blob: fdc6c76be7235abacef4ebfba5f82dc921b375e5 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/slab.h>
10#include <linux/sched/autogroup.h>
11#include <linux/sched/mm.h>
12#include <linux/sched/stat.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/sched/cputime.h>
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/capability.h>
19#include <linux/completion.h>
20#include <linux/personality.h>
21#include <linux/tty.h>
22#include <linux/iocontext.h>
23#include <linux/key.h>
24#include <linux/cpu.h>
25#include <linux/acct.h>
26#include <linux/tsacct_kern.h>
27#include <linux/file.h>
28#include <linux/fdtable.h>
29#include <linux/freezer.h>
30#include <linux/binfmts.h>
31#include <linux/nsproxy.h>
32#include <linux/pid_namespace.h>
33#include <linux/ptrace.h>
34#include <linux/profile.h>
35#include <linux/mount.h>
36#include <linux/proc_fs.h>
37#include <linux/kthread.h>
38#include <linux/mempolicy.h>
39#include <linux/taskstats_kern.h>
40#include <linux/delayacct.h>
41#include <linux/cgroup.h>
42#include <linux/syscalls.h>
43#include <linux/signal.h>
44#include <linux/posix-timers.h>
45#include <linux/cn_proc.h>
46#include <linux/mutex.h>
47#include <linux/futex.h>
48#include <linux/pipe_fs_i.h>
49#include <linux/audit.h> /* for audit_free() */
50#include <linux/resource.h>
51#include <linux/blkdev.h>
52#include <linux/task_io_accounting_ops.h>
53#include <linux/tracehook.h>
54#include <linux/fs_struct.h>
55#include <linux/init_task.h>
56#include <linux/perf_event.h>
57#include <trace/events/sched.h>
58#include <linux/hw_breakpoint.h>
59#include <linux/oom.h>
60#include <linux/writeback.h>
61#include <linux/shm.h>
62#include <linux/kcov.h>
63#include <linux/random.h>
64#include <linux/rcuwait.h>
65#include <linux/compat.h>
66#include <linux/sysfs.h>
67
68#include <linux/uaccess.h>
69#include <asm/unistd.h>
70#include <asm/pgtable.h>
71#include <asm/mmu_context.h>
72
73/*
74 * The default value should be high enough to not crash a system that randomly
75 * crashes its kernel from time to time, but low enough to at least not permit
76 * overflowing 32-bit refcounts or the ldsem writer count.
77 */
78static unsigned int oops_limit = 10000;
79
80#ifdef CONFIG_SYSCTL
81static struct ctl_table kern_exit_table[] = {
82 {
83 .procname = "oops_limit",
84 .data = &oops_limit,
85 .maxlen = sizeof(oops_limit),
86 .mode = 0644,
87 .proc_handler = proc_douintvec,
88 },
89 { }
90};
91
92static __init int kernel_exit_sysctls_init(void)
93{
94 register_sysctl_init("kernel", kern_exit_table);
95 return 0;
96}
97late_initcall(kernel_exit_sysctls_init);
98#endif
99
100static atomic_t oops_count = ATOMIC_INIT(0);
101
102#ifdef CONFIG_SYSFS
103static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
104 char *page)
105{
106 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
107}
108
109static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
110
111static __init int kernel_exit_sysfs_init(void)
112{
113 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
114 return 0;
115}
116late_initcall(kernel_exit_sysfs_init);
117#endif
118
119static void __unhash_process(struct task_struct *p, bool group_dead)
120{
121 nr_threads--;
122 detach_pid(p, PIDTYPE_PID);
123 if (group_dead) {
124 detach_pid(p, PIDTYPE_TGID);
125 detach_pid(p, PIDTYPE_PGID);
126 detach_pid(p, PIDTYPE_SID);
127
128 list_del_rcu(&p->tasks);
129 list_del_init(&p->sibling);
130 __this_cpu_dec(process_counts);
131 }
132 list_del_rcu(&p->thread_group);
133 list_del_rcu(&p->thread_node);
134}
135
136/*
137 * This function expects the tasklist_lock write-locked.
138 */
139static void __exit_signal(struct task_struct *tsk)
140{
141 struct signal_struct *sig = tsk->signal;
142 bool group_dead = thread_group_leader(tsk);
143 struct sighand_struct *sighand;
144 struct tty_struct *tty;
145 u64 utime, stime;
146
147 sighand = rcu_dereference_check(tsk->sighand,
148 lockdep_tasklist_lock_is_held());
149 spin_lock(&sighand->siglock);
150
151#ifdef CONFIG_POSIX_TIMERS
152 posix_cpu_timers_exit(tsk);
153 if (group_dead) {
154 posix_cpu_timers_exit_group(tsk);
155 } else {
156 /*
157 * This can only happen if the caller is de_thread().
158 * FIXME: this is the temporary hack, we should teach
159 * posix-cpu-timers to handle this case correctly.
160 */
161 if (unlikely(has_group_leader_pid(tsk)))
162 posix_cpu_timers_exit_group(tsk);
163 }
164#endif
165
166 if (group_dead) {
167 tty = sig->tty;
168 sig->tty = NULL;
169 } else {
170 /*
171 * If there is any task waiting for the group exit
172 * then notify it:
173 */
174 if (sig->notify_count > 0 && !--sig->notify_count)
175 wake_up_process(sig->group_exit_task);
176
177 if (tsk == sig->curr_target)
178 sig->curr_target = next_thread(tsk);
179 }
180
181 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
182 sizeof(unsigned long long));
183
184 /*
185 * Accumulate here the counters for all threads as they die. We could
186 * skip the group leader because it is the last user of signal_struct,
187 * but we want to avoid the race with thread_group_cputime() which can
188 * see the empty ->thread_head list.
