b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Accelerated GHASH implementation with ARMv8 PMULL instructions. |
| 4 | * |
| 5 | * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| 6 | */ |
| 7 | |
| 8 | #include <asm/neon.h> |
| 9 | #include <asm/simd.h> |
| 10 | #include <asm/unaligned.h> |
| 11 | #include <crypto/aes.h> |
| 12 | #include <crypto/algapi.h> |
| 13 | #include <crypto/b128ops.h> |
| 14 | #include <crypto/gf128mul.h> |
| 15 | #include <crypto/internal/aead.h> |
| 16 | #include <crypto/internal/hash.h> |
| 17 | #include <crypto/internal/simd.h> |
| 18 | #include <crypto/internal/skcipher.h> |
| 19 | #include <crypto/scatterwalk.h> |
| 20 | #include <linux/cpufeature.h> |
| 21 | #include <linux/crypto.h> |
| 22 | #include <linux/module.h> |
| 23 | |
| 24 | MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); |
| 25 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); |
| 26 | MODULE_LICENSE("GPL v2"); |
| 27 | MODULE_ALIAS_CRYPTO("ghash"); |
| 28 | |
| 29 | #define GHASH_BLOCK_SIZE 16 |
| 30 | #define GHASH_DIGEST_SIZE 16 |
| 31 | #define GCM_IV_SIZE 12 |
| 32 | |
| 33 | struct ghash_key { |
| 34 | u64 h[2]; |
| 35 | u64 h2[2]; |
| 36 | u64 h3[2]; |
| 37 | u64 h4[2]; |
| 38 | |
| 39 | be128 k; |
| 40 | }; |
| 41 | |
| 42 | struct ghash_desc_ctx { |
| 43 | u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; |
| 44 | u8 buf[GHASH_BLOCK_SIZE]; |
| 45 | u32 count; |
| 46 | }; |
| 47 | |
| 48 | struct gcm_aes_ctx { |
| 49 | struct crypto_aes_ctx aes_key; |
| 50 | struct ghash_key ghash_key; |
| 51 | }; |
| 52 | |
| 53 | asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, |
| 54 | struct ghash_key const *k, |
| 55 | const char *head); |
| 56 | |
| 57 | asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, |
| 58 | struct ghash_key const *k, |
| 59 | const char *head); |
| 60 | |
| 61 | asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], |
| 62 | const u8 src[], struct ghash_key const *k, |
| 63 | u8 ctr[], u32 const rk[], int rounds, |
| 64 | u8 ks[]); |
| 65 | |
| 66 | asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[], |
| 67 | const u8 src[], struct ghash_key const *k, |
| 68 | u8 ctr[], u32 const rk[], int rounds); |
| 69 | |
| 70 | asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[], |
| 71 | u32 const rk[], int rounds); |
| 72 | |
| 73 | static int ghash_init(struct shash_desc *desc) |
| 74 | { |
| 75 | struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| 76 | |
| 77 | *ctx = (struct ghash_desc_ctx){}; |
| 78 | return 0; |
| 79 | } |
| 80 | |
| 81 | static void ghash_do_update(int blocks, u64 dg[], const char *src, |
| 82 | struct ghash_key *key, const char *head, |
| 83 | void (*simd_update)(int blocks, u64 dg[], |
| 84 | const char *src, |
| 85 | struct ghash_key const *k, |
| 86 | const char *head)) |
| 87 | { |
| 88 | if (likely(crypto_simd_usable())) { |
| 89 | kernel_neon_begin(); |
| 90 | simd_update(blocks, dg, src, key, head); |
| 91 | kernel_neon_end(); |
| 92 | } else { |
| 93 | be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; |
| 94 | |
| 95 | do { |
| 96 | const u8 *in = src; |
| 97 | |
| 98 | if (head) { |
| 99 | in = head; |
| 100 | blocks++; |
| 101 | head = NULL; |
| 102 | } else { |
| 103 | src += GHASH_BLOCK_SIZE; |
| 104 | } |
| 105 | |
| 106 | crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); |
| 107 | gf128mul_lle(&dst, &key->k); |
