357
358 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
359 continue;
360 /*
361 * Check if alignment is compatible.
362 * Courtesy of Adrian Drzewiecki
363 */
364 if ((s->size & ~(align - 1)) != s->size)
365 continue;
366
367 if (s->size - size >= sizeof(void *))
368 continue;
369
370 if (IS_ENABLED(CONFIG_SLAB) && align &&
371 (align > s->align || s->align % align))
372 continue;
373
374 return s;
375 }
376 return NULL;
377}
378
379static struct kmem_cache *create_cache(const char *name,
380 unsigned int object_size, unsigned int align,
381 slab_flags_t flags, unsigned int useroffset,
382 unsigned int usersize, void (*ctor)(void *),
383 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
384{
385 struct kmem_cache *s;
386 int err;
387
388 if (WARN_ON(useroffset + usersize > object_size))
389 useroffset = usersize = 0;
390
391 err = -ENOMEM;
392 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
393 if (!s)
394 goto out;
395
396 s->name = name;
397 s->size = s->object_size = object_size;
398 s->align = align;
399 s->ctor = ctor;
400 s->useroffset = useroffset;
401 s->usersize = usersize;
402
403 err = init_memcg_params(s, root_cache);
404 if (err)
405 goto out_free_cache;
406
407 err = __kmem_cache_create(s, flags);
408 if (err)
409 goto out_free_cache;
410
411 s->refcount = 1;
412 list_add(&s->list, &slab_caches);
413 memcg_link_cache(s, memcg);
414out:
415 if (err)
416 return ERR_PTR(err);
417 return s;
418
419out_free_cache:
420 destroy_memcg_params(s);
421 kmem_cache_free(kmem_cache, s);
422 goto out;
423}
424
425/**
426 * kmem_cache_create_usercopy - Create a cache with a region suitable
427 * for copying to userspace
428 * @name: A string which is used in /proc/slabinfo to identify this cache.
429 * @size: The size of objects to be created in this cache.
430 * @align: The required alignment for the objects.
431 * @flags: SLAB flags
432 * @useroffset: Usercopy region offset
433 * @usersize: Usercopy region size
434 * @ctor: A constructor for the objects.
435 *
436 * Cannot be called within a interrupt, but can be interrupted.
437 * The @ctor is run when new pages are allocated by the cache.
438 *
439 * The flags are
440 *
441 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
442 * to catch references to uninitialised memory.
443 *
444 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
445 * for buffer overruns.
446 *
447 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
448 * cacheline. This can be beneficial if you're counting cycles as closely
449 * as davem.
450 *
451 * Return: a pointer to the cache on success, NULL on failure.
452 */
453struct kmem_cache *
454kmem_cache_create_usercopy(const char *name,
455 unsigned int size, unsigned int align,
456 slab_flags_t flags,
457 unsigned int useroffset, unsigned int usersize,
458 void (*ctor)(void *))
459{
460 struct kmem_cache *s = NULL;
461 const char *cache_name;
462 int err;
463
464 get_online_cpus();
465 get_online_mems();
466 memcg_get_cache_ids();
467
468 mutex_lock(&slab_mutex);
469
470 err = kmem_cache_sanity_check(name, size);
471 if (err) {
472 goto out_unlock;
473 }
474
475 /* Refuse requests with allocator specific flags */
476 if (flags & ~SLAB_FLAGS_PERMITTED) {
477 err = -EINVAL;
478 goto out_unlock;
479 }
480
481 /*
482 * Some allocators will constraint the set of valid flags to a subset
483 * of all flags. We expect them to define CACHE_CREATE_MASK in this
484 * case, and we'll just provide them with a sanitized version of the
485 * passed flags.
486 */
487 flags &= CACHE_CREATE_MASK;
488
489 /* Fail closed on bad usersize of useroffset values. */
490 if (WARN_ON(!usersize && useroffset) ||
491 WARN_ON(size < usersize || size - usersize < useroffset))
492 usersize = useroffset = 0;
493
494 if (!usersize)
495 s = __kmem_cache_alias(name, size, align, flags, ctor);
496 if (s)
497 goto out_unlock;
498
499 cache_name = kstrdup_const(name, GFP_KERNEL);
500 if (!cache_name) {
501 err = -ENOMEM;
502 goto out_unlock;
503 }
504
505 s = create_cache(cache_name, size,
506 calculate_alignment(flags, align, size),
507 flags, useroffset, usersize, ctor, NULL, NULL);
508 if (IS_ERR(s)) {
509 err = PTR_ERR(s);
510 kfree_const(cache_name);
511 }
512
513out_unlock:
514 mutex_unlock(&slab_mutex);
515
516 memcg_put_cache_ids();
517 put_online_mems();
518 put_online_cpus();
519
520 if (err) {
521 if (flags & SLAB_PANIC)
522 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
523 name, err);
524 else {
525 pr_warn("kmem_cache_create(%s) failed with error %d\n",
526 name, err);
527 dump_stack();
528 }
529 return NULL;
530 }
531 return s;
532}
533EXPORT_SYMBOL(kmem_cache_create_usercopy);
534
535/**
536 * kmem_cache_create - Create a cache.
537 * @name: A string which is used in /proc/slabinfo to identify this cache.
538 * @size: The size of objects to be created in this cache.
539 * @align: The required alignment for the objects.
540 * @flags: SLAB flags
541 * @ctor: A constructor for the objects.
542 *
543 * Cannot be called within a interrupt, but can be interrupted.
544 * The @ctor is run when new pages are allocated by the cache.
545 *
546 * The flags are
547 *
548 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
549 * to catch references to uninitialised memory.