189 */
190 task_cputime(tsk, &utime, &stime);
191 write_seqlock(&sig->stats_lock);
192 sig->utime += utime;
193 sig->stime += stime;
194 sig->gtime += task_gtime(tsk);
195 sig->min_flt += tsk->min_flt;
196 sig->maj_flt += tsk->maj_flt;
197 sig->nvcsw += tsk->nvcsw;
198 sig->nivcsw += tsk->nivcsw;
199 sig->inblock += task_io_get_inblock(tsk);
200 sig->oublock += task_io_get_oublock(tsk);
201 task_io_accounting_add(&sig->ioac, &tsk->ioac);
202 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
203 sig->nr_threads--;
204 __unhash_process(tsk, group_dead);
205 write_sequnlock(&sig->stats_lock);
206
207 /*
208 * Do this under ->siglock, we can race with another thread
209 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
210 */
211 flush_sigqueue(&tsk->pending);
212 tsk->sighand = NULL;
213 spin_unlock(&sighand->siglock);
214
215 __cleanup_sighand(sighand);
216 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
217 if (group_dead) {
218 flush_sigqueue(&sig->shared_pending);
219 tty_kref_put(tty);
220 }
221}
222
223static void delayed_put_task_struct(struct rcu_head *rhp)
224{
225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226
227 perf_event_delayed_put(tsk);
228 trace_sched_process_free(tsk);
229 put_task_struct(tsk);
230}
231
232void put_task_struct_rcu_user(struct task_struct *task)
233{
234 if (refcount_dec_and_test(&task->rcu_users))
235 call_rcu(&task->rcu, delayed_put_task_struct);
236}
237
238void release_task(struct task_struct *p)
239{
240 struct task_struct *leader;
241 int zap_leader;
242repeat:
243 /* don't need to get the RCU readlock here - the process is dead and
244 * can't be modifying its own credentials. But shut RCU-lockdep up */
245 rcu_read_lock();
246 atomic_dec(&__task_cred(p)->user->processes);
247 rcu_read_unlock();
248
249 proc_flush_task(p);
250 cgroup_release(p);
251
252 write_lock_irq(&tasklist_lock);
253 ptrace_release_task(p);
254 __exit_signal(p);
255
256 /*
257 * If we are the last non-leader member of the thread
258 * group, and the leader is zombie, then notify the
259 * group leader's parent process. (if it wants notification.)
260 */
261 zap_leader = 0;
262 leader = p->group_leader;
263 if (leader != p && thread_group_empty(leader)
264 && leader->exit_state == EXIT_ZOMBIE) {
265 /*
266 * If we were the last child thread and the leader has
267 * exited already, and the leader's parent ignores SIGCHLD,
268 * then we are the one who should release the leader.
269 */
270 zap_leader = do_notify_parent(leader, leader->exit_signal);
271 if (zap_leader)
272 leader->exit_state = EXIT_DEAD;
273 }
274
275 write_unlock_irq(&tasklist_lock);
276 seccomp_filter_release(p);
277 release_thread(p);
278 put_task_struct_rcu_user(p);
279
280 p = leader;
281 if (unlikely(zap_leader))
282 goto repeat;
283}
284
285void rcuwait_wake_up(struct rcuwait *w)
286{
287 struct task_struct *task;
288
289 rcu_read_lock();
290
291 /*
292 * Order condition vs @task, such that everything prior to the load
293 * of @task is visible. This is the condition as to why the user called
294 * rcuwait_trywake() in the first place. Pairs with set_current_state()
295 * barrier (A) in rcuwait_wait_event().
296 *
297 * WAIT WAKE
298 * [S] tsk = current [S] cond = true
299 * MB (A) MB (B)
300 * [L] cond [L] tsk
301 */
302 smp_mb(); /* (B) */
303
304 task = rcu_dereference(w->task);
305 if (task)
306 wake_up_process(task);
307 rcu_read_unlock();
308}
309
310/*
311 * Determine if a process group is "orphaned", according to the POSIX
312 * definition in 2.2.2.52. Orphaned process groups are not to be affected
313 * by terminal-generated stop signals. Newly orphaned process groups are
314 * to receive a SIGHUP and a SIGCONT.
315 *
316 * "I ask you, have you ever known what it is to be an orphan?"
317 */
318static int will_become_orphaned_pgrp(struct pid *pgrp,
319 struct task_struct *ignored_task)
320{
321 struct task_struct *p;
322
323 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
324 if ((p == ignored_task) ||
325 (p->exit_state && thread_group_empty(p)) ||
326 is_global_init(p->real_parent))
327 continue;
328
329 if (task_pgrp(p->real_parent) != pgrp &&
330 task_session(p->real_parent) == task_session(p))
331 return 0;
332 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
333
334 return 1;
335}
336
337int is_current_pgrp_orphaned(void)
338{
339 int retval;
340
341 read_lock(&tasklist_lock);
342 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
343 read_unlock(&tasklist_lock);
344
345 return retval;
346}
347
348static bool has_stopped_jobs(struct pid *pgrp)
349{
350 struct task_struct *p;
351
352 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
353 if (p->signal->flags & SIGNAL_STOP_STOPPED)
354 return true;
355 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
356
357 return false;
358}
359
360/*
361 * Check to see if any process groups have become orphaned as
362 * a result of our exiting, and if they have any stopped jobs,
363 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
364 */
365static void
366kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
367{
368 struct pid *pgrp = task_pgrp(tsk);
369 struct task_struct *ignored_task = tsk;
370
371 if (!parent)
372 /* exit: our father is in a different pgrp than
373 * we are and we were the only connection outside.
374 */
375 parent = tsk->real_parent;
376 else
377 /* reparent: our child is in a different pgrp than
378 * we are, and it was the only connection outside.
379 */
380 ignored_task = NULL;
381
382 if (task_pgrp(parent) != pgrp &&
383 task_session(parent) == task_session(tsk) &&
384 will_become_orphaned_pgrp(pgrp, ignored_task) &&
385 has_stopped_jobs(pgrp)) {
386 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
387 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
388 }
389}
390
391#ifdef CONFIG_MEMCG
392/*
393 * A task is exiting. If it owned this mm, find a new owner for the mm.
394 */
395void mm_update_next_owner(struct mm_struct *mm)
396{
397 struct task_struct *c, *g, *p = current;
398
399retry:
400 /*
401 * If the exiting or execing task is not the owner, it's
402 * someone else's problem.
403 */
404 if (mm->owner != p)
405 return;
406 /*
407 * The current owner is exiting/execing and there are no other
408 * candidates. Do not leave the mm pointing to a possibly
409 * freed task structure.
410 */
411 if (atomic_read(&mm->mm_users) <= 1) {
412 WRITE_ONCE(mm->owner, NULL);
413 return;
414 }
415
416 read_lock(&tasklist_lock);
417 /*
418 * Search in the children
419 */
420 list_for_each_entry(c, &p->children, sibling) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 }
424
425 /*
426 * Search in the siblings
427 */
428 list_for_each_entry(c, &p->real_parent->children, sibling) {
429 if (c->mm == mm)
430 goto assign_new_owner;
431 }
432
433 /*
434 * Search through everything else, we should not get here often.
435 */
436 for_each_process(g) {
437 if (atomic_read(&mm->mm_users) <= 1)
438 break;
439 if (g->flags & PF_KTHREAD)
440 continue;
441 for_each_thread(g, c) {
442 if (c->mm == mm)
443 goto assign_new_owner;
444 if (c->mm)
445 break;
446 }
447 }
448 read_unlock(&tasklist_lock);
449 /*
450 * We found no owner yet mm_users > 1: this implies that we are
451 * most likely racing with swapoff (try_to_unuse()) or /proc or
452 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
453 */
454 WRITE_ONCE(mm->owner, NULL);
455 return;
456
457assign_new_owner:
458 BUG_ON(c == p);
459 get_task_struct(c);
460 /*
461 * The task_lock protects c->mm from changing.