| 108 | } while (--blocks); |
| 109 | |
| 110 | dg[0] = be64_to_cpu(dst.b); |
| 111 | dg[1] = be64_to_cpu(dst.a); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /* avoid hogging the CPU for too long */ |
| 116 | #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) |
| 117 | |
| 118 | static int __ghash_update(struct shash_desc *desc, const u8 *src, |
| 119 | unsigned int len, |
| 120 | void (*simd_update)(int blocks, u64 dg[], |
| 121 | const char *src, |
| 122 | struct ghash_key const *k, |
| 123 | const char *head)) |
| 124 | { |
| 125 | struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| 126 | unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| 127 | |
| 128 | ctx->count += len; |
| 129 | |
| 130 | if ((partial + len) >= GHASH_BLOCK_SIZE) { |
| 131 | struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| 132 | int blocks; |
| 133 | |
| 134 | if (partial) { |
| 135 | int p = GHASH_BLOCK_SIZE - partial; |
| 136 | |
| 137 | memcpy(ctx->buf + partial, src, p); |
| 138 | src += p; |
| 139 | len -= p; |
| 140 | } |
| 141 | |
| 142 | blocks = len / GHASH_BLOCK_SIZE; |
| 143 | len %= GHASH_BLOCK_SIZE; |
| 144 | |
| 145 | do { |
| 146 | int chunk = min(blocks, MAX_BLOCKS); |
| 147 | |
| 148 | ghash_do_update(chunk, ctx->digest, src, key, |
| 149 | partial ? ctx->buf : NULL, |
| 150 | simd_update); |
| 151 | |
| 152 | blocks -= chunk; |
| 153 | src += chunk * GHASH_BLOCK_SIZE; |
| 154 | partial = 0; |
| 155 | } while (unlikely(blocks > 0)); |
| 156 | } |
| 157 | if (len) |
| 158 | memcpy(ctx->buf + partial, src, len); |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | static int ghash_update_p8(struct shash_desc *desc, const u8 *src, |
| 163 | unsigned int len) |
| 164 | { |
| 165 | return __ghash_update(desc, src, len, pmull_ghash_update_p8); |
| 166 | } |
| 167 | |
| 168 | static int ghash_update_p64(struct shash_desc *desc, const u8 *src, |
| 169 | unsigned int len) |
| 170 | { |
| 171 | return __ghash_update(desc, src, len, pmull_ghash_update_p64); |
| 172 | } |
| 173 | |
| 174 | static int ghash_final_p8(struct shash_desc *desc, u8 *dst) |
| 175 | { |
| 176 | struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| 177 | unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| 178 | |
| 179 | if (partial) { |
| 180 | struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| 181 | |
| 182 | memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); |
| 183 | |
| 184 | ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, |
| 185 | pmull_ghash_update_p8); |
| 186 | } |
| 187 | put_unaligned_be64(ctx->digest[1], dst); |
| 188 | put_unaligned_be64(ctx->digest[0], dst + 8); |
| 189 | |
| 190 | *ctx = (struct ghash_desc_ctx){}; |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | static int ghash_final_p64(struct shash_desc *desc, u8 *dst) |
| 195 | { |
| 196 | struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| 197 | unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| 198 | |
| 199 | if (partial) { |
| 200 | struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| 201 | |
| 202 | memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); |
| 203 | |
| 204 | ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, |
| 205 | pmull_ghash_update_p64); |
| 206 | } |
| 207 | put_unaligned_be64(ctx->digest[1], dst); |
| 208 | put_unaligned_be64(ctx->digest[0], dst + 8); |
| 209 | |
| 210 | *ctx = (struct ghash_desc_ctx){}; |