550 *
551 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
552 * for buffer overruns.
553 *
554 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
555 * cacheline. This can be beneficial if you're counting cycles as closely
556 * as davem.
557 *
558 * Return: a pointer to the cache on success, NULL on failure.
559 */
560struct kmem_cache *
561kmem_cache_create(const char *name, unsigned int size, unsigned int align,
562 slab_flags_t flags, void (*ctor)(void *))
563{
564 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
565 ctor);
566}
567EXPORT_SYMBOL(kmem_cache_create);
568
569static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
570{
571 LIST_HEAD(to_destroy);
572 struct kmem_cache *s, *s2;
573
574 /*
575 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
576 * @slab_caches_to_rcu_destroy list. The slab pages are freed
577 * through RCU and and the associated kmem_cache are dereferenced
578 * while freeing the pages, so the kmem_caches should be freed only
579 * after the pending RCU operations are finished. As rcu_barrier()
580 * is a pretty slow operation, we batch all pending destructions
581 * asynchronously.
582 */
583 mutex_lock(&slab_mutex);
584 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
585 mutex_unlock(&slab_mutex);
586
587 if (list_empty(&to_destroy))
588 return;
589
590 rcu_barrier();
591
592 list_for_each_entry_safe(s, s2, &to_destroy, list) {
593 kfence_shutdown_cache(s);
594#ifdef SLAB_SUPPORTS_SYSFS
595 sysfs_slab_release(s);
596#else
597 slab_kmem_cache_release(s);
598#endif
599 }
600}
601
602static int shutdown_cache(struct kmem_cache *s)
603{
604 /* free asan quarantined objects */
605 kasan_cache_shutdown(s);
606
607 if (__kmem_cache_shutdown(s) != 0)
608 return -EBUSY;
609
610 memcg_unlink_cache(s);
611 list_del(&s->list);
612
613 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
614#ifdef SLAB_SUPPORTS_SYSFS
615 sysfs_slab_unlink(s);
616#endif
617 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
618 schedule_work(&slab_caches_to_rcu_destroy_work);
619 } else {
620 kfence_shutdown_cache(s);
621#ifdef SLAB_SUPPORTS_SYSFS
622 sysfs_slab_unlink(s);
623 sysfs_slab_release(s);
624#else
625 slab_kmem_cache_release(s);
626#endif
627 }
628
629 return 0;
630}
631
632#ifdef CONFIG_MEMCG_KMEM
633/*
634 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
635 * @memcg: The memory cgroup the new cache is for.
636 * @root_cache: The parent of the new cache.
637 *
638 * This function attempts to create a kmem cache that will serve allocation
639 * requests going from @memcg to @root_cache. The new cache inherits properties
640 * from its parent.
641 */
642void memcg_create_kmem_cache(struct mem_cgroup *memcg,
643 struct kmem_cache *root_cache)
644{
645 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
646 struct cgroup_subsys_state *css = &memcg->css;
647 struct memcg_cache_array *arr;
648 struct kmem_cache *s = NULL;
649 char *cache_name;
650 int idx;
651
652 get_online_cpus();
653 get_online_mems();
654
655 mutex_lock(&slab_mutex);
656
657 /*
658 * The memory cgroup could have been offlined while the cache
659 * creation work was pending.
660 */
661 if (memcg->kmem_state != KMEM_ONLINE)
662 goto out_unlock;
663
664 idx = memcg_cache_id(memcg);
665 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
666 lockdep_is_held(&slab_mutex));
667
668 /*
669 * Since per-memcg caches are created asynchronously on first
670 * allocation (see memcg_kmem_get_cache()), several threads can try to
671 * create the same cache, but only one of them may succeed.
672 */
673 if (arr->entries[idx])
674 goto out_unlock;
675
676 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
677 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
678 css->serial_nr, memcg_name_buf);
679 if (!cache_name)
680 goto out_unlock;
681
682 s = create_cache(cache_name, root_cache->object_size,
683 root_cache->align,
684 root_cache->flags & CACHE_CREATE_MASK,
685 root_cache->useroffset, root_cache->usersize,
686 root_cache->ctor, memcg, root_cache);
687 /*
688 * If we could not create a memcg cache, do not complain, because
689 * that's not critical at all as we can always proceed with the root
690 * cache.
691 */
692 if (IS_ERR(s)) {
693 kfree(cache_name);
694 goto out_unlock;
695 }
696
697 /*
698 * Since readers won't lock (see memcg_kmem_get_cache()), we need a
699 * barrier here to ensure nobody will see the kmem_cache partially
700 * initialized.
701 */
702 smp_wmb();
703 arr->entries[idx] = s;
704
705out_unlock:
706 mutex_unlock(&slab_mutex);
707
708 put_online_mems();
709 put_online_cpus();
710}
711
712static void kmemcg_workfn(struct work_struct *work)
713{
714 struct kmem_cache *s = container_of(work, struct kmem_cache,
715 memcg_params.work);
716
717 get_online_cpus();
718 get_online_mems();
719
720 mutex_lock(&slab_mutex);
721 s->memcg_params.work_fn(s);
722 mutex_unlock(&slab_mutex);
723
724 put_online_mems();
725 put_online_cpus();
726}
727
728static void kmemcg_rcufn(struct rcu_head *head)
729{
730 struct kmem_cache *s = container_of(head, struct kmem_cache,
731 memcg_params.rcu_head);
732
733 /*
734 * We need to grab blocking locks. Bounce to ->work. The
735 * work item shares the space with the RCU head and can't be
736 * initialized eariler.
