| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * linux/arch/arm/vfp/vfpmodule.c |
| 4 | * |
| 5 | * Copyright (C) 2004 ARM Limited. |
| 6 | * Written by Deep Blue Solutions Limited. |
| 7 | */ |
| 8 | #include <linux/types.h> |
| 9 | #include <linux/cpu.h> |
| 10 | #include <linux/cpu_pm.h> |
| 11 | #include <linux/hardirq.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/notifier.h> |
| 14 | #include <linux/signal.h> |
| 15 | #include <linux/sched/signal.h> |
| 16 | #include <linux/smp.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/uaccess.h> |
| 19 | #include <linux/user.h> |
| 20 | #include <linux/export.h> |
| 21 | |
| 22 | #include <asm/cp15.h> |
| 23 | #include <asm/cputype.h> |
| 24 | #include <asm/system_info.h> |
| 25 | #include <asm/thread_notify.h> |
| 26 | #include <asm/traps.h> |
| 27 | #include <asm/vfp.h> |
| 28 | |
| 29 | #include "vfpinstr.h" |
| 30 | #include "vfp.h" |
| 31 | |
| 32 | /* |
| 33 | * Our undef handlers (in entry.S) |
| 34 | */ |
| 35 | asmlinkage void vfp_support_entry(void); |
| 36 | asmlinkage void vfp_null_entry(void); |
| 37 | |
| 38 | asmlinkage void (*vfp_vector)(void) = vfp_null_entry; |
| 39 | |
| 40 | /* |
| 41 | * Dual-use variable. |
| 42 | * Used in startup: set to non-zero if VFP checks fail |
| 43 | * After startup, holds VFP architecture |
| 44 | */ |
| 45 | static unsigned int __initdata VFP_arch; |
| 46 | |
| 47 | /* |
| 48 | * The pointer to the vfpstate structure of the thread which currently |
| 49 | * owns the context held in the VFP hardware, or NULL if the hardware |
| 50 | * context is invalid. |
| 51 | * |
| 52 | * For UP, this is sufficient to tell which thread owns the VFP context. |
| 53 | * However, for SMP, we also need to check the CPU number stored in the |
| 54 | * saved state too to catch migrations. |
| 55 | */ |
| 56 | union vfp_state *vfp_current_hw_state[NR_CPUS]; |
| 57 | |
| 58 | /* |
| 59 | * Is 'thread's most up to date state stored in this CPUs hardware? |
| 60 | * Must be called from non-preemptible context. |
| 61 | */ |
| 62 | static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) |
| 63 | { |
| 64 | #ifdef CONFIG_SMP |
| 65 | if (thread->vfpstate.hard.cpu != cpu) |
| 66 | return false; |
| 67 | #endif |
| 68 | return vfp_current_hw_state[cpu] == &thread->vfpstate; |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Force a reload of the VFP context from the thread structure. We do |
| 73 | * this by ensuring that access to the VFP hardware is disabled, and |
| 74 | * clear vfp_current_hw_state. Must be called from non-preemptible context. |
| 75 | */ |
| 76 | static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) |
| 77 | { |
| 78 | if (vfp_state_in_hw(cpu, thread)) { |
| 79 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); |
| 80 | vfp_current_hw_state[cpu] = NULL; |
| 81 | } |
| 82 | #ifdef CONFIG_SMP |
| 83 | thread->vfpstate.hard.cpu = NR_CPUS; |
| 84 | #endif |
| 85 | } |
| 86 | |
| 87 | /* |
| 88 | * Per-thread VFP initialization. |
| 89 | */ |
| 90 | static void vfp_thread_flush(struct thread_info *thread) |
| 91 | { |
| 92 | union vfp_state *vfp = &thread->vfpstate; |
| 93 | unsigned int cpu; |
| 94 | |
| 95 | /* |
| 96 | * Disable VFP to ensure we initialize it first. We must ensure |
| 97 | * that the modification of vfp_current_hw_state[] and hardware |
| 98 | * disable are done for the same CPU and without preemption. |
| 99 | * |
| 100 | * Do this first to ensure that preemption won't overwrite our |
| 101 | * state saving should access to the VFP be enabled at this point. |
| 102 | */ |
| 103 | cpu = get_cpu(); |
| 104 | if (vfp_current_hw_state[cpu] == vfp) |
| 105 | vfp_current_hw_state[cpu] = NULL; |
