blob: 03f608da594e57cac0f751e7c1154954522d4714 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8 *
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
14 *
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
18 *
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
22 *
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
27 *
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
36 */
37
38#include <linux/bug.h>
39#include <linux/sched/signal.h>
40#include <linux/module.h>
41#include <linux/splice.h>
42#include <crypto/aead.h>
43
44#include <net/strparser.h>
45#include <net/tls.h>
46
47noinline void tls_err_abort(struct sock *sk, int err)
48{
49 WARN_ON_ONCE(err >= 0);
50 /* sk->sk_err should contain a positive error code. */
51 sk->sk_err = -err;
52 sk->sk_error_report(sk);
53}
54
55static int __skb_nsg(struct sk_buff *skb, int offset, int len,
56 unsigned int recursion_level)
57{
58 int start = skb_headlen(skb);
59 int i, chunk = start - offset;
60 struct sk_buff *frag_iter;
61 int elt = 0;
62
63 if (unlikely(recursion_level >= 24))
64 return -EMSGSIZE;
65
66 if (chunk > 0) {
67 if (chunk > len)
68 chunk = len;
69 elt++;
70 len -= chunk;
71 if (len == 0)
72 return elt;
73 offset += chunk;
74 }
75
76 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
77 int end;
78
79 WARN_ON(start > offset + len);
80
81 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
82 chunk = end - offset;
83 if (chunk > 0) {
84 if (chunk > len)
85 chunk = len;
86 elt++;
87 len -= chunk;
88 if (len == 0)
89 return elt;
90 offset += chunk;
91 }
92 start = end;
93 }
94
95 if (unlikely(skb_has_frag_list(skb))) {
96 skb_walk_frags(skb, frag_iter) {
97 int end, ret;
98
99 WARN_ON(start > offset + len);
100
101 end = start + frag_iter->len;
102 chunk = end - offset;
103 if (chunk > 0) {
104 if (chunk > len)
105 chunk = len;
106 ret = __skb_nsg(frag_iter, offset - start, chunk,
107 recursion_level + 1);
108 if (unlikely(ret < 0))
109 return ret;
110 elt += ret;
111 len -= chunk;
112 if (len == 0)
113 return elt;
114 offset += chunk;
115 }
116 start = end;
117 }
118 }
119 BUG_ON(len);
120 return elt;
121}
122
123/* Return the number of scatterlist elements required to completely map the
124 * skb, or -EMSGSIZE if the recursion depth is exceeded.
125 */
126static int skb_nsg(struct sk_buff *skb, int offset, int len)
127{
128 return __skb_nsg(skb, offset, len, 0);
129}
130
131static int padding_length(struct tls_sw_context_rx *ctx,
132 struct tls_prot_info *prot, struct sk_buff *skb)
133{
134 struct strp_msg *rxm = strp_msg(skb);
135 int sub = 0;
136
137 /* Determine zero-padding length */
138 if (prot->version == TLS_1_3_VERSION) {
139 char content_type = 0;
140 int err;
141 int back = 17;
142
143 while (content_type == 0) {
144 if (back > rxm->full_len - prot->prepend_size)
145 return -EBADMSG;
146 err = skb_copy_bits(skb,
147 rxm->offset + rxm->full_len - back,
148 &content_type, 1);
149 if (err)
150 return err;
151 if (content_type)
152 break;
153 sub++;
154 back++;
155 }
156 ctx->control = content_type;
157 }
158 return sub;
159}
160
161static void tls_decrypt_done(struct crypto_async_request *req, int err)
162{
163 struct aead_request *aead_req = (struct aead_request *)req;
164 struct scatterlist *sgout = aead_req->dst;
165 struct scatterlist *sgin = aead_req->src;
166 struct tls_sw_context_rx *ctx;
167 struct tls_context *tls_ctx;
168 struct tls_prot_info *prot;
169 struct scatterlist *sg;
170 struct sk_buff *skb;
171 unsigned int pages;
172 int pending;
173
174 skb = (struct sk_buff *)req->data;
175 tls_ctx = tls_get_ctx(skb->sk);
176 ctx = tls_sw_ctx_rx(tls_ctx);
177 prot = &tls_ctx->prot_info;
178
179 /* Propagate if there was an err */
180 if (err) {
181 ctx->async_wait.err = err;
182 tls_err_abort(skb->sk, err);
183 } else {
184 struct strp_msg *rxm = strp_msg(skb);
185 int pad;
186
187 pad = padding_length(ctx, prot, skb);
188 if (pad < 0) {
189 ctx->async_wait.err = pad;
190 tls_err_abort(skb->sk, pad);
191 } else {
192 rxm->full_len -= pad;
193 rxm->offset += prot->prepend_size;
194 rxm->full_len -= prot->overhead_size;
195 }
196 }
197
198 /* After using skb->sk to propagate sk through crypto async callback
199 * we need to NULL it again.
200 */
201 skb->sk = NULL;
202
203
204 /* Free the destination pages if skb was not decrypted inplace */
205 if (sgout != sgin) {
206 /* Skip the first S/G entry as it points to AAD */
207 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
208 if (!sg)
209 break;
210 put_page(sg_page(sg));
211 }
212 }
213
214 kfree(aead_req);
215
216 spin_lock_bh(&ctx->decrypt_compl_lock);
217 pending = atomic_dec_return(&ctx->decrypt_pending);
218
219 if (!pending && ctx->async_notify)
220 complete(&ctx->async_wait.completion);
221 spin_unlock_bh(&ctx->decrypt_compl_lock);
222}
223
224static int tls_do_decryption(struct sock *sk,
225 struct sk_buff *skb,
226 struct scatterlist *sgin,
227 struct scatterlist *sgout,
228 char *iv_recv,
229 size_t data_len,
230 struct aead_request *aead_req,
231 bool async)
232{
233 struct tls_context *tls_ctx = tls_get_ctx(sk);
234 struct tls_prot_info *prot = &tls_ctx->prot_info;
235 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
236 int ret;
237
238 aead_request_set_tfm(aead_req, ctx->aead_recv);
239 aead_request_set_ad(aead_req, prot->aad_size);
240 aead_request_set_crypt(aead_req, sgin, sgout,
241 data_len + prot->tag_size,
242 (u8 *)iv_recv);
243
244 if (async) {
245 /* Using skb->sk to push sk through to crypto async callback
246 * handler. This allows propagating errors up to the socket
247 * if needed. It _must_ be cleared in the async handler
248 * before consume_skb is called. We _know_ skb->sk is NULL
249 * because it is a clone from strparser.
250 */
251 skb->sk = sk;
252 aead_request_set_callback(aead_req,
253 CRYPTO_TFM_REQ_MAY_BACKLOG,
254 tls_decrypt_done, skb);
255 atomic_inc(&ctx->decrypt_pending);
256 } else {
257 aead_request_set_callback(aead_req,
258 CRYPTO_TFM_REQ_MAY_BACKLOG,
259 crypto_req_done, &ctx->async_wait);
260 }
261
262 ret = crypto_aead_decrypt(aead_req);
263 if (ret == -EINPROGRESS) {
264 if (async)
265 return ret;
266
267 ret = crypto_wait_req(ret, &ctx->async_wait);
268 }
269
270 if (async)
271 atomic_dec(&ctx->decrypt_pending);
272
273 return ret;
274}
275
276static void tls_trim_both_msgs(struct sock *sk, int target_size)
277{
278 struct tls_context *tls_ctx = tls_get_ctx(sk);
279 struct tls_prot_info *prot = &tls_ctx->prot_info;
280 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281 struct tls_rec *rec = ctx->open_rec;
282
283 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
284 if (target_size > 0)
285 target_size += prot->overhead_size;
286 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
287}
288
289static int tls_alloc_encrypted_msg(struct sock *sk, int len)
290{
291 struct tls_context *tls_ctx = tls_get_ctx(sk);
292 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
293 struct tls_rec *rec = ctx->open_rec;
294 struct sk_msg *msg_en = &rec->msg_encrypted;
295
296 return sk_msg_alloc(sk, msg_en, len, 0);
297}
298
299static int tls_clone_plaintext_msg(struct sock *sk, int required)
300{
301 struct tls_context *tls_ctx = tls_get_ctx(sk);
302 struct tls_prot_info *prot = &tls_ctx->prot_info;
303 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
304 struct tls_rec *rec = ctx->open_rec;
305 struct sk_msg *msg_pl = &rec->msg_plaintext;
306 struct sk_msg *msg_en = &rec->msg_encrypted;
307 int skip, len;
308
309 /* We add page references worth len bytes from encrypted sg
310 * at the end of plaintext sg. It is guaranteed that msg_en
311 * has enough required room (ensured by caller).
312 */
313 len = required - msg_pl->sg.size;
314
315 /* Skip initial bytes in msg_en's data to be able to use
316 * same offset of both plain and encrypted data.