462 * We always want mm->owner->mm == mm
463 */
464 task_lock(c);
465 /*
466 * Delay read_unlock() till we have the task_lock()
467 * to ensure that c does not slip away underneath us
468 */
469 read_unlock(&tasklist_lock);
470 if (c->mm != mm) {
471 task_unlock(c);
472 put_task_struct(c);
473 goto retry;
474 }
475 WRITE_ONCE(mm->owner, c);
476 task_unlock(c);
477 put_task_struct(c);
478}
479#endif /* CONFIG_MEMCG */
480
481/*
482 * Turn us into a lazy TLB process if we
483 * aren't already..
484 */
485static void exit_mm(void)
486{
487 struct mm_struct *mm = current->mm;
488 struct core_state *core_state;
489
490 exit_mm_release(current, mm);
491 if (!mm)
492 return;
493 sync_mm_rss(mm);
494 /*
495 * Serialize with any possible pending coredump.
496 * We must hold mmap_sem around checking core_state
497 * and clearing tsk->mm. The core-inducing thread
498 * will increment ->nr_threads for each thread in the
499 * group with ->mm != NULL.
500 */
501 down_read(&mm->mmap_sem);
502 core_state = mm->core_state;
503 if (core_state) {
504 struct core_thread self;
505
506 up_read(&mm->mmap_sem);
507
508 self.task = current;
509 if (self.task->flags & PF_SIGNALED)
510 self.next = xchg(&core_state->dumper.next, &self);
511 else
512 self.task = NULL;
513 /*
514 * Implies mb(), the result of xchg() must be visible
515 * to core_state->dumper.
516 */
517 if (atomic_dec_and_test(&core_state->nr_threads))
518 complete(&core_state->startup);
519
520 for (;;) {
521 set_current_state(TASK_UNINTERRUPTIBLE);
522 if (!self.task) /* see coredump_finish() */
523 break;
524 freezable_schedule();
525 }
526 __set_current_state(TASK_RUNNING);
527 down_read(&mm->mmap_sem);
528 }
529 mmgrab(mm);
530 BUG_ON(mm != current->active_mm);
531 /* more a memory barrier than a real lock */
532 task_lock(current);
533 current->mm = NULL;
534 up_read(&mm->mmap_sem);
535 enter_lazy_tlb(mm, current);
536 task_unlock(current);
537 mm_update_next_owner(mm);
538 mmput(mm);
539 if (test_thread_flag(TIF_MEMDIE))
540 exit_oom_victim();
541}
542
543static struct task_struct *find_alive_thread(struct task_struct *p)
544{
545 struct task_struct *t;
546
547 for_each_thread(p, t) {
548 if (!(t->flags & PF_EXITING))
549 return t;
550 }
551 return NULL;
552}
553
554static struct task_struct *find_child_reaper(struct task_struct *father,
555 struct list_head *dead)
556 __releases(&tasklist_lock)
557 __acquires(&tasklist_lock)
558{
559 struct pid_namespace *pid_ns = task_active_pid_ns(father);
560 struct task_struct *reaper = pid_ns->child_reaper;
561 struct task_struct *p, *n;
562
563 if (likely(reaper != father))
564 return reaper;
565
566 reaper = find_alive_thread(father);
567 if (reaper) {
568 pid_ns->child_reaper = reaper;
569 return reaper;
570 }
571
572 write_unlock_irq(&tasklist_lock);
573
574 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
575 list_del_init(&p->ptrace_entry);
576 release_task(p);
577 }
578
579 zap_pid_ns_processes(pid_ns);
580 write_lock_irq(&tasklist_lock);
581
582 return father;
583}
584
585/*
586 * When we die, we re-parent all our children, and try to:
587 * 1. give them to another thread in our thread group, if such a member exists
588 * 2. give it to the first ancestor process which prctl'd itself as a
589 * child_subreaper for its children (like a service manager)
590 * 3. give it to the init process (PID 1) in our pid namespace
591 */
592static struct task_struct *find_new_reaper(struct task_struct *father,
593 struct task_struct *child_reaper)
594{
595 struct task_struct *thread, *reaper;
596
597 thread = find_alive_thread(father);
598 if (thread)
599 return thread;
600
601 if (father->signal->has_child_subreaper) {
602 unsigned int ns_level = task_pid(father)->level;
603 /*
604 * Find the first ->is_child_subreaper ancestor in our pid_ns.
605 * We can't check reaper != child_reaper to ensure we do not
606 * cross the namespaces, the exiting parent could be injected
607 * by setns() + fork().
608 * We check pid->level, this is slightly more efficient than
609 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
610 */
611 for (reaper = father->real_parent;
612 task_pid(reaper)->level == ns_level;
613 reaper = reaper->real_parent) {
614 if (reaper == &init_task)
615 break;
616 if (!reaper->signal->is_child_subreaper)
617 continue;
618 thread = find_alive_thread(reaper);
619 if (thread)
620 return thread;
621 }
622 }
623
624 return child_reaper;
625}
626
627/*
628* Any that need to be release_task'd are put on the @dead list.
629 */
630static void reparent_leader(struct task_struct *father, struct task_struct *p,
631 struct list_head *dead)
632{
633 if (unlikely(p->exit_state == EXIT_DEAD))
634 return;
635
636 /* We don't want people slaying init. */
637 p->exit_signal = SIGCHLD;
638
639 /* If it has exited notify the new parent about this child's death. */
640 if (!p->ptrace &&
641 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
642 if (do_notify_parent(p, p->exit_signal)) {
643 p->exit_state = EXIT_DEAD;
644 list_add(&p->ptrace_entry, dead);
645 }
646 }
647
648 kill_orphaned_pgrp(p, father);
649}
650
651/*
652 * This does two things:
653 *
654 * A. Make init inherit all the child processes
655 * B. Check to see if any process groups have become orphaned
656 * as a result of our exiting, and if they have any stopped
657 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
658 */
659static void forget_original_parent(struct task_struct *father,
660 struct list_head *dead)
661{
662 struct task_struct *p, *t, *reaper;
663
664 if (unlikely(!list_empty(&father->ptraced)))
665 exit_ptrace(father, dead);
666
667 /* Can drop and reacquire tasklist_lock */
668 reaper = find_child_reaper(father, dead);
669 if (list_empty(&father->children))
670 return;
671
672 reaper = find_new_reaper(father, reaper);
673 list_for_each_entry(p, &father->children, sibling) {
674 for_each_thread(p, t) {
675 t->real_parent = reaper;
676 BUG_ON((!t->ptrace) != (t->parent == father));
677 if (likely(!t->ptrace))
678 t->parent = t->real_parent;
679 if (t->pdeath_signal)
680 group_send_sig_info(t->pdeath_signal,
681 SEND_SIG_NOINFO, t,
682 PIDTYPE_TGID);
683 }
684 /*
685 * If this is a threaded reparent there is no need to
686 * notify anyone anything has happened.