| 106 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); |
| 107 | put_cpu(); |
| 108 | |
| 109 | memset(vfp, 0, sizeof(union vfp_state)); |
| 110 | |
| 111 | vfp->hard.fpexc = FPEXC_EN; |
| 112 | vfp->hard.fpscr = FPSCR_ROUND_NEAREST; |
| 113 | #ifdef CONFIG_SMP |
| 114 | vfp->hard.cpu = NR_CPUS; |
| 115 | #endif |
| 116 | } |
| 117 | |
| 118 | static void vfp_thread_exit(struct thread_info *thread) |
| 119 | { |
| 120 | /* release case: Per-thread VFP cleanup. */ |
| 121 | union vfp_state *vfp = &thread->vfpstate; |
| 122 | unsigned int cpu = get_cpu(); |
| 123 | |
| 124 | if (vfp_current_hw_state[cpu] == vfp) |
| 125 | vfp_current_hw_state[cpu] = NULL; |
| 126 | put_cpu(); |
| 127 | } |
| 128 | |
| 129 | static void vfp_thread_copy(struct thread_info *thread) |
| 130 | { |
| 131 | struct thread_info *parent = current_thread_info(); |
| 132 | |
| 133 | vfp_sync_hwstate(parent); |
| 134 | thread->vfpstate = parent->vfpstate; |
| 135 | #ifdef CONFIG_SMP |
| 136 | thread->vfpstate.hard.cpu = NR_CPUS; |
| 137 | #endif |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | * When this function is called with the following 'cmd's, the following |
| 142 | * is true while this function is being run: |
| 143 | * THREAD_NOFTIFY_SWTICH: |
| 144 | * - the previously running thread will not be scheduled onto another CPU. |
| 145 | * - the next thread to be run (v) will not be running on another CPU. |
| 146 | * - thread->cpu is the local CPU number |
| 147 | * - not preemptible as we're called in the middle of a thread switch |
| 148 | * THREAD_NOTIFY_FLUSH: |
| 149 | * - the thread (v) will be running on the local CPU, so |
| 150 | * v === current_thread_info() |
| 151 | * - thread->cpu is the local CPU number at the time it is accessed, |
| 152 | * but may change at any time. |
| 153 | * - we could be preempted if tree preempt rcu is enabled, so |
| 154 | * it is unsafe to use thread->cpu. |
| 155 | * THREAD_NOTIFY_EXIT |
| 156 | * - we could be preempted if tree preempt rcu is enabled, so |
| 157 | * it is unsafe to use thread->cpu. |
| 158 | */ |
| 159 | static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) |
| 160 | { |
| 161 | struct thread_info *thread = v; |
| 162 | u32 fpexc; |
| 163 | #ifdef CONFIG_SMP |
| 164 | unsigned int cpu; |
| 165 | #endif |
| 166 | |
| 167 | switch (cmd) { |
| 168 | case THREAD_NOTIFY_SWITCH: |
| 169 | fpexc = fmrx(FPEXC); |
| 170 | |
| 171 | #ifdef CONFIG_SMP |
| 172 | cpu = thread->cpu; |
| 173 | |
| 174 | /* |
| 175 | * On SMP, if VFP is enabled, save the old state in |
| 176 | * case the thread migrates to a different CPU. The |
| 177 | * restoring is done lazily. |
| 178 | */ |
| 179 | if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) |
| 180 | vfp_save_state(vfp_current_hw_state[cpu], fpexc); |
| 181 | #endif |
| 182 | |
| 183 | /* |
| 184 | * Always disable VFP so we can lazily save/restore the |
| 185 | * old state. |
| 186 | */ |
| 187 | fmxr(FPEXC, fpexc & ~FPEXC_EN); |
| 188 | break; |
| 189 | |
| 190 | case THREAD_NOTIFY_FLUSH: |
| 191 | vfp_thread_flush(thread); |
| 192 | break; |
| 193 | |
| 194 | case THREAD_NOTIFY_EXIT: |
| 195 | vfp_thread_exit(thread); |
| 196 | break; |
| 197 | |
| 198 | case THREAD_NOTIFY_COPY: |
| 199 | vfp_thread_copy(thread); |
| 200 | break; |
| 201 | } |
| 202 | |
| 203 | return NOTIFY_DONE; |
| 204 | } |
| 205 | |
| 206 | static struct notifier_block vfp_notifier_block = { |
| 207 | .notifier_call = vfp_notifier, |
| 208 | }; |
| 209 | |
| 210 | /* |
| 211 | * Raise a SIGFPE for the current process. |
| 212 | * sicode describes the signal being raised. |
| 213 | */ |
| 214 | static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) |
| 215 | { |
| 216 | /* |