317 */
318 skip = prot->prepend_size + msg_pl->sg.size;
319
320 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
321}
322
323static struct tls_rec *tls_get_rec(struct sock *sk)
324{
325 struct tls_context *tls_ctx = tls_get_ctx(sk);
326 struct tls_prot_info *prot = &tls_ctx->prot_info;
327 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
328 struct sk_msg *msg_pl, *msg_en;
329 struct tls_rec *rec;
330 int mem_size;
331
332 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
333
334 rec = kzalloc(mem_size, sk->sk_allocation);
335 if (!rec)
336 return NULL;
337
338 msg_pl = &rec->msg_plaintext;
339 msg_en = &rec->msg_encrypted;
340
341 sk_msg_init(msg_pl);
342 sk_msg_init(msg_en);
343
344 sg_init_table(rec->sg_aead_in, 2);
345 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
346 sg_unmark_end(&rec->sg_aead_in[1]);
347
348 sg_init_table(rec->sg_aead_out, 2);
349 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
350 sg_unmark_end(&rec->sg_aead_out[1]);
351
352 return rec;
353}
354
355static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
356{
357 sk_msg_free(sk, &rec->msg_encrypted);
358 sk_msg_free(sk, &rec->msg_plaintext);
359 kfree(rec);
360}
361
362static void tls_free_open_rec(struct sock *sk)
363{
364 struct tls_context *tls_ctx = tls_get_ctx(sk);
365 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366 struct tls_rec *rec = ctx->open_rec;
367
368 if (rec) {
369 tls_free_rec(sk, rec);
370 ctx->open_rec = NULL;
371 }
372}
373
374int tls_tx_records(struct sock *sk, int flags)
375{
376 struct tls_context *tls_ctx = tls_get_ctx(sk);
377 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
378 struct tls_rec *rec, *tmp;
379 struct sk_msg *msg_en;
380 int tx_flags, rc = 0;
381
382 if (tls_is_partially_sent_record(tls_ctx)) {
383 rec = list_first_entry(&ctx->tx_list,
384 struct tls_rec, list);
385
386 if (flags == -1)
387 tx_flags = rec->tx_flags;
388 else
389 tx_flags = flags;
390
391 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
392 if (rc)
393 goto tx_err;
394
395 /* Full record has been transmitted.
396 * Remove the head of tx_list
397 */
398 list_del(&rec->list);
399 sk_msg_free(sk, &rec->msg_plaintext);
400 kfree(rec);
401 }
402
403 /* Tx all ready records */
404 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
405 if (READ_ONCE(rec->tx_ready)) {
406 if (flags == -1)
407 tx_flags = rec->tx_flags;
408 else
409 tx_flags = flags;
410
411 msg_en = &rec->msg_encrypted;
412 rc = tls_push_sg(sk, tls_ctx,
413 &msg_en->sg.data[msg_en->sg.curr],
414 0, tx_flags);
415 if (rc)
416 goto tx_err;
417
418 list_del(&rec->list);
419 sk_msg_free(sk, &rec->msg_plaintext);
420 kfree(rec);
421 } else {
422 break;
423 }
424 }
425
426tx_err:
427 if (rc < 0 && rc != -EAGAIN)
428 tls_err_abort(sk, rc);
429
430 return rc;
431}
432
433static void tls_encrypt_done(struct crypto_async_request *req, int err)
434{
435 struct aead_request *aead_req = (struct aead_request *)req;
436 struct sock *sk = req->data;
437 struct tls_context *tls_ctx = tls_get_ctx(sk);
438 struct tls_prot_info *prot = &tls_ctx->prot_info;
439 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
442 struct tls_rec *rec;
443 bool ready = false;
444 int pending;
445
446 rec = container_of(aead_req, struct tls_rec, aead_req);
447 msg_en = &rec->msg_encrypted;
448
449 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
450 sge->offset -= prot->prepend_size;
451 sge->length += prot->prepend_size;
452
453 /* Check if error is previously set on socket */
454 if (err || sk->sk_err) {
455 rec = NULL;
456
457 /* If err is already set on socket, return the same code */
458 if (sk->sk_err) {
459 ctx->async_wait.err = -sk->sk_err;
460 } else {
461 ctx->async_wait.err = err;
462 tls_err_abort(sk, err);
463 }
464 }
465
466 if (rec) {
467 struct tls_rec *first_rec;
468
469 /* Mark the record as ready for transmission */
470 smp_store_mb(rec->tx_ready, true);
471
472 /* If received record is at head of tx_list, schedule tx */
473 first_rec = list_first_entry(&ctx->tx_list,
474 struct tls_rec, list);
475 if (rec == first_rec)
476 ready = true;
477 }
478
479 spin_lock_bh(&ctx->encrypt_compl_lock);
480 pending = atomic_dec_return(&ctx->encrypt_pending);
481
482 if (!pending && ctx->async_notify)
483 complete(&ctx->async_wait.completion);
484 spin_unlock_bh(&ctx->encrypt_compl_lock);
485
486 if (!ready)
487 return;
488
489 /* Schedule the transmission */
490 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
491 schedule_delayed_work(&ctx->tx_work.work, 1);
492}
493
494static int tls_do_encryption(struct sock *sk,
495 struct tls_context *tls_ctx,
496 struct tls_sw_context_tx *ctx,
497 struct aead_request *aead_req,
498 size_t data_len, u32 start)
499{
500 struct tls_prot_info *prot = &tls_ctx->prot_info;
501 struct tls_rec *rec = ctx->open_rec;
502 struct sk_msg *msg_en = &rec->msg_encrypted;
503 struct scatterlist *sge = sk_msg_elem(msg_en, start);
504 int rc, iv_offset = 0;
505
506 /* For CCM based ciphers, first byte of IV is a constant */
507 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
508 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
509 iv_offset = 1;
510 }
511
512 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
513 prot->iv_size + prot->salt_size);
514
515 xor_iv_with_seq(prot->version, rec->iv_data + iv_offset, tls_ctx->tx.rec_seq);
516
517 sge->offset += prot->prepend_size;
518 sge->length -= prot->prepend_size;
519
520 msg_en->sg.curr = start;
521
522 aead_request_set_tfm(aead_req, ctx->aead_send);
523 aead_request_set_ad(aead_req, prot->aad_size);
524 aead_request_set_crypt(aead_req, rec->sg_aead_in,
525 rec->sg_aead_out,
526 data_len, rec->iv_data);
527
528 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
529 tls_encrypt_done, sk);
530
531 /* Add the record in tx_list */
532 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
533 atomic_inc(&ctx->encrypt_pending);
534
535 rc = crypto_aead_encrypt(aead_req);
536 if (!rc || rc != -EINPROGRESS) {
537 atomic_dec(&ctx->encrypt_pending);
538 sge->offset -= prot->prepend_size;
539 sge->length += prot->prepend_size;
540 }
541
542 if (!rc) {
543 WRITE_ONCE(rec->tx_ready, true);
544 } else if (rc != -EINPROGRESS) {
545 list_del(&rec->list);
546 return rc;
547 }
548
549 /* Unhook the record from context if encryption is not failure */
550 ctx->open_rec = NULL;
551 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
552 return rc;
553}
554
555static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
556 struct tls_rec **to, struct sk_msg *msg_opl,
557 struct sk_msg *msg_oen, u32 split_point,
558 u32 tx_overhead_size, u32 *orig_end)
559{
560 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
561 struct scatterlist *sge, *osge, *nsge;
562 u32 orig_size = msg_opl->sg.size;
563 struct scatterlist tmp = { };
564 struct sk_msg *msg_npl;
565 struct tls_rec *new;
566 int ret;
567
568 new = tls_get_rec(sk);
569 if (!new)
570 return -ENOMEM;
571 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
572 tx_overhead_size, 0);
573 if (ret < 0) {
574 tls_free_rec(sk, new);
575 return ret;
576 }
577
578 *orig_end = msg_opl->sg.end;
579 i = msg_opl->sg.start;
580 sge = sk_msg_elem(msg_opl, i);
581 while (apply && sge->length) {
582 if (sge->length > apply) {
583 u32 len = sge->length - apply;
584
585 get_page(sg_page(sge));
586 sg_set_page(&tmp, sg_page(sge), len,
587 sge->offset + apply);
588 sge->length = apply;
589 bytes += apply;
590 apply = 0;
591 } else {
592 apply -= sge->length;
593 bytes += sge->length;
594 }
595
596 sk_msg_iter_var_next(i);
597 if (i == msg_opl->sg.end)
598 break;
599 sge = sk_msg_elem(msg_opl, i);
600 }
601
602 msg_opl->sg.end = i;
603 msg_opl->sg.curr = i;
604 msg_opl->sg.copybreak = 0;
605 msg_opl->apply_bytes = 0;
606 msg_opl->sg.size = bytes;
607
608 msg_npl = &new->msg_plaintext;
609 msg_npl->apply_bytes = apply;
610 msg_npl->sg.size = orig_size - bytes;
611
612 j = msg_npl->sg.start;
613 nsge = sk_msg_elem(msg_npl, j);
614 if (tmp.length) {
615 memcpy(nsge, &tmp, sizeof(*nsge));
616 sk_msg_iter_var_next(j);
617 nsge = sk_msg_elem(msg_npl, j);
618 }
619
620 osge = sk_msg_elem(msg_opl, i);
621 while (osge->length) {
622 memcpy(nsge, osge, sizeof(*nsge));
623 sg_unmark_end(nsge);
624 sk_msg_iter_var_next(i);
625 sk_msg_iter_var_next(j);
626 if (i == *orig_end)
627 break;
628 osge = sk_msg_elem(msg_opl, i);
629 nsge = sk_msg_elem(msg_npl, j);
630 }
631
632 msg_npl->sg.end = j;
633 msg_npl->sg.curr = j;
634 msg_npl->sg.copybreak = 0;
635
636 *to = new;
637 return 0;
638}
639
640static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
641 struct tls_rec *from, u32 orig_end)
642{
643 struct sk_msg *msg_npl = &from->msg_plaintext;
644 struct sk_msg *msg_opl = &to->msg_plaintext;
645 struct scatterlist *osge, *nsge;
646 u32 i, j;
647
648 i = msg_opl->sg.end;
649 sk_msg_iter_var_prev(i);
650 j = msg_npl->sg.start;
651
652 osge = sk_msg_elem(msg_opl, i);
653 nsge = sk_msg_elem(msg_npl, j);
654
655 if (sg_page(osge) == sg_page(nsge) &&
656 osge->offset + osge->length == nsge->offset) {
657 osge->length += nsge->length;
658 put_page(sg_page(nsge));
659 }
660
661 msg_opl->sg.end = orig_end;
662 msg_opl->sg.curr = orig_end;
663 msg_opl->sg.copybreak = 0;
664 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
665 msg_opl->sg.size += msg_npl->sg.size;
666
667 sk_msg_free(sk, &to->msg_encrypted);
668 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
669
670 kfree(from);
671}
672
673static int tls_push_record(struct sock *sk, int flags,
674 unsigned char record_type)
675{
676 struct tls_context *tls_ctx = tls_get_ctx(sk);
677 struct tls_prot_info *prot = &tls_ctx->prot_info;
678 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
679 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
680 u32 i, split_point, orig_end;
681 struct sk_msg *msg_pl, *msg_en;
682 struct aead_request *req;
683 bool split;
684 int rc;
685
686 if (!rec)
687 return 0;
688
689 msg_pl = &rec->msg_plaintext;
690 msg_en = &rec->msg_encrypted;
691
692 split_point = msg_pl->apply_bytes;
693 split = split_point && split_point < msg_pl->sg.size;
694 if (unlikely((!split &&
695 msg_pl->sg.size +
696 prot->overhead_size > msg_en->sg.size) ||
697 (split &&
698 split_point +
699 prot->overhead_size > msg_en->sg.size))) {
700 split = true;
701 split_point = msg_en->sg.size;
702 }
703 if (split) {
704 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
705 split_point, prot->overhead_size,
706 &orig_end);
707 if (rc < 0)
708 return rc;
709 /* This can happen if above tls_split_open_record allocates
710 * a single large encryption buffer instead of two smaller
711 * ones. In this case adjust pointers and continue without
712 * split.