687 */
688 if (!same_thread_group(reaper, father))
689 reparent_leader(father, p, dead);
690 }
691 list_splice_tail_init(&father->children, &reaper->children);
692}
693
694/*
695 * Send signals to all our closest relatives so that they know
696 * to properly mourn us..
697 */
698static void exit_notify(struct task_struct *tsk, int group_dead)
699{
700 bool autoreap;
701 struct task_struct *p, *n;
702 LIST_HEAD(dead);
703
704 write_lock_irq(&tasklist_lock);
705 forget_original_parent(tsk, &dead);
706
707 if (group_dead)
708 kill_orphaned_pgrp(tsk->group_leader, NULL);
709
710 tsk->exit_state = EXIT_ZOMBIE;
711 if (unlikely(tsk->ptrace)) {
712 int sig = thread_group_leader(tsk) &&
713 thread_group_empty(tsk) &&
714 !ptrace_reparented(tsk) ?
715 tsk->exit_signal : SIGCHLD;
716 autoreap = do_notify_parent(tsk, sig);
717 } else if (thread_group_leader(tsk)) {
718 autoreap = thread_group_empty(tsk) &&
719 do_notify_parent(tsk, tsk->exit_signal);
720 } else {
721 autoreap = true;
722 }
723
724 if (autoreap) {
725 tsk->exit_state = EXIT_DEAD;
726 list_add(&tsk->ptrace_entry, &dead);
727 }
728
729 /* mt-exec, de_thread() is waiting for group leader */
730 if (unlikely(tsk->signal->notify_count < 0))
731 wake_up_process(tsk->signal->group_exit_task);
732 write_unlock_irq(&tasklist_lock);
733
734 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
735 list_del_init(&p->ptrace_entry);
736 release_task(p);
737 }
738}
739
740#ifdef CONFIG_DEBUG_STACK_USAGE
741static void check_stack_usage(void)
742{
743 static DEFINE_SPINLOCK(low_water_lock);
744 static int lowest_to_date = THREAD_SIZE;
745 unsigned long free;
746
747 free = stack_not_used(current);
748
749 if (free >= lowest_to_date)
750 return;
751
752 spin_lock(&low_water_lock);
753 if (free < lowest_to_date) {
754 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
755 current->comm, task_pid_nr(current), free);
756 lowest_to_date = free;
757 }
758 spin_unlock(&low_water_lock);
759}
760#else
761static inline void check_stack_usage(void) {}
762#endif
763
764void __noreturn do_exit(long code)
765{
766 struct task_struct *tsk = current;
767 int group_dead;
768
769 /*
770 * We can get here from a kernel oops, sometimes with preemption off.
771 * Start by checking for critical errors.
772 * Then fix up important state like USER_DS and preemption.
773 * Then do everything else.
774 */
775
776 WARN_ON(blk_needs_flush_plug(tsk));
777
778 if (unlikely(in_interrupt()))
779 panic("Aiee, killing interrupt handler!");
780 if (unlikely(!tsk->pid))
781 panic("Attempted to kill the idle task!");
782
783 /*
784 * If do_exit is called because this processes oopsed, it's possible
785 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 * continuing. Amongst other possible reasons, this is to prevent
787 * mm_release()->clear_child_tid() from writing to a user-controlled
788 * kernel address.
789 */
790 set_fs(USER_DS);
791
792 if (unlikely(in_atomic())) {
793 pr_info("note: %s[%d] exited with preempt_count %d\n",
794 current->comm, task_pid_nr(current),
795 preempt_count());
796 preempt_count_set(PREEMPT_ENABLED);
797 }
798
799 profile_task_exit(tsk);
800 kcov_task_exit(tsk);
801
802 ptrace_event(PTRACE_EVENT_EXIT, code);
803
804 validate_creds_for_do_exit(tsk);
805
806 /*
807 * We're taking recursive faults here in do_exit. Safest is to just
808 * leave this task alone and wait for reboot.
809 */
810 if (unlikely(tsk->flags & PF_EXITING)) {
811 pr_alert("Fixing recursive fault but reboot is needed!\n");
812 futex_exit_recursive(tsk);
813 set_current_state(TASK_UNINTERRUPTIBLE);
814 schedule();
815 }
816
817 exit_signals(tsk); /* sets PF_EXITING */
818
819 /* sync mm's RSS info before statistics gathering */
820 if (tsk->mm)
821 sync_mm_rss(tsk->mm);
822 acct_update_integrals(tsk);
823 group_dead = atomic_dec_and_test(&tsk->signal->live);
824 if (group_dead) {
825 /*
826 * If the last thread of global init has exited, panic
827 * immediately to get a useable coredump.
828 */
829 if (unlikely(is_global_init(tsk))) {
830 pr_err("Attempted to kill init! exitcode=0x%08x\n",
831 tsk->signal->group_exit_code ?: (int)code);
832 BUG();
833 panic("Attempted to kill init! exitcode=0x%08x\n",
834 tsk->signal->group_exit_code ?: (int)code);
835 }
836
837#ifdef CONFIG_POSIX_TIMERS
838 hrtimer_cancel(&tsk->signal->real_timer);
839 exit_itimers(tsk->signal);
840#endif
841 if (tsk->mm)
842 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
843 }
844 acct_collect(code, group_dead);
845 if (group_dead)
846 tty_audit_exit();
847 audit_free(tsk);
848
849 tsk->exit_code = code;
850 taskstats_exit(tsk, group_dead);
851
852 exit_mm();
853
854 if (group_dead)
855 acct_process();
856 trace_sched_process_exit(tsk);
857
858 exit_sem(tsk);
859 exit_shm(tsk);
860 exit_files(tsk);
861 exit_fs(tsk);
862 if (group_dead)
863 disassociate_ctty(1);
864 exit_task_namespaces(tsk);
865 exit_task_work(tsk);
866 exit_thread(tsk);
867 exit_umh(tsk);
868
869 /*
870 * Flush inherited counters to the parent - before the parent
871 * gets woken up by child-exit notifications.