| 211 | return 0; |
| 212 | } |
| 213 | |
| 214 | static void ghash_reflect(u64 h[], const be128 *k) |
| 215 | { |
| 216 | u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0; |
| 217 | |
| 218 | h[0] = (be64_to_cpu(k->b) << 1) | carry; |
| 219 | h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); |
| 220 | |
| 221 | if (carry) |
| 222 | h[1] ^= 0xc200000000000000UL; |
| 223 | } |
| 224 | |
| 225 | static int __ghash_setkey(struct ghash_key *key, |
| 226 | const u8 *inkey, unsigned int keylen) |
| 227 | { |
| 228 | be128 h; |
| 229 | |
| 230 | /* needed for the fallback */ |
| 231 | memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); |
| 232 | |
| 233 | ghash_reflect(key->h, &key->k); |
| 234 | |
| 235 | h = key->k; |
| 236 | gf128mul_lle(&h, &key->k); |
| 237 | ghash_reflect(key->h2, &h); |
| 238 | |
| 239 | gf128mul_lle(&h, &key->k); |
| 240 | ghash_reflect(key->h3, &h); |
| 241 | |
| 242 | gf128mul_lle(&h, &key->k); |
| 243 | ghash_reflect(key->h4, &h); |
| 244 | |
| 245 | return 0; |
| 246 | } |
| 247 | |
| 248 | static int ghash_setkey(struct crypto_shash *tfm, |
| 249 | const u8 *inkey, unsigned int keylen) |
| 250 | { |
| 251 | struct ghash_key *key = crypto_shash_ctx(tfm); |
| 252 | |
| 253 | if (keylen != GHASH_BLOCK_SIZE) { |
| 254 | crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| 255 | return -EINVAL; |
| 256 | } |
| 257 | |
| 258 | return __ghash_setkey(key, inkey, keylen); |
| 259 | } |
| 260 | |
| 261 | static struct shash_alg ghash_alg[] = {{ |
| 262 | .base.cra_name = "ghash", |
| 263 | .base.cra_driver_name = "ghash-neon", |
| 264 | .base.cra_priority = 150, |
| 265 | .base.cra_blocksize = GHASH_BLOCK_SIZE, |
| 266 | .base.cra_ctxsize = sizeof(struct ghash_key), |
| 267 | .base.cra_module = THIS_MODULE, |
| 268 | |
| 269 | .digestsize = GHASH_DIGEST_SIZE, |
| 270 | .init = ghash_init, |
| 271 | .update = ghash_update_p8, |
| 272 | .final = ghash_final_p8, |
| 273 | .setkey = ghash_setkey, |
| 274 | .descsize = sizeof(struct ghash_desc_ctx), |
| 275 | }, { |
| 276 | .base.cra_name = "ghash", |
| 277 | .base.cra_driver_name = "ghash-ce", |
| 278 | .base.cra_priority = 200, |
| 279 | .base.cra_blocksize = GHASH_BLOCK_SIZE, |
| 280 | .base.cra_ctxsize = sizeof(struct ghash_key), |
| 281 | .base.cra_module = THIS_MODULE, |
| 282 | |
| 283 | .digestsize = GHASH_DIGEST_SIZE, |
| 284 | .init = ghash_init, |
| 285 | .update = ghash_update_p64, |
| 286 | .final = ghash_final_p64, |
| 287 | .setkey = ghash_setkey, |
| 288 | .descsize = sizeof(struct ghash_desc_ctx), |
| 289 | }}; |
| 290 | |
| 291 | static int num_rounds(struct crypto_aes_ctx *ctx) |
| 292 | { |
| 293 | /* |
| 294 | * # of rounds specified by AES: |
| 295 | * 128 bit key 10 rounds |
| 296 | * 192 bit key 12 rounds |
| 297 | * 256 bit key 14 rounds |
| 298 | * => n byte key => 6 + (n/4) rounds |
| 299 | */ |
| 300 | return 6 + ctx->key_length / 4; |
| 301 | } |
| 302 | |
| 303 | static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, |
| 304 | unsigned int keylen) |
| 305 | { |
| 306 | struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); |
| 307 | u8 key[GHASH_BLOCK_SIZE]; |
| 308 | int ret; |
| 309 | |
| 310 | ret = aes_expandkey(&ctx->aes_key, inkey, keylen); |
| 311 | if (ret) { |
| 312 | tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 313 | return -EINVAL; |
| 314 | } |
| 315 | |
| 316 | aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){}); |