713 */
714 if (!msg_pl->sg.size) {
715 tls_merge_open_record(sk, rec, tmp, orig_end);
716 msg_pl = &rec->msg_plaintext;
717 msg_en = &rec->msg_encrypted;
718 split = false;
719 }
720 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
721 prot->overhead_size);
722 }
723
724 rec->tx_flags = flags;
725 req = &rec->aead_req;
726
727 i = msg_pl->sg.end;
728 sk_msg_iter_var_prev(i);
729
730 rec->content_type = record_type;
731 if (prot->version == TLS_1_3_VERSION) {
732 /* Add content type to end of message. No padding added */
733 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
734 sg_mark_end(&rec->sg_content_type);
735 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
736 &rec->sg_content_type);
737 } else {
738 sg_mark_end(sk_msg_elem(msg_pl, i));
739 }
740
741 if (msg_pl->sg.end < msg_pl->sg.start) {
742 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
743 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
744 msg_pl->sg.data);
745 }
746
747 i = msg_pl->sg.start;
748 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
749
750 i = msg_en->sg.end;
751 sk_msg_iter_var_prev(i);
752 sg_mark_end(sk_msg_elem(msg_en, i));
753
754 i = msg_en->sg.start;
755 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
756
757 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
758 tls_ctx->tx.rec_seq, prot->rec_seq_size,
759 record_type, prot->version);
760
761 tls_fill_prepend(tls_ctx,
762 page_address(sg_page(&msg_en->sg.data[i])) +
763 msg_en->sg.data[i].offset,
764 msg_pl->sg.size + prot->tail_size,
765 record_type, prot->version);
766
767 tls_ctx->pending_open_record_frags = false;
768
769 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
770 msg_pl->sg.size + prot->tail_size, i);
771 if (rc < 0) {
772 if (rc != -EINPROGRESS) {
773 tls_err_abort(sk, -EBADMSG);
774 if (split) {
775 tls_ctx->pending_open_record_frags = true;
776 tls_merge_open_record(sk, rec, tmp, orig_end);
777 }
778 }
779 ctx->async_capable = 1;
780 return rc;
781 } else if (split) {
782 msg_pl = &tmp->msg_plaintext;
783 msg_en = &tmp->msg_encrypted;
784 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
785 tls_ctx->pending_open_record_frags = true;
786 ctx->open_rec = tmp;
787 }
788
789 return tls_tx_records(sk, flags);
790}
791
792static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
793 bool full_record, u8 record_type,
794 ssize_t *copied, int flags)
795{
796 struct tls_context *tls_ctx = tls_get_ctx(sk);
797 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
798 struct sk_msg msg_redir = { };
799 struct sk_psock *psock;
800 struct sock *sk_redir;
801 struct tls_rec *rec;
802 bool enospc, policy;
803 int err = 0, send;
804 u32 delta = 0;
805
806 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
807 psock = sk_psock_get(sk);
808 if (!psock || !policy) {
809 err = tls_push_record(sk, flags, record_type);
810 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
811 *copied -= sk_msg_free(sk, msg);
812 tls_free_open_rec(sk);
813 err = -sk->sk_err;
814 }
815 if (psock)
816 sk_psock_put(sk, psock);
817 return err;
818 }
819more_data:
820 enospc = sk_msg_full(msg);
821 if (psock->eval == __SK_NONE) {
822 delta = msg->sg.size;
823 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
824 delta -= msg->sg.size;
825 }
826 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
827 !enospc && !full_record) {
828 err = -ENOSPC;
829 goto out_err;
830 }
831 msg->cork_bytes = 0;
832 send = msg->sg.size;
833 if (msg->apply_bytes && msg->apply_bytes < send)
834 send = msg->apply_bytes;
835
836 switch (psock->eval) {
837 case __SK_PASS:
838 err = tls_push_record(sk, flags, record_type);
839 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
840 *copied -= sk_msg_free(sk, msg);
841 tls_free_open_rec(sk);
842 err = -sk->sk_err;
843 goto out_err;
844 }
845 break;
846 case __SK_REDIRECT:
847 sk_redir = psock->sk_redir;
848 memcpy(&msg_redir, msg, sizeof(*msg));
849 if (msg->apply_bytes < send)
850 msg->apply_bytes = 0;
851 else
852 msg->apply_bytes -= send;
853 sk_msg_return_zero(sk, msg, send);
854 msg->sg.size -= send;
855 release_sock(sk);
856 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
857 lock_sock(sk);
858 if (err < 0) {
859 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
860 msg->sg.size = 0;
861 }
862 if (msg->sg.size == 0)
863 tls_free_open_rec(sk);
864 break;
865 case __SK_DROP:
866 default:
867 sk_msg_free_partial(sk, msg, send);
868 if (msg->apply_bytes < send)
869 msg->apply_bytes = 0;
870 else
871 msg->apply_bytes -= send;
872 if (msg->sg.size == 0)
873 tls_free_open_rec(sk);
874 *copied -= (send + delta);
875 err = -EACCES;
876 }
877
878 if (likely(!err)) {
879 bool reset_eval = !ctx->open_rec;
880
881 rec = ctx->open_rec;
882 if (rec) {
883 msg = &rec->msg_plaintext;
884 if (!msg->apply_bytes)
885 reset_eval = true;
886 }
887 if (reset_eval) {
888 psock->eval = __SK_NONE;
889 if (psock->sk_redir) {
890 sock_put(psock->sk_redir);
891 psock->sk_redir = NULL;
892 }
893 }
894 if (rec)
895 goto more_data;
896 }
897 out_err:
898 sk_psock_put(sk, psock);
899 return err;
900}
901
902static int tls_sw_push_pending_record(struct sock *sk, int flags)
903{
904 struct tls_context *tls_ctx = tls_get_ctx(sk);
905 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
906 struct tls_rec *rec = ctx->open_rec;
907 struct sk_msg *msg_pl;
908 size_t copied;
909
910 if (!rec)
911 return 0;
912
913 msg_pl = &rec->msg_plaintext;
914 copied = msg_pl->sg.size;
915 if (!copied)
916 return 0;
917
918 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
919 &copied, flags);
920}
921
922int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
923{
924 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
925 struct tls_context *tls_ctx = tls_get_ctx(sk);
926 struct tls_prot_info *prot = &tls_ctx->prot_info;
927 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
928 bool async_capable = ctx->async_capable;
929 unsigned char record_type = TLS_RECORD_TYPE_DATA;
930 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
931 bool eor = !(msg->msg_flags & MSG_MORE);
932 size_t try_to_copy;
933 ssize_t copied = 0;
934 struct sk_msg *msg_pl, *msg_en;
935 struct tls_rec *rec;
936 int required_size;
937 int num_async = 0;
938 bool full_record;
939 int record_room;
940 int num_zc = 0;
941 int orig_size;
942 int ret = 0;
943 int pending;
944
945 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
946 return -EOPNOTSUPP;
947
948 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
949 if (ret)
950 return ret;
951 lock_sock(sk);
952
953 if (unlikely(msg->msg_controllen)) {
954 ret = tls_proccess_cmsg(sk, msg, &record_type);
955 if (ret) {
956 if (ret == -EINPROGRESS)
957 num_async++;
958 else if (ret != -EAGAIN)
959 goto send_end;
960 }
961 }
962
963 while (msg_data_left(msg)) {
964 if (sk->sk_err) {
965 ret = -sk->sk_err;
966 goto send_end;
967 }
968
969 if (ctx->open_rec)
970 rec = ctx->open_rec;
971 else
972 rec = ctx->open_rec = tls_get_rec(sk);
973 if (!rec) {
974 ret = -ENOMEM;
975 goto send_end;
976 }
977
978 msg_pl = &rec->msg_plaintext;
979 msg_en = &rec->msg_encrypted;
980
981 orig_size = msg_pl->sg.size;
982 full_record = false;
983 try_to_copy = msg_data_left(msg);
984 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
985 if (try_to_copy >= record_room) {
986 try_to_copy = record_room;
987 full_record = true;
988 }
989
990 required_size = msg_pl->sg.size + try_to_copy +
991 prot->overhead_size;
992
993 if (!sk_stream_memory_free(sk))
994 goto wait_for_sndbuf;
995
996alloc_encrypted:
997 ret = tls_alloc_encrypted_msg(sk, required_size);
998 if (ret) {
999 if (ret != -ENOSPC)
1000 goto wait_for_memory;
1001
1002 /* Adjust try_to_copy according to the amount that was
1003 * actually allocated. The difference is due
1004 * to max sg elements limit
1005 */
1006 try_to_copy -= required_size - msg_en->sg.size;
1007 full_record = true;
1008 }
1009
1010 if (!is_kvec && (full_record || eor) && !async_capable) {
1011 u32 first = msg_pl->sg.end;
1012
1013 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1014 msg_pl, try_to_copy);
1015 if (ret)
1016 goto fallback_to_reg_send;
1017
1018 num_zc++;
1019 copied += try_to_copy;
1020
1021 sk_msg_sg_copy_set(msg_pl, first);
1022 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1023 record_type, &copied,
1024 msg->msg_flags);
1025 if (ret) {