872 *
873 * because of cgroup mode, must be called before cgroup_exit()
874 */
875 perf_event_exit_task(tsk);
876
877 sched_autogroup_exit_task(tsk);
878 cgroup_exit(tsk);
879
880 /*
881 * FIXME: do that only when needed, using sched_exit tracepoint
882 */
883 flush_ptrace_hw_breakpoint(tsk);
884
885 exit_tasks_rcu_start();
886 exit_notify(tsk, group_dead);
887 proc_exit_connector(tsk);
888 mpol_put_task_policy(tsk);
889#ifdef CONFIG_FUTEX
890 if (unlikely(current->pi_state_cache))
891 kfree(current->pi_state_cache);
892#endif
893 /*
894 * Make sure we are holding no locks:
895 */
896 debug_check_no_locks_held();
897
898 if (tsk->io_context)
899 exit_io_context(tsk);
900
901 if (tsk->splice_pipe)
902 free_pipe_info(tsk->splice_pipe);
903
904 if (tsk->task_frag.page)
905 put_page(tsk->task_frag.page);
906
907 validate_creds_for_do_exit(tsk);
908
909 check_stack_usage();
910 preempt_disable();
911 if (tsk->nr_dirtied)
912 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
913 exit_rcu();
914 exit_tasks_rcu_finish();
915
916 lockdep_free_task(tsk);
917 do_task_dead();
918}
919EXPORT_SYMBOL_GPL(do_exit);
920
921void __noreturn make_task_dead(int signr)
922{
923 /*
924 * Take the task off the cpu after something catastrophic has
925 * happened.
926 */
927 unsigned int limit;
928
929 /*
930 * Every time the system oopses, if the oops happens while a reference
931 * to an object was held, the reference leaks.
932 * If the oops doesn't also leak memory, repeated oopsing can cause
933 * reference counters to wrap around (if they're not using refcount_t).
934 * This means that repeated oopsing can make unexploitable-looking bugs
935 * exploitable through repeated oopsing.
936 * To make sure this can't happen, place an upper bound on how often the
937 * kernel may oops without panic().
938 */
939 limit = READ_ONCE(oops_limit);
940 if (atomic_inc_return(&oops_count) >= limit && limit)
941 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
942
943 do_exit(signr);
944}
945
946void complete_and_exit(struct completion *comp, long code)
947{
948 if (comp)
949 complete(comp);
950
951 do_exit(code);
952}
953EXPORT_SYMBOL(complete_and_exit);
954
955SYSCALL_DEFINE1(exit, int, error_code)
956{
957 do_exit((error_code&0xff)<<8);
958}
959
960/*
961 * Take down every thread in the group. This is called by fatal signals
962 * as well as by sys_exit_group (below).
963 */
964void
965do_group_exit(int exit_code)
966{
967 struct signal_struct *sig = current->signal;
968
969 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
970
971 if (signal_group_exit(sig))
972 exit_code = sig->group_exit_code;
973 else if (!thread_group_empty(current)) {
974 struct sighand_struct *const sighand = current->sighand;
975
976 spin_lock_irq(&sighand->siglock);
977 if (signal_group_exit(sig))
978 /* Another thread got here before we took the lock. */
979 exit_code = sig->group_exit_code;
980 else {
981 sig->group_exit_code = exit_code;
982 sig->flags = SIGNAL_GROUP_EXIT;
983 zap_other_threads(current);
984 }
985 spin_unlock_irq(&sighand->siglock);
986 }
987
988 do_exit(exit_code);
989 /* NOTREACHED */
990}
991
992/*
993 * this kills every thread in the thread group. Note that any externally
994 * wait4()-ing process will get the correct exit code - even if this
995 * thread is not the thread group leader.
996 */
997SYSCALL_DEFINE1(exit_group, int, error_code)
998{
999 do_group_exit((error_code & 0xff) << 8);
1000 /* NOTREACHED */
1001 return 0;
1002}
1003
1004struct waitid_info {
1005 pid_t pid;
1006 uid_t uid;
1007 int status;
1008 int cause;
1009};
1010
1011struct wait_opts {
1012 enum pid_type wo_type;
1013 int wo_flags;
1014 struct pid *wo_pid;
1015
1016 struct waitid_info *wo_info;
1017 int wo_stat;
1018 struct rusage *wo_rusage;
1019
1020 wait_queue_entry_t child_wait;
1021 int notask_error;
1022};
1023
1024static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1025{
1026 return wo->wo_type == PIDTYPE_MAX ||
1027 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1028}
1029
1030static int
1031eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1032{
1033 if (!eligible_pid(wo, p))
1034 return 0;
1035
1036 /*
1037 * Wait for all children (clone and not) if __WALL is set or
1038 * if it is traced by us.
1039 */
1040 if (ptrace || (wo->wo_flags & __WALL))
1041 return 1;
1042
1043 /*
1044 * Otherwise, wait for clone children *only* if __WCLONE is set;
1045 * otherwise, wait for non-clone children *only*.
1046 *
1047 * Note: a "clone" child here is one that reports to its parent
1048 * using a signal other than SIGCHLD, or a non-leader thread which
1049 * we can only see if it is traced by us.
1050 */
1051 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1052 return 0;
1053
1054 return 1;
1055}
1056
1057/*
1058 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1059 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1060 * the lock and this task is uninteresting. If we return nonzero, we have
1061 * released the lock and the system call should return.
1062 */
1063static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1064{
1065 int state, status;
1066 pid_t pid = task_pid_vnr(p);
1067 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1068 struct waitid_info *infop;
1069
1070 if (!likely(wo->wo_flags & WEXITED))
1071 return 0;
1072
1073 if (unlikely(wo->wo_flags & WNOWAIT)) {
1074 status = p->exit_code;
1075 get_task_struct(p);
1076 read_unlock(&tasklist_lock);
1077 sched_annotate_sleep();
1078 if (wo->wo_rusage)
1079 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1080 put_task_struct(p);
1081 goto out_info;
1082 }
1083 /*
1084 * Move the task's state to DEAD/TRACE, only one thread can do this.
1085 */
1086 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1087 EXIT_TRACE : EXIT_DEAD;
1088 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1089 return 0;
1090 /*
1091 * We own this thread, nobody else can reap it.
1092 */
1093 read_unlock(&tasklist_lock);
1094 sched_annotate_sleep();
1095
1096 /*
1097 * Check thread_group_leader() to exclude the traced sub-threads.
1098 */
1099 if (state == EXIT_DEAD && thread_group_leader(p)) {
1100 struct signal_struct *sig = p->signal;
1101 struct signal_struct *psig = current->signal;
1102 unsigned long maxrss;
1103 u64 tgutime, tgstime;
1104
1105 /*
1106 * The resource counters for the group leader are in its
1107 * own task_struct. Those for dead threads in the group
1108 * are in its signal_struct, as are those for the child
1109 * processes it has previously reaped. All these
1110 * accumulate in the parent's signal_struct c* fields.
1111 *
1112 * We don't bother to take a lock here to protect these
1113 * p->signal fields because the whole thread group is dead
1114 * and nobody can change them.
1115 *
1116 * psig->stats_lock also protects us from our sub-theads
1117 * which can reap other children at the same time. Until
1118 * we change k_getrusage()-like users to rely on this lock
1119 * we have to take ->siglock as well.