| 317 | |
| 318 | return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); |
| 319 | } |
| 320 | |
| 321 | static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| 322 | { |
| 323 | switch (authsize) { |
| 324 | case 4: |
| 325 | case 8: |
| 326 | case 12 ... 16: |
| 327 | break; |
| 328 | default: |
| 329 | return -EINVAL; |
| 330 | } |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], |
| 335 | int *buf_count, struct gcm_aes_ctx *ctx) |
| 336 | { |
| 337 | if (*buf_count > 0) { |
| 338 | int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); |
| 339 | |
| 340 | memcpy(&buf[*buf_count], src, buf_added); |
| 341 | |
| 342 | *buf_count += buf_added; |
| 343 | src += buf_added; |
| 344 | count -= buf_added; |
| 345 | } |
| 346 | |
| 347 | if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { |
| 348 | int blocks = count / GHASH_BLOCK_SIZE; |
| 349 | |
| 350 | ghash_do_update(blocks, dg, src, &ctx->ghash_key, |
| 351 | *buf_count ? buf : NULL, |
| 352 | pmull_ghash_update_p64); |
| 353 | |
| 354 | src += blocks * GHASH_BLOCK_SIZE; |
| 355 | count %= GHASH_BLOCK_SIZE; |
| 356 | *buf_count = 0; |
| 357 | } |
| 358 | |
| 359 | if (count > 0) { |
| 360 | memcpy(buf, src, count); |
| 361 | *buf_count = count; |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) |
| 366 | { |
| 367 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 368 | struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| 369 | u8 buf[GHASH_BLOCK_SIZE]; |
| 370 | struct scatter_walk walk; |
| 371 | u32 len = req->assoclen; |
| 372 | int buf_count = 0; |
| 373 | |
| 374 | scatterwalk_start(&walk, req->src); |
| 375 | |
| 376 | do { |
| 377 | u32 n = scatterwalk_clamp(&walk, len); |
| 378 | u8 *p; |
| 379 | |
| 380 | if (!n) { |
| 381 | scatterwalk_start(&walk, sg_next(walk.sg)); |
| 382 | n = scatterwalk_clamp(&walk, len); |
| 383 | } |
| 384 | p = scatterwalk_map(&walk); |
| 385 | |
| 386 | gcm_update_mac(dg, p, n, buf, &buf_count, ctx); |
| 387 | len -= n; |
| 388 | |
| 389 | scatterwalk_unmap(p); |
| 390 | scatterwalk_advance(&walk, n); |
| 391 | scatterwalk_done(&walk, 0, len); |
| 392 | } while (len); |
| 393 | |
| 394 | if (buf_count) { |
| 395 | memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); |
| 396 | ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL, |
| 397 | pmull_ghash_update_p64); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx, |
| 402 | u64 dg[], u8 tag[], int cryptlen) |
| 403 | { |
| 404 | u8 mac[AES_BLOCK_SIZE]; |
| 405 | u128 lengths; |
| 406 | |
| 407 | lengths.a = cpu_to_be64(req->assoclen * 8); |
| 408 | lengths.b = cpu_to_be64(cryptlen * 8); |
| 409 | |
| 410 | ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL, |
| 411 | pmull_ghash_update_p64); |
| 412 | |
| 413 | put_unaligned_be64(dg[1], mac); |
| 414 | put_unaligned_be64(dg[0], mac + 8); |
| 415 | |
| 416 | crypto_xor(tag, mac, AES_BLOCK_SIZE); |
| 417 | } |
| 418 | |
| 419 | static int gcm_encrypt(struct aead_request *req) |
| 420 | { |
| 421 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 422 | struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| 423 | struct skcipher_walk walk; |
| 424 | u8 iv[AES_BLOCK_SIZE]; |
| 425 | u8 ks[2 * AES_BLOCK_SIZE]; |
| 426 | u8 tag[AES_BLOCK_SIZE]; |
| 427 | u64 dg[2] = {}; |
| 428 | int nrounds = num_rounds(&ctx->aes_key); |
| 429 | int err; |
| 430 | |
| 431 | if (req->assoclen) |