1026 if (ret == -EINPROGRESS)
1027 num_async++;
1028 else if (ret == -ENOMEM)
1029 goto wait_for_memory;
1030 else if (ctx->open_rec && ret == -ENOSPC)
1031 goto rollback_iter;
1032 else if (ret != -EAGAIN)
1033 goto send_end;
1034 }
1035 continue;
1036rollback_iter:
1037 copied -= try_to_copy;
1038 sk_msg_sg_copy_clear(msg_pl, first);
1039 iov_iter_revert(&msg->msg_iter,
1040 msg_pl->sg.size - orig_size);
1041fallback_to_reg_send:
1042 sk_msg_trim(sk, msg_pl, orig_size);
1043 }
1044
1045 required_size = msg_pl->sg.size + try_to_copy;
1046
1047 ret = tls_clone_plaintext_msg(sk, required_size);
1048 if (ret) {
1049 if (ret != -ENOSPC)
1050 goto send_end;
1051
1052 /* Adjust try_to_copy according to the amount that was
1053 * actually allocated. The difference is due
1054 * to max sg elements limit
1055 */
1056 try_to_copy -= required_size - msg_pl->sg.size;
1057 full_record = true;
1058 sk_msg_trim(sk, msg_en,
1059 msg_pl->sg.size + prot->overhead_size);
1060 }
1061
1062 if (try_to_copy) {
1063 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1064 msg_pl, try_to_copy);
1065 if (ret < 0)
1066 goto trim_sgl;
1067 }
1068
1069 /* Open records defined only if successfully copied, otherwise
1070 * we would trim the sg but not reset the open record frags.
1071 */
1072 tls_ctx->pending_open_record_frags = true;
1073 copied += try_to_copy;
1074 if (full_record || eor) {
1075 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1076 record_type, &copied,
1077 msg->msg_flags);
1078 if (ret) {
1079 if (ret == -EINPROGRESS)
1080 num_async++;
1081 else if (ret == -ENOMEM)
1082 goto wait_for_memory;
1083 else if (ret != -EAGAIN) {
1084 if (ret == -ENOSPC)
1085 ret = 0;
1086 goto send_end;
1087 }
1088 }
1089 }
1090
1091 continue;
1092
1093wait_for_sndbuf:
1094 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1095wait_for_memory:
1096 ret = sk_stream_wait_memory(sk, &timeo);
1097 if (ret) {
1098trim_sgl:
1099 if (ctx->open_rec)
1100 tls_trim_both_msgs(sk, orig_size);
1101 goto send_end;
1102 }
1103
1104 if (ctx->open_rec && msg_en->sg.size < required_size)
1105 goto alloc_encrypted;
1106 }
1107
1108 if (!num_async) {
1109 goto send_end;
1110 } else if (num_zc) {
1111 /* Wait for pending encryptions to get completed */
1112 spin_lock_bh(&ctx->encrypt_compl_lock);
1113 ctx->async_notify = true;
1114
1115 pending = atomic_read(&ctx->encrypt_pending);
1116 spin_unlock_bh(&ctx->encrypt_compl_lock);
1117 if (pending)
1118 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1119 else
1120 reinit_completion(&ctx->async_wait.completion);
1121
1122 /* There can be no concurrent accesses, since we have no
1123 * pending encrypt operations
1124 */
1125 WRITE_ONCE(ctx->async_notify, false);
1126
1127 if (ctx->async_wait.err) {
1128 ret = ctx->async_wait.err;
1129 copied = 0;
1130 }
1131 }
1132
1133 /* Transmit if any encryptions have completed */
1134 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1135 cancel_delayed_work(&ctx->tx_work.work);
1136 tls_tx_records(sk, msg->msg_flags);
1137 }
1138
1139send_end:
1140 ret = sk_stream_error(sk, msg->msg_flags, ret);
1141
1142 release_sock(sk);
1143 mutex_unlock(&tls_ctx->tx_lock);
1144 return copied > 0 ? copied : ret;
1145}
1146
1147static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1148 int offset, size_t size, int flags)
1149{
1150 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1151 struct tls_context *tls_ctx = tls_get_ctx(sk);
1152 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1153 struct tls_prot_info *prot = &tls_ctx->prot_info;
1154 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1155 struct sk_msg *msg_pl;
1156 struct tls_rec *rec;
1157 int num_async = 0;
1158 ssize_t copied = 0;
1159 bool full_record;
1160 int record_room;
1161 int ret = 0;
1162 bool eor;
1163
1164 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1165 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1166
1167 /* Call the sk_stream functions to manage the sndbuf mem. */
1168 while (size > 0) {
1169 size_t copy, required_size;
1170
1171 if (sk->sk_err) {
1172 ret = -sk->sk_err;
1173 goto sendpage_end;
1174 }
1175
1176 if (ctx->open_rec)
1177 rec = ctx->open_rec;
1178 else
1179 rec = ctx->open_rec = tls_get_rec(sk);
1180 if (!rec) {
1181 ret = -ENOMEM;
1182 goto sendpage_end;
1183 }
1184
1185 msg_pl = &rec->msg_plaintext;
1186
1187 full_record = false;
1188 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1189 copy = size;
1190 if (copy >= record_room) {
1191 copy = record_room;
1192 full_record = true;
1193 }
1194
1195 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1196
1197 if (!sk_stream_memory_free(sk))
1198 goto wait_for_sndbuf;
1199alloc_payload:
1200 ret = tls_alloc_encrypted_msg(sk, required_size);
1201 if (ret) {
1202 if (ret != -ENOSPC)
1203 goto wait_for_memory;
1204
1205 /* Adjust copy according to the amount that was
1206 * actually allocated. The difference is due
1207 * to max sg elements limit
1208 */
1209 copy -= required_size - msg_pl->sg.size;
1210 full_record = true;
1211 }
1212
1213 sk_msg_page_add(msg_pl, page, copy, offset);
1214 msg_pl->sg.copybreak = 0;
1215 msg_pl->sg.curr = msg_pl->sg.end;
1216 sk_mem_charge(sk, copy);
1217
1218 offset += copy;
1219 size -= copy;
1220 copied += copy;
1221
1222 tls_ctx->pending_open_record_frags = true;
1223 if (full_record || eor || sk_msg_full(msg_pl)) {
1224 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1225 record_type, &copied, flags);
1226 if (ret) {
1227 if (ret == -EINPROGRESS)
1228 num_async++;
1229 else if (ret == -ENOMEM)
1230 goto wait_for_memory;
1231 else if (ret != -EAGAIN) {
1232 if (ret == -ENOSPC)
1233 ret = 0;
1234 goto sendpage_end;
1235 }
1236 }
1237 }
1238 continue;
1239wait_for_sndbuf:
1240 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1241wait_for_memory:
1242 ret = sk_stream_wait_memory(sk, &timeo);
1243 if (ret) {
1244 if (ctx->open_rec)
1245 tls_trim_both_msgs(sk, msg_pl->sg.size);
1246 goto sendpage_end;
1247 }
1248
1249 if (ctx->open_rec)
1250 goto alloc_payload;
1251 }
1252
1253 if (num_async) {
1254 /* Transmit if any encryptions have completed */
1255 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1256 cancel_delayed_work(&ctx->tx_work.work);
1257 tls_tx_records(sk, flags);
1258 }
1259 }
1260sendpage_end:
1261 ret = sk_stream_error(sk, flags, ret);
1262 return copied > 0 ? copied : ret;
1263}
1264
1265int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1266 int offset, size_t size, int flags)
1267{
1268 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1269 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1270 MSG_NO_SHARED_FRAGS))
1271 return -EOPNOTSUPP;
1272
1273 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1274}
1275
1276int tls_sw_sendpage(struct sock *sk, struct page *page,
1277 int offset, size_t size, int flags)
1278{
1279 struct tls_context *tls_ctx = tls_get_ctx(sk);
1280 int ret;
1281
1282 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1283 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1284 return -EOPNOTSUPP;
1285
1286 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1287 if (ret)
1288 return ret;
1289 lock_sock(sk);
1290 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1291 release_sock(sk);
1292 mutex_unlock(&tls_ctx->tx_lock);
1293 return ret;
1294}
1295
1296static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1297 bool nonblock, long timeo, int *err)
1298{
1299 struct tls_context *tls_ctx = tls_get_ctx(sk);
1300 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1301 struct sk_buff *skb;
1302 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1303
1304 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1305 if (sk->sk_err) {
1306 *err = sock_error(sk);
1307 return NULL;
1308 }
1309
1310 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1311 __strp_unpause(&ctx->strp);
1312 if (ctx->recv_pkt)
1313 return ctx->recv_pkt;
1314 }
1315
1316 if (sk->sk_shutdown & RCV_SHUTDOWN)
1317 return NULL;
1318
1319 if (sock_flag(sk, SOCK_DONE))
1320 return NULL;
1321
1322 if (nonblock || !timeo) {
1323 *err = -EAGAIN;
1324 return NULL;
1325 }
1326
1327 add_wait_queue(sk_sleep(sk), &wait);
1328 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1329 sk_wait_event(sk, &timeo,
1330 ctx->recv_pkt != skb ||
1331 !sk_psock_queue_empty(psock),
1332 &wait);