| 217 | * This is the same as NWFPE, because it's not clear what |
| 218 | * this is used for |
| 219 | */ |
| 220 | current->thread.error_code = 0; |
| 221 | current->thread.trap_no = 6; |
| 222 | |
| 223 | send_sig_fault(SIGFPE, sicode, |
| 224 | (void __user *)(instruction_pointer(regs) - 4), |
| 225 | current); |
| 226 | } |
| 227 | |
| 228 | static void vfp_panic(char *reason, u32 inst) |
| 229 | { |
| 230 | int i; |
| 231 | |
| 232 | pr_err("VFP: Error: %s\n", reason); |
| 233 | pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", |
| 234 | fmrx(FPEXC), fmrx(FPSCR), inst); |
| 235 | for (i = 0; i < 32; i += 2) |
| 236 | pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n", |
| 237 | i, vfp_get_float(i), i+1, vfp_get_float(i+1)); |
| 238 | } |
| 239 | |
| 240 | /* |
| 241 | * Process bitmask of exception conditions. |
| 242 | */ |
| 243 | static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) |
| 244 | { |
| 245 | int si_code = 0; |
| 246 | |
| 247 | pr_debug("VFP: raising exceptions %08x\n", exceptions); |
| 248 | |
| 249 | if (exceptions == VFP_EXCEPTION_ERROR) { |
| 250 | vfp_panic("unhandled bounce", inst); |
| 251 | vfp_raise_sigfpe(FPE_FLTINV, regs); |
| 252 | return; |
| 253 | } |
| 254 | |
| 255 | /* |
| 256 | * If any of the status flags are set, update the FPSCR. |
| 257 | * Comparison instructions always return at least one of |
| 258 | * these flags set. |
| 259 | */ |
| 260 | if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) |
| 261 | fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); |
| 262 | |
| 263 | fpscr |= exceptions; |
| 264 | |
| 265 | fmxr(FPSCR, fpscr); |
| 266 | |
| 267 | #define RAISE(stat,en,sig) \ |
| 268 | if (exceptions & stat && fpscr & en) \ |
| 269 | si_code = sig; |
| 270 | |
| 271 | /* |
| 272 | * These are arranged in priority order, least to highest. |
| 273 | */ |
| 274 | RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); |
| 275 | RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); |
| 276 | RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); |
| 277 | RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); |
| 278 | RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); |
| 279 | |
| 280 | if (si_code) |
| 281 | vfp_raise_sigfpe(si_code, regs); |
| 282 | } |
| 283 | |
| 284 | /* |
| 285 | * Emulate a VFP instruction. |
| 286 | */ |
| 287 | static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) |
| 288 | { |
| 289 | u32 exceptions = VFP_EXCEPTION_ERROR; |
| 290 | |
| 291 | pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); |
| 292 | |
| 293 | if (INST_CPRTDO(inst)) { |
| 294 | if (!INST_CPRT(inst)) { |
| 295 | /* |
| 296 | * CPDO |
| 297 | */ |
| 298 | if (vfp_single(inst)) { |
| 299 | exceptions = vfp_single_cpdo(inst, fpscr); |
| 300 | } else { |
| 301 | exceptions = vfp_double_cpdo(inst, fpscr); |
| 302 | } |
| 303 | } else { |
| 304 | /* |
| 305 | * A CPRT instruction can not appear in FPINST2, nor |
| 306 | * can it cause an exception. Therefore, we do not |
| 307 | * have to emulate it. |
| 308 | */ |
| 309 | } |
| 310 | } else { |
| 311 | /* |
| 312 | * A CPDT instruction can not appear in FPINST2, nor can |
| 313 | * it cause an exception. Therefore, we do not have to |
| 314 | * emulate it. |
| 315 | */ |
| 316 | } |
| 317 | return exceptions & ~VFP_NAN_FLAG; |
| 318 | } |
| 319 | |
| 320 | /* |
| 321 | * Package up a bounce condition. |
| 322 | */ |
| 323 | void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) |
| 324 | { |
| 325 | u32 fpscr, orig_fpscr, fpsid, exceptions; |
| 326 | |
| 327 | pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); |
| 328 | |
| 329 | /* |
| 330 | * At this point, FPEXC can have the following configuration: |