737 */
738 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
739 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
740}
741
742static void kmemcg_cache_shutdown_fn(struct kmem_cache *s)
743{
744 WARN_ON(shutdown_cache(s));
745}
746
747static void kmemcg_cache_shutdown(struct percpu_ref *percpu_ref)
748{
749 struct kmem_cache *s = container_of(percpu_ref, struct kmem_cache,
750 memcg_params.refcnt);
751 unsigned long flags;
752
753 spin_lock_irqsave(&memcg_kmem_wq_lock, flags);
754 if (s->memcg_params.root_cache->memcg_params.dying)
755 goto unlock;
756
757 s->memcg_params.work_fn = kmemcg_cache_shutdown_fn;
758 INIT_WORK(&s->memcg_params.work, kmemcg_workfn);
759 queue_work(memcg_kmem_cache_wq, &s->memcg_params.work);
760
761unlock:
762 spin_unlock_irqrestore(&memcg_kmem_wq_lock, flags);
763}
764
765static void kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
766{
767 __kmemcg_cache_deactivate_after_rcu(s);
768 percpu_ref_kill(&s->memcg_params.refcnt);
769}
770
771static void kmemcg_cache_deactivate(struct kmem_cache *s)
772{
773 if (WARN_ON_ONCE(is_root_cache(s)))
774 return;
775
776 __kmemcg_cache_deactivate(s);
777 s->flags |= SLAB_DEACTIVATED;
778
779 /*
780 * memcg_kmem_wq_lock is used to synchronize memcg_params.dying
781 * flag and make sure that no new kmem_cache deactivation tasks
782 * are queued (see flush_memcg_workqueue() ).
783 */
784 spin_lock_irq(&memcg_kmem_wq_lock);
785 if (s->memcg_params.root_cache->memcg_params.dying)
786 goto unlock;
787
788 s->memcg_params.work_fn = kmemcg_cache_deactivate_after_rcu;
789 call_rcu(&s->memcg_params.rcu_head, kmemcg_rcufn);
790unlock:
791 spin_unlock_irq(&memcg_kmem_wq_lock);
792}
793
794void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg,
795 struct mem_cgroup *parent)
796{
797 int idx;
798 struct memcg_cache_array *arr;
799 struct kmem_cache *s, *c;
800 unsigned int nr_reparented;
801
802 idx = memcg_cache_id(memcg);
803
804 get_online_cpus();
805 get_online_mems();
806
807 mutex_lock(&slab_mutex);
808 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
809 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
810 lockdep_is_held(&slab_mutex));
811 c = arr->entries[idx];
812 if (!c)
813 continue;
814
815 kmemcg_cache_deactivate(c);
816 arr->entries[idx] = NULL;
817 }
818 nr_reparented = 0;
819 list_for_each_entry(s, &memcg->kmem_caches,
820 memcg_params.kmem_caches_node) {
821 WRITE_ONCE(s->memcg_params.memcg, parent);
822 css_put(&memcg->css);
823 nr_reparented++;
824 }
825 if (nr_reparented) {
826 list_splice_init(&memcg->kmem_caches,
827 &parent->kmem_caches);
828 css_get_many(&parent->css, nr_reparented);
829 }
830 mutex_unlock(&slab_mutex);
831
832 put_online_mems();
833 put_online_cpus();
834}
835
836static int shutdown_memcg_caches(struct kmem_cache *s)
837{
838 struct memcg_cache_array *arr;
839 struct kmem_cache *c, *c2;
840 LIST_HEAD(busy);
841 int i;
842
843 BUG_ON(!is_root_cache(s));
844
845 /*
846 * First, shutdown active caches, i.e. caches that belong to online
847 * memory cgroups.
848 */
849 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
850 lockdep_is_held(&slab_mutex));
851 for_each_memcg_cache_index(i) {
852 c = arr->entries[i];
853 if (!c)
854 continue;
855 if (shutdown_cache(c))
856 /*
857 * The cache still has objects. Move it to a temporary
858 * list so as not to try to destroy it for a second
859 * time while iterating over inactive caches below.
860 */
861 list_move(&c->memcg_params.children_node, &busy);
862 else
863 /*
864 * The cache is empty and will be destroyed soon. Clear
865 * the pointer to it in the memcg_caches array so that
866 * it will never be accessed even if the root cache
867 * stays alive.
868 */
869 arr->entries[i] = NULL;
870 }
871
872 /*
873 * Second, shutdown all caches left from memory cgroups that are now
874 * offline.
875 */
876 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
877 memcg_params.children_node)
878 shutdown_cache(c);
879
880 list_splice(&busy, &s->memcg_params.children);
881
882 /*
883 * A cache being destroyed must be empty. In particular, this means
884 * that all per memcg caches attached to it must be empty too.
885 */
886 if (!list_empty(&s->memcg_params.children))
887 return -EBUSY;
888 return 0;
889}
890
891static void memcg_set_kmem_cache_dying(struct kmem_cache *s)
892{
893 spin_lock_irq(&memcg_kmem_wq_lock);
894 s->memcg_params.dying = true;
895 spin_unlock_irq(&memcg_kmem_wq_lock);
896}
897
898static void flush_memcg_workqueue(struct kmem_cache *s)
899{
900 /*
901 * SLAB and SLUB deactivate the kmem_caches through call_rcu. Make
902 * sure all registered rcu callbacks have been invoked.
903 */
904 rcu_barrier();
905
906 /*
907 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
908 * deactivates the memcg kmem_caches through workqueue. Make sure all
909 * previous workitems on workqueue are processed.