| 432 | gcm_calculate_auth_mac(req, dg); |
| 433 | |
| 434 | memcpy(iv, req->iv, GCM_IV_SIZE); |
| 435 | put_unaligned_be32(1, iv + GCM_IV_SIZE); |
| 436 | |
| 437 | err = skcipher_walk_aead_encrypt(&walk, req, false); |
| 438 | |
| 439 | if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) { |
| 440 | u32 const *rk = NULL; |
| 441 | |
| 442 | kernel_neon_begin(); |
| 443 | pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); |
| 444 | put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| 445 | pmull_gcm_encrypt_block(ks, iv, NULL, nrounds); |
| 446 | put_unaligned_be32(3, iv + GCM_IV_SIZE); |
| 447 | pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds); |
| 448 | put_unaligned_be32(4, iv + GCM_IV_SIZE); |
| 449 | |
| 450 | do { |
| 451 | int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| 452 | |
| 453 | if (rk) |
| 454 | kernel_neon_begin(); |
| 455 | |
| 456 | pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr, |
| 457 | walk.src.virt.addr, &ctx->ghash_key, |
| 458 | iv, rk, nrounds, ks); |
| 459 | kernel_neon_end(); |
| 460 | |
| 461 | err = skcipher_walk_done(&walk, |
| 462 | walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| 463 | |
| 464 | rk = ctx->aes_key.key_enc; |
| 465 | } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); |
| 466 | } else { |
| 467 | aes_encrypt(&ctx->aes_key, tag, iv); |
| 468 | put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| 469 | |
| 470 | while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { |
| 471 | const int blocks = |
| 472 | walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| 473 | u8 *dst = walk.dst.virt.addr; |
| 474 | u8 *src = walk.src.virt.addr; |
| 475 | int remaining = blocks; |
| 476 | |
| 477 | do { |
| 478 | aes_encrypt(&ctx->aes_key, ks, iv); |
| 479 | crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE); |
| 480 | crypto_inc(iv, AES_BLOCK_SIZE); |
| 481 | |
| 482 | dst += AES_BLOCK_SIZE; |
| 483 | src += AES_BLOCK_SIZE; |
| 484 | } while (--remaining > 0); |
| 485 | |
| 486 | ghash_do_update(blocks, dg, |
| 487 | walk.dst.virt.addr, &ctx->ghash_key, |
| 488 | NULL, pmull_ghash_update_p64); |
| 489 | |
| 490 | err = skcipher_walk_done(&walk, |
| 491 | walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| 492 | } |
| 493 | if (walk.nbytes) { |
| 494 | aes_encrypt(&ctx->aes_key, ks, iv); |
| 495 | if (walk.nbytes > AES_BLOCK_SIZE) { |
| 496 | crypto_inc(iv, AES_BLOCK_SIZE); |
| 497 | aes_encrypt(&ctx->aes_key, ks + AES_BLOCK_SIZE, iv); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | /* handle the tail */ |
| 503 | if (walk.nbytes) { |
| 504 | u8 buf[GHASH_BLOCK_SIZE]; |
| 505 | unsigned int nbytes = walk.nbytes; |
| 506 | u8 *dst = walk.dst.virt.addr; |
| 507 | u8 *head = NULL; |
| 508 | |
| 509 | crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks, |
| 510 | walk.nbytes); |
| 511 | |
| 512 | if (walk.nbytes > GHASH_BLOCK_SIZE) { |
| 513 | head = dst; |
| 514 | dst += GHASH_BLOCK_SIZE; |
| 515 | nbytes %= GHASH_BLOCK_SIZE; |
| 516 | } |
| 517 | |
| 518 | memcpy(buf, dst, nbytes); |
| 519 | memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); |
| 520 | ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, |
| 521 | pmull_ghash_update_p64); |
| 522 | |
| 523 | err = skcipher_walk_done(&walk, 0); |
| 524 | } |
| 525 | |
| 526 | if (err) |
| 527 | return err; |
| 528 | |
| 529 | gcm_final(req, ctx, dg, tag, req->cryptlen); |