| 331 | * |
| 332 | * EX DEX IXE |
| 333 | * 0 1 x - synchronous exception |
| 334 | * 1 x 0 - asynchronous exception |
| 335 | * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later |
| 336 | * 0 0 1 - synchronous on VFP9 (non-standard subarch 1 |
| 337 | * implementation), undefined otherwise |
| 338 | * |
| 339 | * Clear various bits and enable access to the VFP so we can |
| 340 | * handle the bounce. |
| 341 | */ |
| 342 | fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); |
| 343 | |
| 344 | fpsid = fmrx(FPSID); |
| 345 | orig_fpscr = fpscr = fmrx(FPSCR); |
| 346 | |
| 347 | /* |
| 348 | * Check for the special VFP subarch 1 and FPSCR.IXE bit case |
| 349 | */ |
| 350 | if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) |
| 351 | && (fpscr & FPSCR_IXE)) { |
| 352 | /* |
| 353 | * Synchronous exception, emulate the trigger instruction |
| 354 | */ |
| 355 | goto emulate; |
| 356 | } |
| 357 | |
| 358 | if (fpexc & FPEXC_EX) { |
| 359 | #ifndef CONFIG_CPU_FEROCEON |
| 360 | /* |
| 361 | * Asynchronous exception. The instruction is read from FPINST |
| 362 | * and the interrupted instruction has to be restarted. |
| 363 | */ |
| 364 | trigger = fmrx(FPINST); |
| 365 | regs->ARM_pc -= 4; |
| 366 | #endif |
| 367 | } else if (!(fpexc & FPEXC_DEX)) { |
| 368 | /* |
| 369 | * Illegal combination of bits. It can be caused by an |
| 370 | * unallocated VFP instruction but with FPSCR.IXE set and not |
| 371 | * on VFP subarch 1. |
| 372 | */ |
| 373 | vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); |
| 374 | goto exit; |
| 375 | } |
| 376 | |
| 377 | /* |
| 378 | * Modify fpscr to indicate the number of iterations remaining. |
| 379 | * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates |
| 380 | * whether FPEXC.VECITR or FPSCR.LEN is used. |
| 381 | */ |
| 382 | if (fpexc & (FPEXC_EX | FPEXC_VV)) { |
| 383 | u32 len; |
| 384 | |
| 385 | len = fpexc + (1 << FPEXC_LENGTH_BIT); |
| 386 | |
| 387 | fpscr &= ~FPSCR_LENGTH_MASK; |
| 388 | fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); |
| 389 | } |
| 390 | |
| 391 | /* |
| 392 | * Handle the first FP instruction. We used to take note of the |
| 393 | * FPEXC bounce reason, but this appears to be unreliable. |
| 394 | * Emulate the bounced instruction instead. |
| 395 | */ |
| 396 | exceptions = vfp_emulate_instruction(trigger, fpscr, regs); |
| 397 | if (exceptions) |
| 398 | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); |
| 399 | |
| 400 | /* |
| 401 | * If there isn't a second FP instruction, exit now. Note that |
| 402 | * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. |
| 403 | */ |
| 404 | if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) |
| 405 | goto exit; |
| 406 | |
| 407 | /* |
| 408 | * The barrier() here prevents fpinst2 being read |
| 409 | * before the condition above. |
| 410 | */ |
| 411 | barrier(); |
| 412 | trigger = fmrx(FPINST2); |
| 413 | |
| 414 | emulate: |
| 415 | exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); |
| 416 | if (exceptions) |
| 417 | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); |
| 418 | exit: |
| 419 | preempt_enable(); |
| 420 | } |
| 421 | |
| 422 | static void vfp_enable(void *unused) |
| 423 | { |
| 424 | u32 access; |
| 425 | |
| 426 | BUG_ON(preemptible()); |
| 427 | access = get_copro_access(); |
| 428 | |
| 429 | /* |
| 430 | * Enable full access to VFP (cp10 and cp11) |
| 431 | */ |
| 432 | set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); |
| 433 | } |
| 434 | |
| 435 | /* Called by platforms on which we want to disable VFP because it may not be |
| 436 | * present on all CPUs within a SMP complex. Needs to be called prior to |
| 437 | * vfp_init(). |