910 */
911 if (likely(memcg_kmem_cache_wq))
912 flush_workqueue(memcg_kmem_cache_wq);
913
914 /*
915 * If we're racing with children kmem_cache deactivation, it might
916 * take another rcu grace period to complete their destruction.
917 * At this moment the corresponding percpu_ref_kill() call should be
918 * done, but it might take another rcu grace period to complete
919 * switching to the atomic mode.
920 * Please, note that we check without grabbing the slab_mutex. It's safe
921 * because at this moment the children list can't grow.
922 */
923 if (!list_empty(&s->memcg_params.children))
924 rcu_barrier();
925}
926#else
927static inline int shutdown_memcg_caches(struct kmem_cache *s)
928{
929 return 0;
930}
931#endif /* CONFIG_MEMCG_KMEM */
932
933void slab_kmem_cache_release(struct kmem_cache *s)
934{
935 __kmem_cache_release(s);
936 destroy_memcg_params(s);
937 kfree_const(s->name);
938 kmem_cache_free(kmem_cache, s);
939}
940
941void kmem_cache_destroy(struct kmem_cache *s)
942{
943 int err;
944
945 if (unlikely(!s))
946 return;
947
948 get_online_cpus();
949 get_online_mems();
950
951 mutex_lock(&slab_mutex);
952
953 s->refcount--;
954 if (s->refcount)
955 goto out_unlock;
956
957#ifdef CONFIG_MEMCG_KMEM
958 memcg_set_kmem_cache_dying(s);
959
960 mutex_unlock(&slab_mutex);
961
962 put_online_mems();
963 put_online_cpus();
964
965 flush_memcg_workqueue(s);
966
967 get_online_cpus();
968 get_online_mems();
969
970 mutex_lock(&slab_mutex);
971
972 /*
973 * Another thread referenced it again
974 */
975 if (READ_ONCE(s->refcount)) {
976 spin_lock_irq(&memcg_kmem_wq_lock);
977 s->memcg_params.dying = false;
978 spin_unlock_irq(&memcg_kmem_wq_lock);
979 goto out_unlock;
980 }
981#endif
982
983 err = shutdown_memcg_caches(s);
984 if (!err)
985 err = shutdown_cache(s);
986
987 if (err) {
988 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
989 s->name);
990 dump_stack();
991 }
992out_unlock:
993 mutex_unlock(&slab_mutex);
994
995 put_online_mems();
996 put_online_cpus();
997}
998EXPORT_SYMBOL(kmem_cache_destroy);
999
1000/**
1001 * kmem_cache_shrink - Shrink a cache.
1002 * @cachep: The cache to shrink.
1003 *
1004 * Releases as many slabs as possible for a cache.
1005 * To help debugging, a zero exit status indicates all slabs were released.
1006 *
1007 * Return: %0 if all slabs were released, non-zero otherwise
1008 */
1009int kmem_cache_shrink(struct kmem_cache *cachep)
1010{
1011 int ret;
1012
1013 get_online_cpus();
1014 get_online_mems();
1015 kasan_cache_shrink(cachep);
1016 ret = __kmem_cache_shrink(cachep);
1017 put_online_mems();
1018 put_online_cpus();
1019 return ret;
1020}
1021EXPORT_SYMBOL(kmem_cache_shrink);
1022
1023/**
1024 * kmem_cache_shrink_all - shrink a cache and all memcg caches for root cache
1025 * @s: The cache pointer
1026 */
1027void kmem_cache_shrink_all(struct kmem_cache *s)
1028{
1029 struct kmem_cache *c;
1030
1031 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || !is_root_cache(s)) {
1032 kmem_cache_shrink(s);
1033 return;
1034 }
1035
1036 get_online_cpus();
1037 get_online_mems();
1038 kasan_cache_shrink(s);
1039 __kmem_cache_shrink(s);
1040
1041 /*
1042 * We have to take the slab_mutex to protect from the memcg list
1043 * modification.
1044 */
1045 mutex_lock(&slab_mutex);
1046 for_each_memcg_cache(c, s) {
1047 /*
1048 * Don't need to shrink deactivated memcg caches.
1049 */
1050 if (s->flags & SLAB_DEACTIVATED)
1051 continue;
1052 kasan_cache_shrink(c);
1053 __kmem_cache_shrink(c);
1054 }
1055 mutex_unlock(&slab_mutex);
1056 put_online_mems();
1057 put_online_cpus();
1058}
1059
1060bool slab_is_available(void)
1061{
1062 return slab_state >= UP;
1063}
1064
1065#ifndef CONFIG_SLOB
1066/* Create a cache during boot when no slab services are available yet */
1067void __init create_boot_cache(struct kmem_cache *s, const char *name,
1068 unsigned int size, slab_flags_t flags,
1069 unsigned int useroffset, unsigned int usersize)
1070{
1071 int err;
1072 unsigned int align = ARCH_KMALLOC_MINALIGN;
1073
1074 s->name = name;
1075 s->size = s->object_size = size;
1076
1077 /*
1078 * For power of two sizes, guarantee natural alignment for kmalloc
1079 * caches, regardless of SL*B debugging options.