1333 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1334 remove_wait_queue(sk_sleep(sk), &wait);
1335
1336 /* Handle signals */
1337 if (signal_pending(current)) {
1338 *err = sock_intr_errno(timeo);
1339 return NULL;
1340 }
1341 }
1342
1343 return skb;
1344}
1345
1346static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1347 int length, int *pages_used,
1348 unsigned int *size_used,
1349 struct scatterlist *to,
1350 int to_max_pages)
1351{
1352 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1353 struct page *pages[MAX_SKB_FRAGS];
1354 unsigned int size = *size_used;
1355 ssize_t copied, use;
1356 size_t offset;
1357
1358 while (length > 0) {
1359 i = 0;
1360 maxpages = to_max_pages - num_elem;
1361 if (maxpages == 0) {
1362 rc = -EFAULT;
1363 goto out;
1364 }
1365 copied = iov_iter_get_pages(from, pages,
1366 length,
1367 maxpages, &offset);
1368 if (copied <= 0) {
1369 rc = -EFAULT;
1370 goto out;
1371 }
1372
1373 iov_iter_advance(from, copied);
1374
1375 length -= copied;
1376 size += copied;
1377 while (copied) {
1378 use = min_t(int, copied, PAGE_SIZE - offset);
1379
1380 sg_set_page(&to[num_elem],
1381 pages[i], use, offset);
1382 sg_unmark_end(&to[num_elem]);
1383 /* We do not uncharge memory from this API */
1384
1385 offset = 0;
1386 copied -= use;
1387
1388 i++;
1389 num_elem++;
1390 }
1391 }
1392 /* Mark the end in the last sg entry if newly added */
1393 if (num_elem > *pages_used)
1394 sg_mark_end(&to[num_elem - 1]);
1395out:
1396 if (rc)
1397 iov_iter_revert(from, size - *size_used);
1398 *size_used = size;
1399 *pages_used = num_elem;
1400
1401 return rc;
1402}
1403
1404/* This function decrypts the input skb into either out_iov or in out_sg
1405 * or in skb buffers itself. The input parameter 'zc' indicates if
1406 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1407 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1408 * NULL, then the decryption happens inside skb buffers itself, i.e.
1409 * zero-copy gets disabled and 'zc' is updated.
1410 */
1411
1412static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1413 struct iov_iter *out_iov,
1414 struct scatterlist *out_sg,
1415 int *chunk, bool *zc, bool async)
1416{
1417 struct tls_context *tls_ctx = tls_get_ctx(sk);
1418 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1419 struct tls_prot_info *prot = &tls_ctx->prot_info;
1420 struct strp_msg *rxm = strp_msg(skb);
1421 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1422 struct aead_request *aead_req;
1423 struct sk_buff *unused;
1424 u8 *aad, *iv, *mem = NULL;
1425 struct scatterlist *sgin = NULL;
1426 struct scatterlist *sgout = NULL;
1427 const int data_len = rxm->full_len - prot->overhead_size +
1428 prot->tail_size;
1429 int iv_offset = 0;
1430
1431 if (*zc && (out_iov || out_sg)) {
1432 if (out_iov)
1433 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1434 else
1435 n_sgout = sg_nents(out_sg);
1436 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1437 rxm->full_len - prot->prepend_size);
1438 } else {
1439 n_sgout = 0;
1440 *zc = false;
1441 n_sgin = skb_cow_data(skb, 0, &unused);
1442 }
1443
1444 if (n_sgin < 1)
1445 return -EBADMSG;
1446
1447 /* Increment to accommodate AAD */
1448 n_sgin = n_sgin + 1;
1449
1450 nsg = n_sgin + n_sgout;
1451
1452 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1453 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1454 mem_size = mem_size + prot->aad_size;
1455 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1456
1457 /* Allocate a single block of memory which contains
1458 * aead_req || sgin[] || sgout[] || aad || iv.
1459 * This order achieves correct alignment for aead_req, sgin, sgout.
1460 */
1461 mem = kmalloc(mem_size, sk->sk_allocation);
1462 if (!mem)
1463 return -ENOMEM;
1464
1465 /* Segment the allocated memory */
1466 aead_req = (struct aead_request *)mem;
1467 sgin = (struct scatterlist *)(mem + aead_size);
1468 sgout = sgin + n_sgin;
1469 aad = (u8 *)(sgout + n_sgout);
1470 iv = aad + prot->aad_size;
1471
1472 /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1473 if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1474 iv[0] = 2;
1475 iv_offset = 1;
1476 }
1477
1478 /* Prepare IV */
1479 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1480 iv + iv_offset + prot->salt_size,
1481 prot->iv_size);
1482 if (err < 0) {
1483 kfree(mem);
1484 return err;
1485 }
1486 if (prot->version == TLS_1_3_VERSION)
1487 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1488 prot->iv_size + prot->salt_size);
1489 else
1490 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1491
1492 xor_iv_with_seq(prot->version, iv + iv_offset, tls_ctx->rx.rec_seq);
1493
1494 /* Prepare AAD */
1495 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1496 prot->tail_size,
1497 tls_ctx->rx.rec_seq, prot->rec_seq_size,
1498 ctx->control, prot->version);
1499
1500 /* Prepare sgin */
1501 sg_init_table(sgin, n_sgin);
1502 sg_set_buf(&sgin[0], aad, prot->aad_size);
1503 err = skb_to_sgvec(skb, &sgin[1],
1504 rxm->offset + prot->prepend_size,
1505 rxm->full_len - prot->prepend_size);
1506 if (err < 0) {
1507 kfree(mem);
1508 return err;
1509 }
1510
1511 if (n_sgout) {
1512 if (out_iov) {
1513 sg_init_table(sgout, n_sgout);
1514 sg_set_buf(&sgout[0], aad, prot->aad_size);
1515
1516 *chunk = 0;
1517 err = tls_setup_from_iter(sk, out_iov, data_len,
1518 &pages, chunk, &sgout[1],
1519 (n_sgout - 1));
1520 if (err < 0)
1521 goto fallback_to_reg_recv;
1522 } else if (out_sg) {
1523 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1524 } else {
1525 goto fallback_to_reg_recv;
1526 }
1527 } else {
1528fallback_to_reg_recv:
1529 sgout = sgin;
1530 pages = 0;
1531 *chunk = data_len;
1532 *zc = false;
1533 }
1534
1535 /* Prepare and submit AEAD request */
1536 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1537 data_len, aead_req, async);
1538 if (err == -EINPROGRESS)
1539 return err;
1540
1541 /* Release the pages in case iov was mapped to pages */
1542 for (; pages > 0; pages--)
1543 put_page(sg_page(&sgout[pages]));
1544
1545 kfree(mem);
1546 return err;
1547}
1548
1549static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1550 struct iov_iter *dest, int *chunk, bool *zc,
1551 bool async)
1552{
1553 struct tls_context *tls_ctx = tls_get_ctx(sk);
1554 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1555 struct tls_prot_info *prot = &tls_ctx->prot_info;
1556 struct strp_msg *rxm = strp_msg(skb);
1557 int pad, err = 0;
1558
1559 if (!ctx->decrypted) {
1560 if (tls_ctx->rx_conf == TLS_HW) {
1561 err = tls_device_decrypted(sk, skb);
1562 if (err < 0)
1563 return err;
1564 }
1565
1566 /* Still not decrypted after tls_device */
1567 if (!ctx->decrypted) {
1568 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1569 async);
1570 if (err < 0) {
1571 if (err == -EINPROGRESS)
1572 tls_advance_record_sn(sk, prot,
1573 &tls_ctx->rx);
1574
1575 return err;
1576 }
1577 } else {
1578 *zc = false;
1579 }
1580
1581 pad = padding_length(ctx, prot, skb);
1582 if (pad < 0)
1583 return pad;
1584
1585 rxm->full_len -= pad;
1586 rxm->offset += prot->prepend_size;
1587 rxm->full_len -= prot->overhead_size;
1588 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1589 ctx->decrypted = true;
1590 ctx->saved_data_ready(sk);
1591 } else {
1592 *zc = false;
1593 }
1594
1595 return err;
1596}
1597
1598int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1599 struct scatterlist *sgout)
1600{
1601 bool zc = true;
1602 int chunk;
1603
1604 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1605}
1606
1607static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1608 unsigned int len)
1609{
1610 struct tls_context *tls_ctx = tls_get_ctx(sk);
1611 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1612
1613 if (skb) {
1614 struct strp_msg *rxm = strp_msg(skb);
1615
1616 if (len < rxm->full_len) {
1617 rxm->offset += len;
1618 rxm->full_len -= len;
1619 return false;
1620 }
1621 consume_skb(skb);
1622 }
1623
1624 /* Finished with message */
1625 ctx->recv_pkt = NULL;
1626 __strp_unpause(&ctx->strp);
1627
1628 return true;
1629}
1630
1631/* This function traverses the rx_list in tls receive context to copies the
1632 * decrypted records into the buffer provided by caller zero copy is not
1633 * true. Further, the records are removed from the rx_list if it is not a peek
1634 * case and the record has been consumed completely.