| 438 | */ |
| 439 | void __init vfp_disable(void) |
| 440 | { |
| 441 | if (VFP_arch) { |
| 442 | pr_debug("%s: should be called prior to vfp_init\n", __func__); |
| 443 | return; |
| 444 | } |
| 445 | VFP_arch = 1; |
| 446 | } |
| 447 | |
| 448 | #ifdef CONFIG_CPU_PM |
| 449 | static int vfp_pm_suspend(void) |
| 450 | { |
| 451 | struct thread_info *ti = current_thread_info(); |
| 452 | u32 fpexc = fmrx(FPEXC); |
| 453 | |
| 454 | /* if vfp is on, then save state for resumption */ |
| 455 | if (fpexc & FPEXC_EN) { |
| 456 | pr_debug("%s: saving vfp state\n", __func__); |
| 457 | vfp_save_state(&ti->vfpstate, fpexc); |
| 458 | |
| 459 | /* disable, just in case */ |
| 460 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); |
| 461 | } else if (vfp_current_hw_state[ti->cpu]) { |
| 462 | #ifndef CONFIG_SMP |
| 463 | fmxr(FPEXC, fpexc | FPEXC_EN); |
| 464 | vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc); |
| 465 | fmxr(FPEXC, fpexc); |
| 466 | #endif |
| 467 | } |
| 468 | |
| 469 | /* clear any information we had about last context state */ |
| 470 | vfp_current_hw_state[ti->cpu] = NULL; |
| 471 | |
| 472 | return 0; |
| 473 | } |
| 474 | |
| 475 | static void vfp_pm_resume(void) |
| 476 | { |
| 477 | /* ensure we have access to the vfp */ |
| 478 | vfp_enable(NULL); |
| 479 | |
| 480 | /* and disable it to ensure the next usage restores the state */ |
| 481 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); |
| 482 | } |
| 483 | |
| 484 | static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, |
| 485 | void *v) |
| 486 | { |
| 487 | switch (cmd) { |
| 488 | case CPU_PM_ENTER: |
| 489 | vfp_pm_suspend(); |
| 490 | break; |
| 491 | case CPU_PM_ENTER_FAILED: |
| 492 | case CPU_PM_EXIT: |
| 493 | vfp_pm_resume(); |
| 494 | break; |
| 495 | } |
| 496 | return NOTIFY_OK; |
| 497 | } |
| 498 | |
| 499 | static struct notifier_block vfp_cpu_pm_notifier_block = { |
| 500 | .notifier_call = vfp_cpu_pm_notifier, |
| 501 | }; |
| 502 | |
| 503 | static void vfp_pm_init(void) |
| 504 | { |
| 505 | cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block); |
| 506 | } |
| 507 | |
| 508 | #else |
| 509 | static inline void vfp_pm_init(void) { } |
| 510 | #endif /* CONFIG_CPU_PM */ |
| 511 | |
| 512 | /* |
| 513 | * Ensure that the VFP state stored in 'thread->vfpstate' is up to date |
| 514 | * with the hardware state. |
| 515 | */ |
| 516 | void vfp_sync_hwstate(struct thread_info *thread) |
| 517 | { |
| 518 | unsigned int cpu = get_cpu(); |
| 519 | |
| 520 | if (vfp_state_in_hw(cpu, thread)) { |
| 521 | u32 fpexc = fmrx(FPEXC); |
| 522 | |
| 523 | /* |
| 524 | * Save the last VFP state on this CPU. |
| 525 | */ |
| 526 | fmxr(FPEXC, fpexc | FPEXC_EN); |
| 527 | vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); |
| 528 | fmxr(FPEXC, fpexc); |
| 529 | } |
| 530 | |
| 531 | put_cpu(); |
| 532 | } |
| 533 | |
| 534 | /* Ensure that the thread reloads the hardware VFP state on the next use. */ |
| 535 | void vfp_flush_hwstate(struct thread_info *thread) |
| 536 | { |
| 537 | unsigned int cpu = get_cpu(); |
| 538 | |
| 539 | vfp_force_reload(cpu, thread); |
| 540 | |
| 541 | put_cpu(); |
| 542 | } |
| 543 | |
| 544 | /* |
| 545 | * Save the current VFP state into the provided structures and prepare |
| 546 | * for entry into a new function (signal handler). |
| 547 | */ |
| 548 | int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp, |
| 549 | struct user_vfp_exc *ufp_exc) |
| 550 | { |
| 551 | struct thread_info *thread = current_thread_info(); |
| 552 | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; |
| 553 | |
| 554 | /* Ensure that the saved hwstate is up-to-date. */ |
| 555 | vfp_sync_hwstate(thread); |