1080 */
1081 if (is_power_of_2(size))
1082 align = max(align, size);
1083 s->align = calculate_alignment(flags, align, size);
1084
1085 s->useroffset = useroffset;
1086 s->usersize = usersize;
1087
1088 slab_init_memcg_params(s);
1089
1090 err = __kmem_cache_create(s, flags);
1091
1092 if (err)
1093 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
1094 name, size, err);
1095
1096 s->refcount = -1; /* Exempt from merging for now */
1097}
1098
1099struct kmem_cache *__init create_kmalloc_cache(const char *name,
1100 unsigned int size, slab_flags_t flags,
1101 unsigned int useroffset, unsigned int usersize)
1102{
1103 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
1104
1105 if (!s)
1106 panic("Out of memory when creating slab %s\n", name);
1107
1108 create_boot_cache(s, name, size, flags, useroffset, usersize);
1109 list_add(&s->list, &slab_caches);
1110 memcg_link_cache(s, NULL);
1111 s->refcount = 1;
1112 return s;
1113}
1114
1115struct kmem_cache *
1116kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
1117{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
1118EXPORT_SYMBOL(kmalloc_caches);
1119
1120/*
1121 * Conversion table for small slabs sizes / 8 to the index in the
1122 * kmalloc array. This is necessary for slabs < 192 since we have non power
1123 * of two cache sizes there. The size of larger slabs can be determined using
1124 * fls.
1125 */
1126static u8 size_index[24] __ro_after_init = {
1127 3, /* 8 */
1128 4, /* 16 */
1129 5, /* 24 */
1130 5, /* 32 */
1131 6, /* 40 */
1132 6, /* 48 */
1133 6, /* 56 */
1134 6, /* 64 */
1135 1, /* 72 */
1136 1, /* 80 */
1137 1, /* 88 */
1138 1, /* 96 */
1139 7, /* 104 */
1140 7, /* 112 */
1141 7, /* 120 */
1142 7, /* 128 */
1143 2, /* 136 */
1144 2, /* 144 */
1145 2, /* 152 */
1146 2, /* 160 */
1147 2, /* 168 */
1148 2, /* 176 */
1149 2, /* 184 */
1150 2 /* 192 */
1151};
1152
1153static inline unsigned int size_index_elem(unsigned int bytes)
1154{
1155 return (bytes - 1) / 8;
1156}
1157
1158/*
1159 * Find the kmem_cache structure that serves a given size of
1160 * allocation
1161 */
1162struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1163{
1164 unsigned int index;
1165
1166 if (size <= 192) {
1167 if (!size)
1168 return ZERO_SIZE_PTR;
1169
1170 index = size_index[size_index_elem(size)];
1171 } else {
1172 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
1173 return NULL;
1174 index = fls(size - 1);
1175 }
1176
1177 return kmalloc_caches[kmalloc_type(flags)][index];
1178}
1179
1180/*
1181 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1182 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1183 * kmalloc-67108864.
1184 */
1185const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1186 {NULL, 0}, {"kmalloc-96", 96},
1187 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1188 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1189 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1190 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1191 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1192 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1193 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1194 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1195 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1196 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1197 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1198 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1199 {"kmalloc-64M", 67108864}
1200};
1201
1202/*
1203 * Patch up the size_index table if we have strange large alignment
1204 * requirements for the kmalloc array. This is only the case for
1205 * MIPS it seems. The standard arches will not generate any code here.
1206 *
1207 * Largest permitted alignment is 256 bytes due to the way we
1208 * handle the index determination for the smaller caches.
1209 *
1210 * Make sure that nothing crazy happens if someone starts tinkering
1211 * around with ARCH_KMALLOC_MINALIGN
1212 */
1213void __init setup_kmalloc_cache_index_table(void)
1214{
1215 unsigned int i;
1216
1217 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1218 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1219
1220 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1221 unsigned int elem = size_index_elem(i);
1222
1223 if (elem >= ARRAY_SIZE(size_index))
1224 break;
1225 size_index[elem] = KMALLOC_SHIFT_LOW;
1226 }
1227
1228 if (KMALLOC_MIN_SIZE >= 64) {
1229 /*
1230 * The 96 byte size cache is not used if the alignment
1231 * is 64 byte.
1232 */
1233 for (i = 64 + 8; i <= 96; i += 8)
1234 size_index[size_index_elem(i)] = 7;
1235
1236 }
1237
1238 if (KMALLOC_MIN_SIZE >= 128) {
1239 /*
1240 * The 192 byte sized cache is not used if the alignment
1241 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1242 * instead.
1243 */
1244 for (i = 128 + 8; i <= 192; i += 8)
1245 size_index[size_index_elem(i)] = 8;
1246 }
1247}
1248
1249static const char *
1250kmalloc_cache_name(const char *prefix, unsigned int size)
1251{
1252
1253 static const char units[3] = "\0kM";
1254 int idx = 0;
1255
1256 while (size >= 1024 && (size % 1024 == 0)) {
1257 size /= 1024;
1258 idx++;
1259 }
1260
1261 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1262}
1263
1264static void __init
1265new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1266{
1267 const char *name;
1268
1269 if (type == KMALLOC_RECLAIM) {
1270 flags |= SLAB_RECLAIM_ACCOUNT;
1271 name = kmalloc_cache_name("kmalloc-rcl",
1272 kmalloc_info[idx].size);
1273 BUG_ON(!name);
1274 } else {
1275 name = kmalloc_info[idx].name;
1276 }
1277
1278 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1279 kmalloc_info[idx].size, flags, 0,
1280 kmalloc_info[idx].size);
1281}
1282
1283/*
1284 * Create the kmalloc array. Some of the regular kmalloc arrays
1285 * may already have been created because they were needed to
1286 * enable allocations for slab creation.
1287 */
1288void __init create_kmalloc_caches(slab_flags_t flags)
1289{
1290 int i, type;
1291
1292 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1293 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1294 if (!kmalloc_caches[type][i])
1295 new_kmalloc_cache(i, type, flags);
1296
1297 /*
1298 * Caches that are not of the two-to-the-power-of size.