1635 */
1636static int process_rx_list(struct tls_sw_context_rx *ctx,
1637 struct msghdr *msg,
1638 u8 *control,
1639 bool *cmsg,
1640 size_t skip,
1641 size_t len,
1642 bool zc,
1643 bool is_peek)
1644{
1645 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1646 u8 ctrl = *control;
1647 u8 msgc = *cmsg;
1648 struct tls_msg *tlm;
1649 ssize_t copied = 0;
1650
1651 /* Set the record type in 'control' if caller didn't pass it */
1652 if (!ctrl && skb) {
1653 tlm = tls_msg(skb);
1654 ctrl = tlm->control;
1655 }
1656
1657 while (skip && skb) {
1658 struct strp_msg *rxm = strp_msg(skb);
1659 tlm = tls_msg(skb);
1660
1661 /* Cannot process a record of different type */
1662 if (ctrl != tlm->control)
1663 return 0;
1664
1665 if (skip < rxm->full_len)
1666 break;
1667
1668 skip = skip - rxm->full_len;
1669 skb = skb_peek_next(skb, &ctx->rx_list);
1670 }
1671
1672 while (len && skb) {
1673 struct sk_buff *next_skb;
1674 struct strp_msg *rxm = strp_msg(skb);
1675 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1676
1677 tlm = tls_msg(skb);
1678
1679 /* Cannot process a record of different type */
1680 if (ctrl != tlm->control)
1681 return 0;
1682
1683 /* Set record type if not already done. For a non-data record,
1684 * do not proceed if record type could not be copied.
1685 */
1686 if (!msgc) {
1687 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1688 sizeof(ctrl), &ctrl);
1689 msgc = true;
1690 if (ctrl != TLS_RECORD_TYPE_DATA) {
1691 if (cerr || msg->msg_flags & MSG_CTRUNC)
1692 return -EIO;
1693
1694 *cmsg = msgc;
1695 }
1696 }
1697
1698 if (!zc || (rxm->full_len - skip) > len) {
1699 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1700 msg, chunk);
1701 if (err < 0)
1702 return err;
1703 }
1704
1705 len = len - chunk;
1706 copied = copied + chunk;
1707
1708 /* Consume the data from record if it is non-peek case*/
1709 if (!is_peek) {
1710 rxm->offset = rxm->offset + chunk;
1711 rxm->full_len = rxm->full_len - chunk;
1712
1713 /* Return if there is unconsumed data in the record */
1714 if (rxm->full_len - skip)
1715 break;
1716 }
1717
1718 /* The remaining skip-bytes must lie in 1st record in rx_list.
1719 * So from the 2nd record, 'skip' should be 0.
1720 */
1721 skip = 0;
1722
1723 if (msg)
1724 msg->msg_flags |= MSG_EOR;
1725
1726 next_skb = skb_peek_next(skb, &ctx->rx_list);
1727
1728 if (!is_peek) {
1729 skb_unlink(skb, &ctx->rx_list);
1730 consume_skb(skb);
1731 }
1732
1733 skb = next_skb;
1734 }
1735
1736 *control = ctrl;
1737 return copied;
1738}
1739
1740int tls_sw_recvmsg(struct sock *sk,
1741 struct msghdr *msg,
1742 size_t len,
1743 int nonblock,
1744 int flags,
1745 int *addr_len)
1746{
1747 struct tls_context *tls_ctx = tls_get_ctx(sk);
1748 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1749 struct tls_prot_info *prot = &tls_ctx->prot_info;
1750 struct sk_psock *psock;
1751 int num_async, pending;
1752 unsigned char control = 0;
1753 ssize_t decrypted = 0;
1754 struct strp_msg *rxm;
1755 struct tls_msg *tlm;
1756 struct sk_buff *skb;
1757 ssize_t copied = 0;
1758 bool cmsg = false;
1759 int target, err = 0;
1760 long timeo;
1761 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1762 bool is_peek = flags & MSG_PEEK;
1763 bool bpf_strp_enabled;
1764
1765 flags |= nonblock;
1766
1767 if (unlikely(flags & MSG_ERRQUEUE))
1768 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1769
1770 psock = sk_psock_get(sk);
1771 lock_sock(sk);
1772 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1773
1774 /* Process pending decrypted records. It must be non-zero-copy */
1775 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1776 is_peek);
1777 if (err < 0) {
1778 tls_err_abort(sk, err);
1779 goto end;
1780 }
1781
1782 copied = err;
1783 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA))
1784 goto end;
1785
1786 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1787 len = len - copied;
1788 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1789
1790 decrypted = 0;
1791 num_async = 0;
1792 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1793 bool retain_skb = false;
1794 bool zc = false;
1795 int to_decrypt;
1796 int chunk = 0;
1797 bool async_capable;
1798 bool async = false;
1799
1800 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1801 if (!skb) {
1802 if (psock) {
1803 int ret = __tcp_bpf_recvmsg(sk, psock,
1804 msg, len, flags);
1805
1806 if (ret > 0) {
1807 decrypted += ret;
1808 len -= ret;
1809 continue;
1810 }
1811 }
1812 goto recv_end;
1813 } else {
1814 tlm = tls_msg(skb);
1815 if (prot->version == TLS_1_3_VERSION)
1816 tlm->control = 0;
1817 else
1818 tlm->control = ctx->control;
1819 }
1820
1821 rxm = strp_msg(skb);
1822
1823 to_decrypt = rxm->full_len - prot->overhead_size;
1824
1825 if (to_decrypt <= len && !is_kvec && !is_peek &&
1826 ctx->control == TLS_RECORD_TYPE_DATA &&
1827 prot->version != TLS_1_3_VERSION &&
1828 !bpf_strp_enabled)
1829 zc = true;
1830
1831 /* Do not use async mode if record is non-data */
1832 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1833 async_capable = ctx->async_capable;
1834 else
1835 async_capable = false;
1836
1837 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1838 &chunk, &zc, async_capable);
1839 if (err < 0 && err != -EINPROGRESS) {
1840 tls_err_abort(sk, -EBADMSG);
1841 goto recv_end;
1842 }
1843
1844 if (err == -EINPROGRESS) {
1845 async = true;
1846 num_async++;
1847 } else if (prot->version == TLS_1_3_VERSION) {
1848 tlm->control = ctx->control;
1849 }
1850
1851 /* If the type of records being processed is not known yet,
1852 * set it to record type just dequeued. If it is already known,
1853 * but does not match the record type just dequeued, go to end.
1854 * We always get record type here since for tls1.2, record type
1855 * is known just after record is dequeued from stream parser.
1856 * For tls1.3, we disable async.