| 530 | |
| 531 | /* copy authtag to end of dst */ |
| 532 | scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, |
| 533 | crypto_aead_authsize(aead), 1); |
| 534 | |
| 535 | return 0; |
| 536 | } |
| 537 | |
| 538 | static int gcm_decrypt(struct aead_request *req) |
| 539 | { |
| 540 | struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| 541 | struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| 542 | unsigned int authsize = crypto_aead_authsize(aead); |
| 543 | struct skcipher_walk walk; |
| 544 | u8 iv[2 * AES_BLOCK_SIZE]; |
| 545 | u8 tag[AES_BLOCK_SIZE]; |
| 546 | u8 buf[2 * GHASH_BLOCK_SIZE]; |
| 547 | u64 dg[2] = {}; |
| 548 | int nrounds = num_rounds(&ctx->aes_key); |
| 549 | int err; |
| 550 | |
| 551 | if (req->assoclen) |
| 552 | gcm_calculate_auth_mac(req, dg); |
| 553 | |
| 554 | memcpy(iv, req->iv, GCM_IV_SIZE); |
| 555 | put_unaligned_be32(1, iv + GCM_IV_SIZE); |
| 556 | |
| 557 | err = skcipher_walk_aead_decrypt(&walk, req, false); |
| 558 | |
| 559 | if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) { |
| 560 | u32 const *rk = NULL; |
| 561 | |
| 562 | kernel_neon_begin(); |
| 563 | pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); |
| 564 | put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| 565 | |
| 566 | do { |
| 567 | int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| 568 | int rem = walk.total - blocks * AES_BLOCK_SIZE; |
| 569 | |
| 570 | if (rk) |
| 571 | kernel_neon_begin(); |
| 572 | |
| 573 | pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr, |
| 574 | walk.src.virt.addr, &ctx->ghash_key, |
| 575 | iv, rk, nrounds); |
| 576 | |
| 577 | /* check if this is the final iteration of the loop */ |
| 578 | if (rem < (2 * AES_BLOCK_SIZE)) { |
| 579 | u8 *iv2 = iv + AES_BLOCK_SIZE; |
| 580 | |
| 581 | if (rem > AES_BLOCK_SIZE) { |
| 582 | memcpy(iv2, iv, AES_BLOCK_SIZE); |
| 583 | crypto_inc(iv2, AES_BLOCK_SIZE); |
| 584 | } |
| 585 | |
| 586 | pmull_gcm_encrypt_block(iv, iv, NULL, nrounds); |
| 587 | |
| 588 | if (rem > AES_BLOCK_SIZE) |
| 589 | pmull_gcm_encrypt_block(iv2, iv2, NULL, |
| 590 | nrounds); |
| 591 | } |
| 592 | |
| 593 | kernel_neon_end(); |
| 594 | |
| 595 | err = skcipher_walk_done(&walk, |
| 596 | walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| 597 | |
| 598 | rk = ctx->aes_key.key_enc; |
| 599 | } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); |
| 600 | } else { |
| 601 | aes_encrypt(&ctx->aes_key, tag, iv); |
| 602 | put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| 603 | |
| 604 | while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { |
| 605 | int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| 606 | u8 *dst = walk.dst.virt.addr; |
| 607 | u8 *src = walk.src.virt.addr; |
| 608 | |
| 609 | ghash_do_update(blocks, dg, walk.src.virt.addr, |
| 610 | &ctx->ghash_key, NULL, |
| 611 | pmull_ghash_update_p64); |
| 612 | |
| 613 | do { |
| 614 | aes_encrypt(&ctx->aes_key, buf, iv); |
| 615 | crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); |
| 616 | crypto_inc(iv, AES_BLOCK_SIZE); |
| 617 | |
| 618 | dst += AES_BLOCK_SIZE; |
| 619 | src += AES_BLOCK_SIZE; |
| 620 | } while (--blocks > 0); |
| 621 | |
| 622 | err = skcipher_walk_done(&walk, |
| 623 | walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| 624 | } |
| 625 | if (walk.nbytes) { |
| 626 | if (walk.nbytes > AES_BLOCK_SIZE) { |