1299 * These have to be created immediately after the
1300 * earlier power of two caches
1301 */
1302 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1303 !kmalloc_caches[type][1])
1304 new_kmalloc_cache(1, type, flags);
1305 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1306 !kmalloc_caches[type][2])
1307 new_kmalloc_cache(2, type, flags);
1308 }
1309 }
1310
1311 /* Kmalloc array is now usable */
1312 slab_state = UP;
1313
1314#ifdef CONFIG_ZONE_DMA
1315 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1316 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1317
1318 if (s) {
1319 unsigned int size = kmalloc_size(i);
1320 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1321
1322 BUG_ON(!n);
1323 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1324 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1325 }
1326 }
1327#endif
1328}
1329#endif /* !CONFIG_SLOB */
1330
1331/*
1332 * To avoid unnecessary overhead, we pass through large allocation requests
1333 * directly to the page allocator. We use __GFP_COMP, because we will need to
1334 * know the allocation order to free the pages properly in kfree.
1335 */
1336void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1337{
1338 void *ret = NULL;
1339 struct page *page;
1340
1341 flags |= __GFP_COMP;
1342 page = alloc_pages(flags, order);
1343 if (likely(page)) {
1344 ret = page_address(page);
1345 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
1346 1 << order);
1347 }
1348 ret = kasan_kmalloc_large(ret, size, flags);
1349 /* As ret might get tagged, call kmemleak hook after KASAN. */
1350 kmemleak_alloc(ret, size, 1, flags);
1351 return ret;
1352}
1353EXPORT_SYMBOL(kmalloc_order);
1354
1355#ifdef CONFIG_TRACING
1356void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1357{
1358 void *ret = kmalloc_order(size, flags, order);
1359 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1360 return ret;
1361}
1362EXPORT_SYMBOL(kmalloc_order_trace);
1363#endif
1364
1365#ifdef CONFIG_SLAB_FREELIST_RANDOM
1366/* Randomize a generic freelist */
1367static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1368 unsigned int count)
1369{
1370 unsigned int rand;
1371 unsigned int i;
1372
1373 for (i = 0; i < count; i++)
1374 list[i] = i;
1375
1376 /* Fisher-Yates shuffle */
1377 for (i = count - 1; i > 0; i--) {
1378 rand = prandom_u32_state(state);
1379 rand %= (i + 1);
1380 swap(list[i], list[rand]);
1381 }
1382}
1383
1384/* Create a random sequence per cache */
1385int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1386 gfp_t gfp)
1387{
1388 struct rnd_state state;
1389
1390 if (count < 2 || cachep->random_seq)
1391 return 0;
1392
1393 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1394 if (!cachep->random_seq)
1395 return -ENOMEM;
1396
1397 /* Get best entropy at this stage of boot */
1398 prandom_seed_state(&state, get_random_long());
1399
1400 freelist_randomize(&state, cachep->random_seq, count);
1401 return 0;
1402}
1403
1404/* Destroy the per-cache random freelist sequence */
1405void cache_random_seq_destroy(struct kmem_cache *cachep)
1406{
1407 kfree(cachep->random_seq);
1408 cachep->random_seq = NULL;
1409}
1410#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1411
1412#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1413#ifdef CONFIG_SLAB
1414#define SLABINFO_RIGHTS (0600)
1415#else
1416#define SLABINFO_RIGHTS (0400)
1417#endif
1418
1419static void print_slabinfo_header(struct seq_file *m)
1420{
1421 /*
1422 * Output format version, so at least we can change it
1423 * without _too_ many complaints.
1424 */
1425#ifdef CONFIG_DEBUG_SLAB
1426 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1427#else
1428 seq_puts(m, "slabinfo - version: 2.1\n");
1429#endif
1430 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1431 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1432 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1433#ifdef CONFIG_DEBUG_SLAB
1434 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1435 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1436#endif
1437 seq_putc(m, '\n');
1438}
1439
1440void *slab_start(struct seq_file *m, loff_t *pos)
1441{
1442 mutex_lock(&slab_mutex);
1443 return seq_list_start(&slab_root_caches, *pos);
1444}
1445
1446void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1447{
1448 return seq_list_next(p, &slab_root_caches, pos);
1449}
1450
1451void slab_stop(struct seq_file *m, void *p)
1452{
1453 mutex_unlock(&slab_mutex);
1454}
1455
1456static void
1457memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1458{
1459 struct kmem_cache *c;
1460 struct slabinfo sinfo;
1461
1462 if (!is_root_cache(s))
1463 return;
1464
1465 for_each_memcg_cache(c, s) {
1466 memset(&sinfo, 0, sizeof(sinfo));
1467 get_slabinfo(c, &sinfo);
1468
1469 info->active_slabs += sinfo.active_slabs;
1470 info->num_slabs += sinfo.num_slabs;
1471 info->shared_avail += sinfo.shared_avail;
1472 info->active_objs += sinfo.active_objs;
1473 info->num_objs += sinfo.num_objs;
1474 }
1475}
1476
1477static void cache_show(struct kmem_cache *s, struct seq_file *m)
1478{
1479 struct slabinfo sinfo;
1480
1481 memset(&sinfo, 0, sizeof(sinfo));
1482 get_slabinfo(s, &sinfo);
1483
1484 memcg_accumulate_slabinfo(s, &sinfo);
1485
1486 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1487 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1488 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1489
1490 seq_printf(m, " : tunables %4u %4u %4u",
1491 sinfo.limit, sinfo.batchcount, sinfo.shared);
1492 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1493 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1494 slabinfo_show_stats(m, s);
1495 seq_putc(m, '\n');
1496}
1497
1498static int slab_show(struct seq_file *m, void *p)
1499{
1500 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1501
1502 if (p == slab_root_caches.next)
1503 print_slabinfo_header(m);
1504 cache_show(s, m);
1505 return 0;
1506}
1507
1508void dump_unreclaimable_slab(void)
1509{
1510 struct kmem_cache *s, *s2;
1511 struct slabinfo sinfo;
1512
1513 /*
1514 * Here acquiring slab_mutex is risky since we don't prefer to get
1515 * sleep in oom path. But, without mutex hold, it may introduce a
1516 * risk of crash.