1857 */
1858
1859 if (!control)
1860 control = tlm->control;
1861 else if (control != tlm->control)
1862 goto recv_end;
1863
1864 if (!cmsg) {
1865 int cerr;
1866
1867 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1868 sizeof(control), &control);
1869 cmsg = true;
1870 if (control != TLS_RECORD_TYPE_DATA) {
1871 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1872 err = -EIO;
1873 goto recv_end;
1874 }
1875 }
1876 }
1877
1878 if (async)
1879 goto pick_next_record;
1880
1881 if (!zc) {
1882 if (bpf_strp_enabled) {
1883 err = sk_psock_tls_strp_read(psock, skb);
1884 if (err != __SK_PASS) {
1885 rxm->offset = rxm->offset + rxm->full_len;
1886 rxm->full_len = 0;
1887 if (err == __SK_DROP)
1888 consume_skb(skb);
1889 ctx->recv_pkt = NULL;
1890 __strp_unpause(&ctx->strp);
1891 continue;
1892 }
1893 }
1894
1895 if (rxm->full_len > len) {
1896 retain_skb = true;
1897 chunk = len;
1898 } else {
1899 chunk = rxm->full_len;
1900 }
1901
1902 err = skb_copy_datagram_msg(skb, rxm->offset,
1903 msg, chunk);
1904 if (err < 0)
1905 goto recv_end;
1906
1907 if (!is_peek) {
1908 rxm->offset = rxm->offset + chunk;
1909 rxm->full_len = rxm->full_len - chunk;
1910 }
1911 }
1912
1913pick_next_record:
1914 if (chunk > len)
1915 chunk = len;
1916
1917 decrypted += chunk;
1918 len -= chunk;
1919
1920 /* For async or peek case, queue the current skb */
1921 if (async || is_peek || retain_skb) {
1922 skb_queue_tail(&ctx->rx_list, skb);
1923 skb = NULL;
1924 }
1925
1926 if (tls_sw_advance_skb(sk, skb, chunk)) {
1927 /* Return full control message to
1928 * userspace before trying to parse
1929 * another message type
1930 */
1931 msg->msg_flags |= MSG_EOR;
1932 if (control != TLS_RECORD_TYPE_DATA)
1933 goto recv_end;
1934 } else {
1935 break;
1936 }
1937 }
1938
1939recv_end:
1940 if (num_async) {
1941 /* Wait for all previously submitted records to be decrypted */
1942 spin_lock_bh(&ctx->decrypt_compl_lock);
1943 ctx->async_notify = true;
1944 pending = atomic_read(&ctx->decrypt_pending);
1945 spin_unlock_bh(&ctx->decrypt_compl_lock);
1946 if (pending) {
1947 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1948 if (err) {
1949 /* one of async decrypt failed */
1950 tls_err_abort(sk, err);
1951 copied = 0;
1952 decrypted = 0;
1953 goto end;
1954 }
1955 } else {
1956 reinit_completion(&ctx->async_wait.completion);
1957 }
1958
1959 /* There can be no concurrent accesses, since we have no
1960 * pending decrypt operations
1961 */
1962 WRITE_ONCE(ctx->async_notify, false);
1963
1964 /* Drain records from the rx_list & copy if required */
1965 if (is_peek || is_kvec)
1966 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1967 decrypted, false, is_peek);
1968 else
1969 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1970 decrypted, true, is_peek);
1971 if (err < 0) {
1972 tls_err_abort(sk, err);
1973 copied = 0;
1974 goto end;
1975 }
1976 }
1977
1978 copied += decrypted;
1979
1980end:
1981 release_sock(sk);
1982 if (psock)
1983 sk_psock_put(sk, psock);
1984 return copied ? : err;
1985}
1986
1987ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1988 struct pipe_inode_info *pipe,
1989 size_t len, unsigned int flags)
1990{
1991 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1992 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1993 struct strp_msg *rxm = NULL;
1994 struct sock *sk = sock->sk;
1995 struct sk_buff *skb;
1996 ssize_t copied = 0;
1997 int err = 0;
1998 long timeo;
1999 int chunk;
2000 bool zc = false;
2001
2002 lock_sock(sk);
2003
2004 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2005
2006 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2007 if (!skb)
2008 goto splice_read_end;
2009
2010 if (!ctx->decrypted) {
2011 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2012
2013 /* splice does not support reading control messages */
2014 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2015 err = -EINVAL;
2016 goto splice_read_end;
2017 }
2018
2019 if (err < 0) {
2020 tls_err_abort(sk, -EBADMSG);
2021 goto splice_read_end;
2022 }
2023 ctx->decrypted = true;
2024 }
2025 rxm = strp_msg(skb);
2026
2027 chunk = min_t(unsigned int, rxm->full_len, len);
2028 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2029 if (copied < 0)
2030 goto splice_read_end;
2031
2032 if (likely(!(flags & MSG_PEEK)))
2033 tls_sw_advance_skb(sk, skb, copied);
2034
2035splice_read_end:
2036 release_sock(sk);
2037 return copied ? : err;
2038}
2039
2040bool tls_sw_stream_read(const struct sock *sk)
2041{
2042 struct tls_context *tls_ctx = tls_get_ctx(sk);
2043 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2044 bool ingress_empty = true;
2045 struct sk_psock *psock;
2046
2047 rcu_read_lock();
2048 psock = sk_psock(sk);
2049 if (psock)
2050 ingress_empty = list_empty(&psock->ingress_msg);
2051 rcu_read_unlock();
2052
2053 return !ingress_empty || ctx->recv_pkt ||
2054 !skb_queue_empty(&ctx->rx_list);
2055}
2056
2057static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2058{
2059 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2060 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2061 struct tls_prot_info *prot = &tls_ctx->prot_info;
2062 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2063 struct strp_msg *rxm = strp_msg(skb);
2064 size_t cipher_overhead;
2065 size_t data_len = 0;
2066 int ret;
2067
2068 /* Verify that we have a full TLS header, or wait for more data */
2069 if (rxm->offset + prot->prepend_size > skb->len)
2070 return 0;
2071
2072 /* Sanity-check size of on-stack buffer. */
2073 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2074 ret = -EINVAL;
2075 goto read_failure;
2076 }
2077
2078 /* Linearize header to local buffer */
2079 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2080
2081 if (ret < 0)
2082 goto read_failure;
2083
2084 ctx->control = header[0];
2085
2086 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2087
2088 cipher_overhead = prot->tag_size;
2089 if (prot->version != TLS_1_3_VERSION)
2090 cipher_overhead += prot->iv_size;
2091
2092 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2093 prot->tail_size) {
2094 ret = -EMSGSIZE;
2095 goto read_failure;
2096 }
2097 if (data_len < cipher_overhead) {
2098 ret = -EBADMSG;
2099 goto read_failure;
2100 }
2101
2102 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2103 if (header[1] != TLS_1_2_VERSION_MINOR ||
2104 header[2] != TLS_1_2_VERSION_MAJOR) {
2105 ret = -EINVAL;
2106 goto read_failure;
2107 }
2108
2109 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2110 TCP_SKB_CB(skb)->seq + rxm->offset);
2111 return data_len + TLS_HEADER_SIZE;
2112
2113read_failure:
2114 tls_err_abort(strp->sk, ret);
2115
2116 return ret;
2117}
2118
2119static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2120{
2121 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2122 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2123
2124 ctx->decrypted = false;
2125
2126 ctx->recv_pkt = skb;
2127 strp_pause(strp);
2128
2129 ctx->saved_data_ready(strp->sk);
2130}
2131
2132static void tls_data_ready(struct sock *sk)
2133{
2134 struct tls_context *tls_ctx = tls_get_ctx(sk);
2135 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2136 struct sk_psock *psock;
2137
2138 strp_data_ready(&ctx->strp);
2139
2140 psock = sk_psock_get(sk);
2141 if (psock) {
2142 if (!list_empty(&psock->ingress_msg))
2143 ctx->saved_data_ready(sk);
2144 sk_psock_put(sk, psock);
2145 }
2146}
2147
2148void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2149{
2150 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151
2152 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2153 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2154 cancel_delayed_work_sync(&ctx->tx_work.work);
2155}
2156
2157void tls_sw_release_resources_tx(struct sock *sk)
2158{
2159 struct tls_context *tls_ctx = tls_get_ctx(sk);
2160 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2161 struct tls_rec *rec, *tmp;
2162 int pending;
2163
2164 /* Wait for any pending async encryptions to complete */
2165 spin_lock_bh(&ctx->encrypt_compl_lock);
2166 ctx->async_notify = true;
2167 pending = atomic_read(&ctx->encrypt_pending);
2168 spin_unlock_bh(&ctx->encrypt_compl_lock);
2169
2170 if (pending)
2171 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2172
2173 tls_tx_records(sk, -1);
2174
2175 /* Free up un-sent records in tx_list. First, free
2176 * the partially sent record if any at head of tx_list.
2177 */
2178 if (tls_ctx->partially_sent_record) {
2179 tls_free_partial_record(sk, tls_ctx);
2180 rec = list_first_entry(&ctx->tx_list,
2181 struct tls_rec, list);
2182 list_del(&rec->list);
2183 sk_msg_free(sk, &rec->msg_plaintext);
2184 kfree(rec);
2185 }
2186
2187 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2188 list_del(&rec->list);
2189 sk_msg_free(sk, &rec->msg_encrypted);
2190 sk_msg_free(sk, &rec->msg_plaintext);
2191 kfree(rec);
2192 }
2193
2194 crypto_free_aead(ctx->aead_send);
2195 tls_free_open_rec(sk);
2196}
2197
2198void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2199{
2200 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2201
2202 kfree(ctx);
2203}
2204
2205void tls_sw_release_resources_rx(struct sock *sk)
2206{
2207 struct tls_context *tls_ctx = tls_get_ctx(sk);
2208 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2209
2210 kfree(tls_ctx->rx.rec_seq);
2211 kfree(tls_ctx->rx.iv);
2212
2213 if (ctx->aead_recv) {
2214 kfree_skb(ctx->recv_pkt);
2215 ctx->recv_pkt = NULL;
2216 skb_queue_purge(&ctx->rx_list);
2217 crypto_free_aead(ctx->aead_recv);
2218 strp_stop(&ctx->strp);
2219 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2220 * we still want to strp_stop(), but sk->sk_data_ready was
2221 * never swapped.