| 556 | |
| 557 | /* |
| 558 | * Copy the floating point registers. There can be unused |
| 559 | * registers see asm/hwcap.h for details. |
| 560 | */ |
| 561 | memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs)); |
| 562 | |
| 563 | /* |
| 564 | * Copy the status and control register. |
| 565 | */ |
| 566 | ufp->fpscr = hwstate->fpscr; |
| 567 | |
| 568 | /* |
| 569 | * Copy the exception registers. |
| 570 | */ |
| 571 | ufp_exc->fpexc = hwstate->fpexc; |
| 572 | ufp_exc->fpinst = hwstate->fpinst; |
| 573 | ufp_exc->fpinst2 = hwstate->fpinst2; |
| 574 | |
| 575 | /* Ensure that VFP is disabled. */ |
| 576 | vfp_flush_hwstate(thread); |
| 577 | |
| 578 | /* |
| 579 | * As per the PCS, clear the length and stride bits for function |
| 580 | * entry. |
| 581 | */ |
| 582 | hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK); |
| 583 | return 0; |
| 584 | } |
| 585 | |
| 586 | /* Sanitise and restore the current VFP state from the provided structures. */ |
| 587 | int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc) |
| 588 | { |
| 589 | struct thread_info *thread = current_thread_info(); |
| 590 | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; |
| 591 | unsigned long fpexc; |
| 592 | |
| 593 | /* Disable VFP to avoid corrupting the new thread state. */ |
| 594 | vfp_flush_hwstate(thread); |
| 595 | |
| 596 | /* |
| 597 | * Copy the floating point registers. There can be unused |
| 598 | * registers see asm/hwcap.h for details. |
| 599 | */ |
| 600 | memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs)); |
| 601 | /* |
| 602 | * Copy the status and control register. |
| 603 | */ |
| 604 | hwstate->fpscr = ufp->fpscr; |
| 605 | |
| 606 | /* |
| 607 | * Sanitise and restore the exception registers. |
| 608 | */ |
| 609 | fpexc = ufp_exc->fpexc; |
| 610 | |
| 611 | /* Ensure the VFP is enabled. */ |
| 612 | fpexc |= FPEXC_EN; |
| 613 | |
| 614 | /* Ensure FPINST2 is invalid and the exception flag is cleared. */ |
| 615 | fpexc &= ~(FPEXC_EX | FPEXC_FP2V); |
| 616 | hwstate->fpexc = fpexc; |
| 617 | |
| 618 | hwstate->fpinst = ufp_exc->fpinst; |
| 619 | hwstate->fpinst2 = ufp_exc->fpinst2; |
| 620 | |
| 621 | return 0; |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * VFP hardware can lose all context when a CPU goes offline. |
| 626 | * As we will be running in SMP mode with CPU hotplug, we will save the |
| 627 | * hardware state at every thread switch. We clear our held state when |
| 628 | * a CPU has been killed, indicating that the VFP hardware doesn't contain |
| 629 | * a threads VFP state. When a CPU starts up, we re-enable access to the |
| 630 | * VFP hardware. The callbacks below are called on the CPU which |
| 631 | * is being offlined/onlined. |
| 632 | */ |
| 633 | static int vfp_dying_cpu(unsigned int cpu) |
| 634 | { |
| 635 | vfp_current_hw_state[cpu] = NULL; |
| 636 | return 0; |
| 637 | } |
| 638 | |
| 639 | static int vfp_starting_cpu(unsigned int unused) |
| 640 | { |
| 641 | vfp_enable(NULL); |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | #ifdef CONFIG_KERNEL_MODE_NEON |
| 646 | |
| 647 | static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr) |
| 648 | { |
| 649 | /* |
| 650 | * If we reach this point, a floating point exception has been raised |
| 651 | * while running in kernel mode. If the NEON/VFP unit was enabled at the |
| 652 | * time, it means a VFP instruction has been issued that requires |
| 653 | * software assistance to complete, something which is not currently |
| 654 | * supported in kernel mode. |
| 655 | * If the NEON/VFP unit was disabled, and the location pointed to below |
| 656 | * is properly preceded by a call to kernel_neon_begin(), something has |