1517 * Use mutex_trylock to protect the list traverse, dump nothing
1518 * without acquiring the mutex.
1519 */
1520 if (!mutex_trylock(&slab_mutex)) {
1521 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1522 return;
1523 }
1524
1525 pr_info("Unreclaimable slab info:\n");
1526 pr_info("Name Used Total\n");
1527
1528 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1529 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1530 continue;
1531
1532 get_slabinfo(s, &sinfo);
1533
1534 if (sinfo.num_objs > 0)
1535 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1536 (sinfo.active_objs * s->size) / 1024,
1537 (sinfo.num_objs * s->size) / 1024);
1538 }
1539 mutex_unlock(&slab_mutex);
1540}
1541
1542#if defined(CONFIG_MEMCG)
1543void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1544{
1545 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1546
1547 mutex_lock(&slab_mutex);
1548 return seq_list_start(&memcg->kmem_caches, *pos);
1549}
1550
1551void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1552{
1553 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1554
1555 return seq_list_next(p, &memcg->kmem_caches, pos);
1556}
1557
1558void memcg_slab_stop(struct seq_file *m, void *p)
1559{
1560 mutex_unlock(&slab_mutex);
1561}
1562
1563int memcg_slab_show(struct seq_file *m, void *p)
1564{
1565 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1566 memcg_params.kmem_caches_node);
1567 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1568
1569 if (p == memcg->kmem_caches.next)
1570 print_slabinfo_header(m);
1571 cache_show(s, m);
1572 return 0;
1573}
1574#endif
1575
1576/*
1577 * slabinfo_op - iterator that generates /proc/slabinfo
1578 *
1579 * Output layout:
1580 * cache-name
1581 * num-active-objs
1582 * total-objs
1583 * object size
1584 * num-active-slabs
1585 * total-slabs
1586 * num-pages-per-slab
1587 * + further values on SMP and with statistics enabled
1588 */
1589static const struct seq_operations slabinfo_op = {
1590 .start = slab_start,
1591 .next = slab_next,
1592 .stop = slab_stop,
1593 .show = slab_show,
1594};
1595
1596static int slabinfo_open(struct inode *inode, struct file *file)
1597{
1598 return seq_open(file, &slabinfo_op);
1599}
1600
1601static const struct file_operations proc_slabinfo_operations = {
1602 .open = slabinfo_open,
1603 .read = seq_read,
1604 .write = slabinfo_write,
1605 .llseek = seq_lseek,
1606 .release = seq_release,
1607};
1608
1609static int __init slab_proc_init(void)
1610{
1611 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1612 &proc_slabinfo_operations);
1613 return 0;
1614}
1615module_init(slab_proc_init);
1616
1617#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_MEMCG_KMEM)
1618/*
1619 * Display information about kmem caches that have child memcg caches.
1620 */
1621static int memcg_slabinfo_show(struct seq_file *m, void *unused)
1622{
1623 struct kmem_cache *s, *c;
1624 struct slabinfo sinfo;
1625
1626 mutex_lock(&slab_mutex);
1627 seq_puts(m, "# <name> <css_id[:dead|deact]> <active_objs> <num_objs>");
1628 seq_puts(m, " <active_slabs> <num_slabs>\n");
1629 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
1630 /*
1631 * Skip kmem caches that don't have any memcg children.
1632 */
1633 if (list_empty(&s->memcg_params.children))
1634 continue;
1635
1636 memset(&sinfo, 0, sizeof(sinfo));
1637 get_slabinfo(s, &sinfo);
1638 seq_printf(m, "%-17s root %6lu %6lu %6lu %6lu\n",
1639 cache_name(s), sinfo.active_objs, sinfo.num_objs,
1640 sinfo.active_slabs, sinfo.num_slabs);
1641
1642 for_each_memcg_cache(c, s) {
1643 struct cgroup_subsys_state *css;
1644 char *status = "";
1645
1646 css = &c->memcg_params.memcg->css;
1647 if (!(css->flags & CSS_ONLINE))
1648 status = ":dead";
1649 else if (c->flags & SLAB_DEACTIVATED)
1650 status = ":deact";
1651
1652 memset(&sinfo, 0, sizeof(sinfo));
1653 get_slabinfo(c, &sinfo);
1654 seq_printf(m, "%-17s %4d%-6s %6lu %6lu %6lu %6lu\n",
1655 cache_name(c), css->id, status,
1656 sinfo.active_objs, sinfo.num_objs,
1657 sinfo.active_slabs, sinfo.num_slabs);
1658 }
1659 }
1660 mutex_unlock(&slab_mutex);
1661 return 0;
1662}
1663DEFINE_SHOW_ATTRIBUTE(memcg_slabinfo);
1664
1665static int __init memcg_slabinfo_init(void)
1666{
1667 debugfs_create_file("memcg_slabinfo", S_IFREG | S_IRUGO,
1668 NULL, NULL, &memcg_slabinfo_fops);
1669 return 0;
1670}
1671
1672late_initcall(memcg_slabinfo_init);
1673#endif /* CONFIG_DEBUG_FS && CONFIG_MEMCG_KMEM */
1674#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1675
1676static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1677 gfp_t flags)
1678{
1679 void *ret;
1680 size_t ks = 0;
1681
1682 if (p)
1683 ks = ksize(p);
1684
1685 if (ks >= new_size) {
1686 /* Zero out spare memory. */
1687 if (want_init_on_alloc(flags)) {
1688 kasan_disable_current();
1689 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
1690 kasan_enable_current();
1691 }
1692
1693 p = kasan_krealloc((void *)p, new_size, flags);
1694 return (void *)p;
1695 }
1696
1697 ret = kmalloc_track_caller(new_size, flags);
1698 if (ret && p)
1699 memcpy(ret, p, ks);
1700
1701 return ret;
1702}
1703
1704/**
1705 * __krealloc - like krealloc() but don't free @p.