2222 */
2223 if (ctx->saved_data_ready) {
2224 write_lock_bh(&sk->sk_callback_lock);
2225 sk->sk_data_ready = ctx->saved_data_ready;
2226 write_unlock_bh(&sk->sk_callback_lock);
2227 }
2228 }
2229}
2230
2231void tls_sw_strparser_done(struct tls_context *tls_ctx)
2232{
2233 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2234
2235 strp_done(&ctx->strp);
2236}
2237
2238void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2239{
2240 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2241
2242 kfree(ctx);
2243}
2244
2245void tls_sw_free_resources_rx(struct sock *sk)
2246{
2247 struct tls_context *tls_ctx = tls_get_ctx(sk);
2248
2249 tls_sw_release_resources_rx(sk);
2250 tls_sw_free_ctx_rx(tls_ctx);
2251}
2252
2253/* The work handler to transmitt the encrypted records in tx_list */
2254static void tx_work_handler(struct work_struct *work)
2255{
2256 struct delayed_work *delayed_work = to_delayed_work(work);
2257 struct tx_work *tx_work = container_of(delayed_work,
2258 struct tx_work, work);
2259 struct sock *sk = tx_work->sk;
2260 struct tls_context *tls_ctx = tls_get_ctx(sk);
2261 struct tls_sw_context_tx *ctx;
2262
2263 if (unlikely(!tls_ctx))
2264 return;
2265
2266 ctx = tls_sw_ctx_tx(tls_ctx);
2267 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2268 return;
2269
2270 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2271 return;
2272
2273 if (mutex_trylock(&tls_ctx->tx_lock)) {
2274 lock_sock(sk);
2275 tls_tx_records(sk, -1);
2276 release_sock(sk);
2277 mutex_unlock(&tls_ctx->tx_lock);
2278 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2279 /* Someone is holding the tx_lock, they will likely run Tx
2280 * and cancel the work on their way out of the lock section.
2281 * Schedule a long delay just in case.
2282 */
2283 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2284 }
2285}
2286
2287void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2288{
2289 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2290
2291 /* Schedule the transmission if tx list is ready */
2292 if (is_tx_ready(tx_ctx) &&
2293 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2294 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2295}
2296
2297void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2298{
2299 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2300
2301 write_lock_bh(&sk->sk_callback_lock);
2302 rx_ctx->saved_data_ready = sk->sk_data_ready;
2303 sk->sk_data_ready = tls_data_ready;
2304 write_unlock_bh(&sk->sk_callback_lock);
2305
2306 strp_check_rcv(&rx_ctx->strp);
2307}
2308
2309int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2310{
2311 struct tls_context *tls_ctx = tls_get_ctx(sk);
2312 struct tls_prot_info *prot = &tls_ctx->prot_info;
2313 struct tls_crypto_info *crypto_info;
2314 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2315 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2316 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2317 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2318 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2319 struct cipher_context *cctx;
2320 struct crypto_aead **aead;
2321 struct strp_callbacks cb;
2322 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2323 struct crypto_tfm *tfm;
2324 char *iv, *rec_seq, *key, *salt, *cipher_name;
2325 size_t keysize;
2326 int rc = 0;
2327
2328 if (!ctx) {
2329 rc = -EINVAL;
2330 goto out;
2331 }
2332
2333 if (tx) {
2334 if (!ctx->priv_ctx_tx) {
2335 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2336 if (!sw_ctx_tx) {
2337 rc = -ENOMEM;
2338 goto out;
2339 }
2340 ctx->priv_ctx_tx = sw_ctx_tx;
2341 } else {
2342 sw_ctx_tx =
2343 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2344 }
2345 } else {
2346 if (!ctx->priv_ctx_rx) {
2347 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2348 if (!sw_ctx_rx) {
2349 rc = -ENOMEM;
2350 goto out;
2351 }
2352 ctx->priv_ctx_rx = sw_ctx_rx;
2353 } else {
2354 sw_ctx_rx =
2355 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2356 }
2357 }
2358
2359 if (tx) {
2360 crypto_init_wait(&sw_ctx_tx->async_wait);
2361 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2362 crypto_info = &ctx->crypto_send.info;
2363 cctx = &ctx->tx;
2364 aead = &sw_ctx_tx->aead_send;
2365 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2366 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2367 sw_ctx_tx->tx_work.sk = sk;
2368 } else {
2369 crypto_init_wait(&sw_ctx_rx->async_wait);
2370 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2371 crypto_info = &ctx->crypto_recv.info;
2372 cctx = &ctx->rx;
2373 skb_queue_head_init(&sw_ctx_rx->rx_list);
2374 aead = &sw_ctx_rx->aead_recv;
2375 }
2376
2377 switch (crypto_info->cipher_type) {
2378 case TLS_CIPHER_AES_GCM_128: {
2379 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2380 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2381 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2382 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2383 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2384 rec_seq =
2385 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2386 gcm_128_info =
2387 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2388 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2389 key = gcm_128_info->key;
2390 salt = gcm_128_info->salt;
2391 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2392 cipher_name = "gcm(aes)";
2393 break;
2394 }
2395 case TLS_CIPHER_AES_GCM_256: {
2396 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2397 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2398 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2399 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2400 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2401 rec_seq =
2402 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2403 gcm_256_info =
2404 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2405 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2406 key = gcm_256_info->key;
2407 salt = gcm_256_info->salt;
2408 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2409 cipher_name = "gcm(aes)";
2410 break;
2411 }
2412 case TLS_CIPHER_AES_CCM_128: {
2413 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2414 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2415 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2416 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2417 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2418 rec_seq =
2419 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2420 ccm_128_info =
2421 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2422 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2423 key = ccm_128_info->key;
2424 salt = ccm_128_info->salt;
2425 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2426 cipher_name = "ccm(aes)";
2427 break;
2428 }
2429 default:
2430 rc = -EINVAL;
2431 goto free_priv;
2432 }
2433
2434 /* Sanity-check the sizes for stack allocations. */
2435 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2436 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2437 rc = -EINVAL;
2438 goto free_priv;
2439 }
2440
2441 if (crypto_info->version == TLS_1_3_VERSION) {
2442 nonce_size = 0;
2443 prot->aad_size = TLS_HEADER_SIZE;
2444 prot->tail_size = 1;
2445 } else {
2446 prot->aad_size = TLS_AAD_SPACE_SIZE;
2447 prot->tail_size = 0;
2448 }
2449
2450 prot->version = crypto_info->version;
2451 prot->cipher_type = crypto_info->cipher_type;
2452 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2453 prot->tag_size = tag_size;
2454 prot->overhead_size = prot->prepend_size +
2455 prot->tag_size + prot->tail_size;
2456 prot->iv_size = iv_size;
2457 prot->salt_size = salt_size;
2458 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2459 if (!cctx->iv) {
2460 rc = -ENOMEM;
2461 goto free_priv;
2462 }
2463 /* Note: 128 & 256 bit salt are the same size */
2464 prot->rec_seq_size = rec_seq_size;
2465 memcpy(cctx->iv, salt, salt_size);
2466 memcpy(cctx->iv + salt_size, iv, iv_size);
2467 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2468 if (!cctx->rec_seq) {
2469 rc = -ENOMEM;
2470 goto free_iv;
2471 }
2472
2473 if (!*aead) {
2474 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2475 if (IS_ERR(*aead)) {
2476 rc = PTR_ERR(*aead);
2477 *aead = NULL;
2478 goto free_rec_seq;
2479 }
2480 }
2481
2482 ctx->push_pending_record = tls_sw_push_pending_record;
2483
2484 rc = crypto_aead_setkey(*aead, key, keysize);
2485
2486 if (rc)
2487 goto free_aead;
2488
2489 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2490 if (rc)
2491 goto free_aead;
2492
2493 if (sw_ctx_rx) {
2494 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2495
2496 if (crypto_info->version == TLS_1_3_VERSION)
2497 sw_ctx_rx->async_capable = false;
2498 else
2499 sw_ctx_rx->async_capable =
2500 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2501
2502 /* Set up strparser */
2503 memset(&cb, 0, sizeof(cb));
2504 cb.rcv_msg = tls_queue;
2505 cb.parse_msg = tls_read_size;
2506
2507 strp_init(&sw_ctx_rx->strp, sk, &cb);
2508 }
2509
2510 goto out;
2511
2512free_aead:
2513 crypto_free_aead(*aead);
2514 *aead = NULL;
2515free_rec_seq:
2516 kfree(cctx->rec_seq);
2517 cctx->rec_seq = NULL;
2518free_iv:
2519 kfree(cctx->iv);
2520 cctx->iv = NULL;
2521free_priv:
2522 if (tx) {
2523 kfree(ctx->priv_ctx_tx);
2524 ctx->priv_ctx_tx = NULL;
2525 } else {
2526 kfree(ctx->priv_ctx_rx);
2527 ctx->priv_ctx_rx = NULL;
2528 }
2529out:
2530 return rc;
2531}