| 627 | u8 *iv2 = iv + AES_BLOCK_SIZE; |
| 628 | |
| 629 | memcpy(iv2, iv, AES_BLOCK_SIZE); |
| 630 | crypto_inc(iv2, AES_BLOCK_SIZE); |
| 631 | |
| 632 | aes_encrypt(&ctx->aes_key, iv2, iv2); |
| 633 | } |
| 634 | aes_encrypt(&ctx->aes_key, iv, iv); |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | /* handle the tail */ |
| 639 | if (walk.nbytes) { |
| 640 | const u8 *src = walk.src.virt.addr; |
| 641 | const u8 *head = NULL; |
| 642 | unsigned int nbytes = walk.nbytes; |
| 643 | |
| 644 | if (walk.nbytes > GHASH_BLOCK_SIZE) { |
| 645 | head = src; |
| 646 | src += GHASH_BLOCK_SIZE; |
| 647 | nbytes %= GHASH_BLOCK_SIZE; |
| 648 | } |
| 649 | |
| 650 | memcpy(buf, src, nbytes); |
| 651 | memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); |
| 652 | ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, |
| 653 | pmull_ghash_update_p64); |
| 654 | |
| 655 | crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv, |
| 656 | walk.nbytes); |
| 657 | |
| 658 | err = skcipher_walk_done(&walk, 0); |
| 659 | } |
| 660 | |
| 661 | if (err) |
| 662 | return err; |
| 663 | |
| 664 | gcm_final(req, ctx, dg, tag, req->cryptlen - authsize); |
| 665 | |
| 666 | /* compare calculated auth tag with the stored one */ |
| 667 | scatterwalk_map_and_copy(buf, req->src, |
| 668 | req->assoclen + req->cryptlen - authsize, |
| 669 | authsize, 0); |
| 670 | |
| 671 | if (crypto_memneq(tag, buf, authsize)) |
| 672 | return -EBADMSG; |
| 673 | return 0; |
| 674 | } |
| 675 | |
| 676 | static struct aead_alg gcm_aes_alg = { |
| 677 | .ivsize = GCM_IV_SIZE, |
| 678 | .chunksize = 2 * AES_BLOCK_SIZE, |
| 679 | .maxauthsize = AES_BLOCK_SIZE, |
| 680 | .setkey = gcm_setkey, |
| 681 | .setauthsize = gcm_setauthsize, |
| 682 | .encrypt = gcm_encrypt, |
| 683 | .decrypt = gcm_decrypt, |
| 684 | |
| 685 | .base.cra_name = "gcm(aes)", |
| 686 | .base.cra_driver_name = "gcm-aes-ce", |
| 687 | .base.cra_priority = 300, |
| 688 | .base.cra_blocksize = 1, |
| 689 | .base.cra_ctxsize = sizeof(struct gcm_aes_ctx), |
| 690 | .base.cra_module = THIS_MODULE, |
| 691 | }; |
| 692 | |
| 693 | static int __init ghash_ce_mod_init(void) |
| 694 | { |
| 695 | int ret; |
| 696 | |
| 697 | if (!cpu_have_named_feature(ASIMD)) |
| 698 | return -ENODEV; |
| 699 | |
| 700 | if (cpu_have_named_feature(PMULL)) |
| 701 | ret = crypto_register_shashes(ghash_alg, |
| 702 | ARRAY_SIZE(ghash_alg)); |
| 703 | else |
| 704 | /* only register the first array element */ |
| 705 | ret = crypto_register_shash(ghash_alg); |
| 706 | |
| 707 | if (ret) |
| 708 | return ret; |
| 709 | |
| 710 | if (cpu_have_named_feature(PMULL)) { |
| 711 | ret = crypto_register_aead(&gcm_aes_alg); |
| 712 | if (ret) |
| 713 | crypto_unregister_shashes(ghash_alg, |
| 714 | ARRAY_SIZE(ghash_alg)); |
| 715 | } |
| 716 | return ret; |
| 717 | } |
| 718 | |
| 719 | static void __exit ghash_ce_mod_exit(void) |
| 720 | { |
| 721 | if (cpu_have_named_feature(PMULL)) |
| 722 | crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg)); |
| 723 | else |
| 724 | crypto_unregister_shash(ghash_alg); |
| 725 | crypto_unregister_aead(&gcm_aes_alg); |
| 726 | } |
| 727 | |
| 728 | static const struct cpu_feature ghash_cpu_feature[] = { |
| 729 | { cpu_feature(PMULL) }, { } |
| 730 | }; |
| 731 | MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); |
| 732 | |
| 733 | module_init(ghash_ce_mod_init); |
| 734 | module_exit(ghash_ce_mod_exit); |