1706 * @p: object to reallocate memory for.
1707 * @new_size: how many bytes of memory are required.
1708 * @flags: the type of memory to allocate.
1709 *
1710 * This function is like krealloc() except it never frees the originally
1711 * allocated buffer. Use this if you don't want to free the buffer immediately
1712 * like, for example, with RCU.
1713 *
1714 * Return: pointer to the allocated memory or %NULL in case of error
1715 */
1716void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1717{
1718 if (unlikely(!new_size))
1719 return ZERO_SIZE_PTR;
1720
1721 return __do_krealloc(p, new_size, flags);
1722
1723}
1724EXPORT_SYMBOL(__krealloc);
1725
1726/**
1727 * krealloc - reallocate memory. The contents will remain unchanged.
1728 * @p: object to reallocate memory for.
1729 * @new_size: how many bytes of memory are required.
1730 * @flags: the type of memory to allocate.
1731 *
1732 * The contents of the object pointed to are preserved up to the
1733 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1734 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1735 * %NULL pointer, the object pointed to is freed.
1736 *
1737 * Return: pointer to the allocated memory or %NULL in case of error
1738 */
1739void *krealloc(const void *p, size_t new_size, gfp_t flags)
1740{
1741 void *ret;
1742
1743 if (unlikely(!new_size)) {
1744 kfree(p);
1745 return ZERO_SIZE_PTR;
1746 }
1747
1748 ret = __do_krealloc(p, new_size, flags);
1749 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1750 kfree(p);
1751
1752 return ret;
1753}
1754EXPORT_SYMBOL(krealloc);
1755
1756/**
1757 * kzfree - like kfree but zero memory
1758 * @p: object to free memory of
1759 *
1760 * The memory of the object @p points to is zeroed before freed.
1761 * If @p is %NULL, kzfree() does nothing.
1762 *
1763 * Note: this function zeroes the whole allocated buffer which can be a good
1764 * deal bigger than the requested buffer size passed to kmalloc(). So be
1765 * careful when using this function in performance sensitive code.
1766 */
1767void kzfree(const void *p)
1768{
1769 size_t ks;
1770 void *mem = (void *)p;
1771
1772 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1773 return;
1774 ks = ksize(mem);
1775 memzero_explicit(mem, ks);
1776 kfree(mem);
1777}
1778EXPORT_SYMBOL(kzfree);
1779
1780/**
1781 * ksize - get the actual amount of memory allocated for a given object
1782 * @objp: Pointer to the object
1783 *
1784 * kmalloc may internally round up allocations and return more memory
1785 * than requested. ksize() can be used to determine the actual amount of
1786 * memory allocated. The caller may use this additional memory, even though
1787 * a smaller amount of memory was initially specified with the kmalloc call.
1788 * The caller must guarantee that objp points to a valid object previously
1789 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1790 * must not be freed during the duration of the call.
1791 *
1792 * Return: size of the actual memory used by @objp in bytes
1793 */
1794size_t ksize(const void *objp)
1795{
1796 size_t size;
1797
1798 if (WARN_ON_ONCE(!objp))
1799 return 0;
1800 /*
1801 * We need to check that the pointed to object is valid, and only then
1802 * unpoison the shadow memory below. We use __kasan_check_read(), to
1803 * generate a more useful report at the time ksize() is called (rather
1804 * than later where behaviour is undefined due to potential
1805 * use-after-free or double-free).
1806 *
1807 * If the pointed to memory is invalid we return 0, to avoid users of
1808 * ksize() writing to and potentially corrupting the memory region.
1809 *
1810 * We want to perform the check before __ksize(), to avoid potentially
1811 * crashing in __ksize() due to accessing invalid metadata.
1812 */
1813 if (unlikely(objp == ZERO_SIZE_PTR) || !__kasan_check_read(objp, 1))
1814 return 0;
1815
1816 size = kfence_ksize(objp) ?: __ksize(objp);
1817 /*
1818 * We assume that ksize callers could use whole allocated area,
1819 * so we need to unpoison this area.
1820 */
1821 kasan_unpoison_shadow(objp, size);
1822 return size;
1823}
1824EXPORT_SYMBOL(ksize);
1825
1826/* Tracepoints definitions. */
1827EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1828EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1829EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1830EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1831EXPORT_TRACEPOINT_SYMBOL(kfree);
1832EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1833
1834int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1835{
1836 if (__should_failslab(s, gfpflags))
1837 return -ENOMEM;
1838 return 0;
1839}
1840ALLOW_ERROR_INJECTION(should_failslab, ERRNO);