| 657 | * caused the task to be scheduled out and back in again. In this case, |
| 658 | * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should |
| 659 | * be helpful in localizing the problem. |
| 660 | */ |
| 661 | if (fmrx(FPEXC) & FPEXC_EN) |
| 662 | pr_crit("BUG: unsupported FP instruction in kernel mode\n"); |
| 663 | else |
| 664 | pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n"); |
| 665 | pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC)); |
| 666 | return 1; |
| 667 | } |
| 668 | |
| 669 | static struct undef_hook vfp_kmode_exception_hook[] = {{ |
| 670 | .instr_mask = 0xfe000000, |
| 671 | .instr_val = 0xf2000000, |
| 672 | .cpsr_mask = MODE_MASK | PSR_T_BIT, |
| 673 | .cpsr_val = SVC_MODE, |
| 674 | .fn = vfp_kmode_exception, |
| 675 | }, { |
| 676 | .instr_mask = 0xff100000, |
| 677 | .instr_val = 0xf4000000, |
| 678 | .cpsr_mask = MODE_MASK | PSR_T_BIT, |
| 679 | .cpsr_val = SVC_MODE, |
| 680 | .fn = vfp_kmode_exception, |
| 681 | }, { |
| 682 | .instr_mask = 0xef000000, |
| 683 | .instr_val = 0xef000000, |
| 684 | .cpsr_mask = MODE_MASK | PSR_T_BIT, |
| 685 | .cpsr_val = SVC_MODE | PSR_T_BIT, |
| 686 | .fn = vfp_kmode_exception, |
| 687 | }, { |
| 688 | .instr_mask = 0xff100000, |
| 689 | .instr_val = 0xf9000000, |
| 690 | .cpsr_mask = MODE_MASK | PSR_T_BIT, |
| 691 | .cpsr_val = SVC_MODE | PSR_T_BIT, |
| 692 | .fn = vfp_kmode_exception, |
| 693 | }, { |
| 694 | .instr_mask = 0x0c000e00, |
| 695 | .instr_val = 0x0c000a00, |
| 696 | .cpsr_mask = MODE_MASK, |
| 697 | .cpsr_val = SVC_MODE, |
| 698 | .fn = vfp_kmode_exception, |
| 699 | }}; |
| 700 | |
| 701 | static int __init vfp_kmode_exception_hook_init(void) |
| 702 | { |
| 703 | int i; |
| 704 | |
| 705 | for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++) |
| 706 | register_undef_hook(&vfp_kmode_exception_hook[i]); |
| 707 | return 0; |
| 708 | } |
| 709 | subsys_initcall(vfp_kmode_exception_hook_init); |
| 710 | |
| 711 | /* |
| 712 | * Kernel-side NEON support functions |
| 713 | */ |
| 714 | void kernel_neon_begin(void) |
| 715 | { |
| 716 | struct thread_info *thread = current_thread_info(); |
| 717 | unsigned int cpu; |
| 718 | u32 fpexc; |
| 719 | |
| 720 | /* |
| 721 | * Kernel mode NEON is only allowed outside of interrupt context |
| 722 | * with preemption disabled. This will make sure that the kernel |
| 723 | * mode NEON register contents never need to be preserved. |
| 724 | */ |
| 725 | BUG_ON(in_interrupt()); |
| 726 | cpu = get_cpu(); |
| 727 | |
| 728 | fpexc = fmrx(FPEXC) | FPEXC_EN; |
| 729 | fmxr(FPEXC, fpexc); |
| 730 | |
| 731 | /* |
| 732 | * Save the userland NEON/VFP state. Under UP, |
| 733 | * the owner could be a task other than 'current' |
| 734 | */ |
| 735 | if (vfp_state_in_hw(cpu, thread)) |
| 736 | vfp_save_state(&thread->vfpstate, fpexc); |
| 737 | #ifndef CONFIG_SMP |
| 738 | else if (vfp_current_hw_state[cpu] != NULL) |
| 739 | vfp_save_state(vfp_current_hw_state[cpu], fpexc); |
| 740 | #endif |
| 741 | vfp_current_hw_state[cpu] = NULL; |
| 742 | } |
| 743 | EXPORT_SYMBOL(kernel_neon_begin); |
| 744 | |
| 745 | void kernel_neon_end(void) |
| 746 | { |
| 747 | /* Disable the NEON/VFP unit. */ |
| 748 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); |
| 749 | put_cpu(); |
| 750 | } |
| 751 | EXPORT_SYMBOL(kernel_neon_end); |
| 752 | |
| 753 | #endif /* CONFIG_KERNEL_MODE_NEON */ |
| 754 | |
| 755 | static int __init vfp_detect(struct pt_regs *regs, unsigned int instr) |
| 756 | { |
| 757 | VFP_arch = UINT_MAX; /* mark as not present */ |
| 758 | regs->ARM_pc += 4; |
| 759 | return 0; |
| 760 | } |
| 761 | |
| 762 | static struct undef_hook vfp_detect_hook __initdata = { |
| 763 | .instr_mask = 0x0c000e00, |