1120 *
1121 * We use thread_group_cputime_adjusted() to get times for
1122 * the thread group, which consolidates times for all threads
1123 * in the group including the group leader.
1124 */
1125 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1126 spin_lock_irq(&current->sighand->siglock);
1127 write_seqlock(&psig->stats_lock);
1128 psig->cutime += tgutime + sig->cutime;
1129 psig->cstime += tgstime + sig->cstime;
1130 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1131 psig->cmin_flt +=
1132 p->min_flt + sig->min_flt + sig->cmin_flt;
1133 psig->cmaj_flt +=
1134 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1135 psig->cnvcsw +=
1136 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1137 psig->cnivcsw +=
1138 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1139 psig->cinblock +=
1140 task_io_get_inblock(p) +
1141 sig->inblock + sig->cinblock;
1142 psig->coublock +=
1143 task_io_get_oublock(p) +
1144 sig->oublock + sig->coublock;
1145 maxrss = max(sig->maxrss, sig->cmaxrss);
1146 if (psig->cmaxrss < maxrss)
1147 psig->cmaxrss = maxrss;
1148 task_io_accounting_add(&psig->ioac, &p->ioac);
1149 task_io_accounting_add(&psig->ioac, &sig->ioac);
1150 write_sequnlock(&psig->stats_lock);
1151 spin_unlock_irq(&current->sighand->siglock);
1152 }
1153
1154 if (wo->wo_rusage)
1155 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1156 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1157 ? p->signal->group_exit_code : p->exit_code;
1158 wo->wo_stat = status;
1159
1160 if (state == EXIT_TRACE) {
1161 write_lock_irq(&tasklist_lock);
1162 /* We dropped tasklist, ptracer could die and untrace */
1163 ptrace_unlink(p);
1164
1165 /* If parent wants a zombie, don't release it now */
1166 state = EXIT_ZOMBIE;
1167 if (do_notify_parent(p, p->exit_signal))
1168 state = EXIT_DEAD;
1169 p->exit_state = state;
1170 write_unlock_irq(&tasklist_lock);
1171 }
1172 if (state == EXIT_DEAD)
1173 release_task(p);
1174
1175out_info:
1176 infop = wo->wo_info;
1177 if (infop) {
1178 if ((status & 0x7f) == 0) {
1179 infop->cause = CLD_EXITED;
1180 infop->status = status >> 8;
1181 } else {
1182 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1183 infop->status = status & 0x7f;
1184 }
1185 infop->pid = pid;
1186 infop->uid = uid;
1187 }
1188
1189 return pid;
1190}
1191
1192static int *task_stopped_code(struct task_struct *p, bool ptrace)
1193{
1194 if (ptrace) {
1195 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1196 return &p->exit_code;
1197 } else {
1198 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1199 return &p->signal->group_exit_code;
1200 }
1201 return NULL;
1202}
1203
1204/**
1205 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1206 * @wo: wait options
1207 * @ptrace: is the wait for ptrace
1208 * @p: task to wait for
1209 *
1210 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1211 *
1212 * CONTEXT:
1213 * read_lock(&tasklist_lock), which is released if return value is
1214 * non-zero. Also, grabs and releases @p->sighand->siglock.
1215 *
1216 * RETURNS:
1217 * 0 if wait condition didn't exist and search for other wait conditions
1218 * should continue. Non-zero return, -errno on failure and @p's pid on
1219 * success, implies that tasklist_lock is released and wait condition
1220 * search should terminate.
1221 */
1222static int wait_task_stopped(struct wait_opts *wo,
1223 int ptrace, struct task_struct *p)
1224{
1225 struct waitid_info *infop;
1226 int exit_code, *p_code, why;
1227 uid_t uid = 0; /* unneeded, required by compiler */
1228 pid_t pid;
1229
1230 /*
1231 * Traditionally we see ptrace'd stopped tasks regardless of options.
1232 */
1233 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1234 return 0;
1235
1236 if (!task_stopped_code(p, ptrace))
1237 return 0;
1238
1239 exit_code = 0;
1240 spin_lock_irq(&p->sighand->siglock);
1241
1242 p_code = task_stopped_code(p, ptrace);
1243 if (unlikely(!p_code))
1244 goto unlock_sig;
1245
1246 exit_code = *p_code;
1247 if (!exit_code)
1248 goto unlock_sig;
1249
1250 if (!unlikely(wo->wo_flags & WNOWAIT))
1251 *p_code = 0;
1252
1253 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1254unlock_sig:
1255 spin_unlock_irq(&p->sighand->siglock);
1256 if (!exit_code)
1257 return 0;
1258
1259 /*
1260 * Now we are pretty sure this task is interesting.
1261 * Make sure it doesn't get reaped out from under us while we
1262 * give up the lock and then examine it below. We don't want to
1263 * keep holding onto the tasklist_lock while we call getrusage and
1264 * possibly take page faults for user memory.
1265 */
1266 get_task_struct(p);
1267 pid = task_pid_vnr(p);
1268 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1269 read_unlock(&tasklist_lock);
1270 sched_annotate_sleep();
1271 if (wo->wo_rusage)
1272 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1273 put_task_struct(p);
1274
1275 if (likely(!(wo->wo_flags & WNOWAIT)))
1276 wo->wo_stat = (exit_code << 8) | 0x7f;
1277
1278 infop = wo->wo_info;
1279 if (infop) {
1280 infop->cause = why;
1281 infop->status = exit_code;
1282 infop->pid = pid;
1283 infop->uid = uid;
1284 }
1285 return pid;
1286}
1287
1288/*
1289 * Handle do_wait work for one task in a live, non-stopped state.
1290 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1291 * the lock and this task is uninteresting. If we return nonzero, we have
1292 * released the lock and the system call should return.
1293 */
1294static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1295{
1296 struct waitid_info *infop;
1297 pid_t pid;
1298 uid_t uid;
1299
1300 if (!unlikely(wo->wo_flags & WCONTINUED))
1301 return 0;
1302
1303 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1304 return 0;
1305
1306 spin_lock_irq(&p->sighand->siglock);
1307 /* Re-check with the lock held. */
1308 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1309 spin_unlock_irq(&p->sighand->siglock);
1310 return 0;
1311 }
1312 if (!unlikely(wo->wo_flags & WNOWAIT))
1313 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1314 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1315 spin_unlock_irq(&p->sighand->siglock);
1316
1317 pid = task_pid_vnr(p);
1318 get_task_struct(p);
1319 read_unlock(&tasklist_lock);
1320 sched_annotate_sleep();
1321 if (wo->wo_rusage)
1322 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1323 put_task_struct(p);
1324
1325 infop = wo->wo_info;
1326 if (!infop) {
1327 wo->wo_stat = 0xffff;
1328 } else {
1329 infop->cause = CLD_CONTINUED;
1330 infop->pid = pid;
1331 infop->uid = uid;
1332 infop->status = SIGCONT;
1333 }
1334 return pid;
1335}
1336
1337/*
1338 * Consider @p for a wait by @parent.