| 764 | .instr_val = 0x0c000a00, |
| 765 | .cpsr_mask = MODE_MASK, |
| 766 | .cpsr_val = SVC_MODE, |
| 767 | .fn = vfp_detect, |
| 768 | }; |
| 769 | |
| 770 | /* |
| 771 | * VFP support code initialisation. |
| 772 | */ |
| 773 | static int __init vfp_init(void) |
| 774 | { |
| 775 | unsigned int vfpsid; |
| 776 | unsigned int cpu_arch = cpu_architecture(); |
| 777 | |
| 778 | /* |
| 779 | * Enable the access to the VFP on all online CPUs so the |
| 780 | * following test on FPSID will succeed. |
| 781 | */ |
| 782 | if (cpu_arch >= CPU_ARCH_ARMv6) |
| 783 | on_each_cpu(vfp_enable, NULL, 1); |
| 784 | |
| 785 | /* |
| 786 | * First check that there is a VFP that we can use. |
| 787 | * The handler is already setup to just log calls, so |
| 788 | * we just need to read the VFPSID register. |
| 789 | */ |
| 790 | register_undef_hook(&vfp_detect_hook); |
| 791 | barrier(); |
| 792 | vfpsid = fmrx(FPSID); |
| 793 | barrier(); |
| 794 | unregister_undef_hook(&vfp_detect_hook); |
| 795 | vfp_vector = vfp_null_entry; |
| 796 | |
| 797 | pr_info("VFP support v0.3: "); |
| 798 | if (VFP_arch) { |
| 799 | pr_cont("not present\n"); |
| 800 | return 0; |
| 801 | /* Extract the architecture on CPUID scheme */ |
| 802 | } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { |
| 803 | VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK; |
| 804 | VFP_arch >>= FPSID_ARCH_BIT; |
| 805 | /* |
| 806 | * Check for the presence of the Advanced SIMD |
| 807 | * load/store instructions, integer and single |
| 808 | * precision floating point operations. Only check |
| 809 | * for NEON if the hardware has the MVFR registers. |
| 810 | */ |
| 811 | if (IS_ENABLED(CONFIG_NEON) && |
| 812 | (fmrx(MVFR1) & 0x000fff00) == 0x00011100) |
| 813 | elf_hwcap |= HWCAP_NEON; |
| 814 | |
| 815 | if (IS_ENABLED(CONFIG_VFPv3)) { |
| 816 | u32 mvfr0 = fmrx(MVFR0); |
| 817 | if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 || |
| 818 | ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) { |
| 819 | elf_hwcap |= HWCAP_VFPv3; |
| 820 | /* |
| 821 | * Check for VFPv3 D16 and VFPv4 D16. CPUs in |
| 822 | * this configuration only have 16 x 64bit |
| 823 | * registers. |
| 824 | */ |
| 825 | if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1) |
| 826 | /* also v4-D16 */ |
| 827 | elf_hwcap |= HWCAP_VFPv3D16; |
| 828 | else |
| 829 | elf_hwcap |= HWCAP_VFPD32; |
| 830 | } |
| 831 | |
| 832 | if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000) |
| 833 | elf_hwcap |= HWCAP_VFPv4; |
| 834 | } |
| 835 | /* Extract the architecture version on pre-cpuid scheme */ |
| 836 | } else { |
| 837 | if (vfpsid & FPSID_NODOUBLE) { |
| 838 | pr_cont("no double precision support\n"); |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; |
| 843 | } |
| 844 | |
| 845 | cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING, |
| 846 | "arm/vfp:starting", vfp_starting_cpu, |
| 847 | vfp_dying_cpu); |
| 848 | |
| 849 | vfp_vector = vfp_support_entry; |
| 850 | |
| 851 | thread_register_notifier(&vfp_notifier_block); |
| 852 | vfp_pm_init(); |
| 853 | |
| 854 | /* |
| 855 | * We detected VFP, and the support code is |
| 856 | * in place; report VFP support to userspace. |
| 857 | */ |
| 858 | elf_hwcap |= HWCAP_VFP; |
| 859 | |
| 860 | pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n", |
| 861 | (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, |
| 862 | VFP_arch, |
| 863 | (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, |
| 864 | (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, |
| 865 | (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); |
| 866 | |
| 867 | return 0; |
| 868 | } |
| 869 | |
| 870 | core_initcall(vfp_init); |