1339 *
1340 * -ECHILD should be in ->notask_error before the first call.
1341 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1342 * Returns zero if the search for a child should continue;
1343 * then ->notask_error is 0 if @p is an eligible child,
1344 * or still -ECHILD.
1345 */
1346static int wait_consider_task(struct wait_opts *wo, int ptrace,
1347 struct task_struct *p)
1348{
1349 /*
1350 * We can race with wait_task_zombie() from another thread.
1351 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1352 * can't confuse the checks below.
1353 */
1354 int exit_state = READ_ONCE(p->exit_state);
1355 int ret;
1356
1357 if (unlikely(exit_state == EXIT_DEAD))
1358 return 0;
1359
1360 ret = eligible_child(wo, ptrace, p);
1361 if (!ret)
1362 return ret;
1363
1364 if (unlikely(exit_state == EXIT_TRACE)) {
1365 /*
1366 * ptrace == 0 means we are the natural parent. In this case
1367 * we should clear notask_error, debugger will notify us.
1368 */
1369 if (likely(!ptrace))
1370 wo->notask_error = 0;
1371 return 0;
1372 }
1373
1374 if (likely(!ptrace) && unlikely(p->ptrace)) {
1375 /*
1376 * If it is traced by its real parent's group, just pretend
1377 * the caller is ptrace_do_wait() and reap this child if it
1378 * is zombie.
1379 *
1380 * This also hides group stop state from real parent; otherwise
1381 * a single stop can be reported twice as group and ptrace stop.
1382 * If a ptracer wants to distinguish these two events for its
1383 * own children it should create a separate process which takes
1384 * the role of real parent.
1385 */
1386 if (!ptrace_reparented(p))
1387 ptrace = 1;
1388 }
1389
1390 /* slay zombie? */
1391 if (exit_state == EXIT_ZOMBIE) {
1392 /* we don't reap group leaders with subthreads */
1393 if (!delay_group_leader(p)) {
1394 /*
1395 * A zombie ptracee is only visible to its ptracer.
1396 * Notification and reaping will be cascaded to the
1397 * real parent when the ptracer detaches.
1398 */
1399 if (unlikely(ptrace) || likely(!p->ptrace))
1400 return wait_task_zombie(wo, p);
1401 }
1402
1403 /*
1404 * Allow access to stopped/continued state via zombie by
1405 * falling through. Clearing of notask_error is complex.
1406 *
1407 * When !@ptrace:
1408 *
1409 * If WEXITED is set, notask_error should naturally be
1410 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1411 * so, if there are live subthreads, there are events to
1412 * wait for. If all subthreads are dead, it's still safe
1413 * to clear - this function will be called again in finite
1414 * amount time once all the subthreads are released and
1415 * will then return without clearing.
1416 *
1417 * When @ptrace:
1418 *
1419 * Stopped state is per-task and thus can't change once the
1420 * target task dies. Only continued and exited can happen.
1421 * Clear notask_error if WCONTINUED | WEXITED.
1422 */
1423 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1424 wo->notask_error = 0;
1425 } else {
1426 /*
1427 * @p is alive and it's gonna stop, continue or exit, so
1428 * there always is something to wait for.
1429 */
1430 wo->notask_error = 0;
1431 }
1432
1433 /*
1434 * Wait for stopped. Depending on @ptrace, different stopped state
1435 * is used and the two don't interact with each other.
1436 */
1437 ret = wait_task_stopped(wo, ptrace, p);
1438 if (ret)
1439 return ret;
1440
1441 /*
1442 * Wait for continued. There's only one continued state and the
1443 * ptracer can consume it which can confuse the real parent. Don't
1444 * use WCONTINUED from ptracer. You don't need or want it.
1445 */
1446 return wait_task_continued(wo, p);
1447}
1448
1449/*
1450 * Do the work of do_wait() for one thread in the group, @tsk.
1451 *
1452 * -ECHILD should be in ->notask_error before the first call.
1453 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1454 * Returns zero if the search for a child should continue; then
1455 * ->notask_error is 0 if there were any eligible children,
1456 * or still -ECHILD.
1457 */
1458static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1459{
1460 struct task_struct *p;
1461
1462 list_for_each_entry(p, &tsk->children, sibling) {
1463 int ret = wait_consider_task(wo, 0, p);
1464
1465 if (ret)
1466 return ret;
1467 }
1468
1469 return 0;
1470}
1471
1472static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1473{
1474 struct task_struct *p;
1475
1476 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1477 int ret = wait_consider_task(wo, 1, p);
1478
1479 if (ret)
1480 return ret;
1481 }
1482
1483 return 0;
1484}
1485
1486static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1487 int sync, void *key)
1488{
1489 struct wait_opts *wo = container_of(wait, struct wait_opts,
1490 child_wait);
1491 struct task_struct *p = key;
1492
1493 if (!eligible_pid(wo, p))
1494 return 0;
1495
1496 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1497 return 0;
1498
1499 return default_wake_function(wait, mode, sync, key);
1500}
1501
1502void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1503{
1504 __wake_up_sync_key(&parent->signal->wait_chldexit,
1505 TASK_INTERRUPTIBLE, 1, p);
1506}
1507
1508static long do_wait(struct wait_opts *wo)
1509{
1510 struct task_struct *tsk;
1511 int retval;
1512
1513 trace_sched_process_wait(wo->wo_pid);
1514
1515 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1516 wo->child_wait.private = current;
1517 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1518repeat:
1519 /*
1520 * If there is nothing that can match our criteria, just get out.
1521 * We will clear ->notask_error to zero if we see any child that
1522 * might later match our criteria, even if we are not able to reap
1523 * it yet.
1524 */
1525 wo->notask_error = -ECHILD;
1526 if ((wo->wo_type < PIDTYPE_MAX) &&
1527 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1528 goto notask;
1529
1530 set_current_state(TASK_INTERRUPTIBLE);
1531 read_lock(&tasklist_lock);
1532 tsk = current;
1533 do {
1534 retval = do_wait_thread(wo, tsk);
1535 if (retval)
1536 goto end;
1537
1538 retval = ptrace_do_wait(wo, tsk);
1539 if (retval)
1540 goto end;
1541
1542 if (wo->wo_flags & __WNOTHREAD)
1543 break;
1544 } while_each_thread(current, tsk);
1545 read_unlock(&tasklist_lock);
1546
1547notask:
1548 retval = wo->notask_error;
1549 if (!retval && !(wo->wo_flags & WNOHANG)) {
1550 retval = -ERESTARTSYS;
1551 if (!signal_pending(current)) {
1552 schedule();
1553 goto repeat;
1554 }
1555 }
1556end:
1557 __set_current_state(TASK_RUNNING);
1558 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1559 return retval;
1560}
1561
1562static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1563 int options, struct rusage *ru)
1564{
1565 struct wait_opts wo;
1566 struct pid *pid = NULL;
1567 enum pid_type type;
1568 long ret;
1569 unsigned int f_flags;
1570
1571 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1572 __WNOTHREAD|__WCLONE|__WALL))
1573 return -EINVAL;
1574 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1575 return -EINVAL;
1576
1577 switch (which) {
1578 case P_ALL:
1579 type = PIDTYPE_MAX;
1580 break;
1581 case P_PID:
1582 type = PIDTYPE_PID;
1583 if (upid <= 0)
1584 return -EINVAL;
1585
1586 pid = find_get_pid(upid);
1587 break;
1588 case P_PGID:
1589 type = PIDTYPE_PGID;
1590 if (upid < 0)
1591 return -EINVAL;
1592
1593 if (upid)
1594 pid = find_get_pid(upid);
1595 else
1596 pid = get_task_pid(current, PIDTYPE_PGID);
1597 break;
1598 case P_PIDFD:
1599 type = PIDTYPE_PID;
1600 if (upid < 0)
1601 return -EINVAL;
1602
1603 pid = pidfd_get_pid(upid, &f_flags);
1604 if (IS_ERR(pid))
1605 return PTR_ERR(pid);
1606 break;
1607 default:
1608 return -EINVAL;
1609 }
1610
1611 wo.wo_type = type;
1612 wo.wo_pid = pid;
1613 wo.wo_flags = options;
1614 wo.wo_info = infop;
1615 wo.wo_rusage = ru;
1616 ret = do_wait(&wo);
1617
1618 put_pid(pid);
1619 return ret;
1620}
1621
1622SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1623 infop, int, options, struct rusage __user *, ru)
1624{
1625 struct rusage r;
1626 struct waitid_info info = {.status = 0};
1627 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1628 int signo = 0;
1629
1630 if (err > 0) {
1631 signo = SIGCHLD;
1632 err = 0;
1633 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1634 return -EFAULT;
1635 }
1636 if (!infop)
1637 return err;
1638
1639 if (!user_access_begin(infop, sizeof(*infop)))
1640 return -EFAULT;
1641
1642 unsafe_put_user(signo, &infop->si_signo, Efault);
1643 unsafe_put_user(0, &infop->si_errno, Efault);
1644 unsafe_put_user(info.cause, &infop->si_code, Efault);
1645 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1646 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1647 unsafe_put_user(info.status, &infop->si_status, Efault);
1648 user_access_end();
1649 return err;
1650Efault:
1651 user_access_end();
1652 return -EFAULT;
1653}
1654
1655long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1656 struct rusage *ru)
1657{
1658 struct wait_opts wo;
1659 struct pid *pid = NULL;
1660 enum pid_type type;
1661 long ret;
1662
1663 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1664 __WNOTHREAD|__WCLONE|__WALL))
1665 return -EINVAL;
1666
1667 /* -INT_MIN is not defined */
1668 if (upid == INT_MIN)
1669 return -ESRCH;
1670
1671 if (upid == -1)
1672 type = PIDTYPE_MAX;
1673 else if (upid < 0) {
1674 type = PIDTYPE_PGID;
1675 pid = find_get_pid(-upid);
1676 } else if (upid == 0) {
1677 type = PIDTYPE_PGID;
1678 pid = get_task_pid(current, PIDTYPE_PGID);
1679 } else /* upid > 0 */ {
1680 type = PIDTYPE_PID;
1681 pid = find_get_pid(upid);
1682 }
1683
1684 wo.wo_type = type;
1685 wo.wo_pid = pid;
1686 wo.wo_flags = options | WEXITED;
1687 wo.wo_info = NULL;
1688 wo.wo_stat = 0;
1689 wo.wo_rusage = ru;
1690 ret = do_wait(&wo);
1691 put_pid(pid);
1692 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1693 ret = -EFAULT;
1694
1695 return ret;
1696}
1697
1698SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1699 int, options, struct rusage __user *, ru)
1700{
1701 struct rusage r;
1702 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1703
1704 if (err > 0) {
1705 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1706 return -EFAULT;
1707 }
1708 return err;
1709}
1710
1711#ifdef __ARCH_WANT_SYS_WAITPID
1712
1713/*
1714 * sys_waitpid() remains for compatibility. waitpid() should be
1715 * implemented by calling sys_wait4() from libc.a.
1716 */
1717SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1718{
1719 return kernel_wait4(pid, stat_addr, options, NULL);
1720}
1721
1722#endif
1723
1724#ifdef CONFIG_COMPAT
1725COMPAT_SYSCALL_DEFINE4(wait4,
1726 compat_pid_t, pid,
1727 compat_uint_t __user *, stat_addr,
1728 int, options,
1729 struct compat_rusage __user *, ru)
1730{
1731 struct rusage r;
1732 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1733 if (err > 0) {
1734 if (ru && put_compat_rusage(&r, ru))
1735 return -EFAULT;
1736 }
1737 return err;
1738}
1739
1740COMPAT_SYSCALL_DEFINE5(waitid,
1741 int, which, compat_pid_t, pid,
1742 struct compat_siginfo __user *, infop, int, options,
1743 struct compat_rusage __user *, uru)
1744{
1745 struct rusage ru;
1746 struct waitid_info info = {.status = 0};
1747 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1748 int signo = 0;
1749 if (err > 0) {
1750 signo = SIGCHLD;
1751 err = 0;
1752 if (uru) {
1753 /* kernel_waitid() overwrites everything in ru */
1754 if (COMPAT_USE_64BIT_TIME)
1755 err = copy_to_user(uru, &ru, sizeof(ru));
1756 else
1757 err = put_compat_rusage(&ru, uru);
1758 if (err)
1759 return -EFAULT;
1760 }
1761 }
1762
1763 if (!infop)
1764 return err;
1765
1766 if (!user_access_begin(infop, sizeof(*infop)))
1767 return -EFAULT;
1768
1769 unsafe_put_user(signo, &infop->si_signo, Efault);
1770 unsafe_put_user(0, &infop->si_errno, Efault);
1771 unsafe_put_user(info.cause, &infop->si_code, Efault);
1772 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1773 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1774 unsafe_put_user(info.status, &infop->si_status, Efault);
1775 user_access_end();
1776 return err;
1777Efault:
1778 user_access_end();
1779 return -EFAULT;
1780}
1781#endif
1782
1783__weak void abort(void)
1784{
1785 BUG();
1786
1787 /* if that doesn't kill us, halt */
1788 panic("Oops failed to kill thread");
1789}
1790EXPORT_SYMBOL(abort);