| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
| 2 | /* |
| 3 | * Copyright (C) 2012,2013 - ARM Ltd |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #ifndef __ARM64_KVM_MMU_H__ |
| 8 | #define __ARM64_KVM_MMU_H__ |
| 9 | |
| 10 | #include <asm/page.h> |
| 11 | #include <asm/memory.h> |
| 12 | #include <asm/cpufeature.h> |
| 13 | |
| 14 | /* |
| 15 | * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express |
| 16 | * "negative" addresses. This makes it impossible to directly share |
| 17 | * mappings with the kernel. |
| 18 | * |
| 19 | * Instead, give the HYP mode its own VA region at a fixed offset from |
| 20 | * the kernel by just masking the top bits (which are all ones for a |
| 21 | * kernel address). We need to find out how many bits to mask. |
| 22 | * |
| 23 | * We want to build a set of page tables that cover both parts of the |
| 24 | * idmap (the trampoline page used to initialize EL2), and our normal |
| 25 | * runtime VA space, at the same time. |
| 26 | * |
| 27 | * Given that the kernel uses VA_BITS for its entire address space, |
| 28 | * and that half of that space (VA_BITS - 1) is used for the linear |
| 29 | * mapping, we can also limit the EL2 space to (VA_BITS - 1). |
| 30 | * |
| 31 | * The main question is "Within the VA_BITS space, does EL2 use the |
| 32 | * top or the bottom half of that space to shadow the kernel's linear |
| 33 | * mapping?". As we need to idmap the trampoline page, this is |
| 34 | * determined by the range in which this page lives. |
| 35 | * |
| 36 | * If the page is in the bottom half, we have to use the top half. If |
| 37 | * the page is in the top half, we have to use the bottom half: |
| 38 | * |
| 39 | * T = __pa_symbol(__hyp_idmap_text_start) |
| 40 | * if (T & BIT(VA_BITS - 1)) |
| 41 | * HYP_VA_MIN = 0 //idmap in upper half |
| 42 | * else |
| 43 | * HYP_VA_MIN = 1 << (VA_BITS - 1) |
| 44 | * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1 |
| 45 | * |
| 46 | * This of course assumes that the trampoline page exists within the |
| 47 | * VA_BITS range. If it doesn't, then it means we're in the odd case |
| 48 | * where the kernel idmap (as well as HYP) uses more levels than the |
| 49 | * kernel runtime page tables (as seen when the kernel is configured |
| 50 | * for 4k pages, 39bits VA, and yet memory lives just above that |
| 51 | * limit, forcing the idmap to use 4 levels of page tables while the |
| 52 | * kernel itself only uses 3). In this particular case, it doesn't |
| 53 | * matter which side of VA_BITS we use, as we're guaranteed not to |
| 54 | * conflict with anything. |
| 55 | * |
| 56 | * When using VHE, there are no separate hyp mappings and all KVM |
| 57 | * functionality is already mapped as part of the main kernel |
| 58 | * mappings, and none of this applies in that case. |
| 59 | */ |
| 60 | |
| 61 | #ifdef __ASSEMBLY__ |
| 62 | |
| 63 | #include <asm/alternative.h> |
| 64 | |
| 65 | /* |
| 66 | * Convert a kernel VA into a HYP VA. |
| 67 | * reg: VA to be converted. |
| 68 | * |
| 69 | * The actual code generation takes place in kvm_update_va_mask, and |
| 70 | * the instructions below are only there to reserve the space and |
| 71 | * perform the register allocation (kvm_update_va_mask uses the |
| 72 | * specific registers encoded in the instructions). |
| 73 | */ |
| 74 | .macro kern_hyp_va reg |
| 75 | alternative_cb kvm_update_va_mask |
| 76 | and \reg, \reg, #1 /* mask with va_mask */ |
| 77 | ror \reg, \reg, #1 /* rotate to the first tag bit */ |
| 78 | add \reg, \reg, #0 /* insert the low 12 bits of the tag */ |
| 79 | add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */ |
| 80 | ror \reg, \reg, #63 /* rotate back */ |
| 81 | alternative_cb_end |
| 82 | .endm |
| 83 | |
| 84 | #else |
| 85 | |
| 86 | #include <asm/pgalloc.h> |
| 87 | #include <asm/cache.h> |
| 88 | #include <asm/cacheflush.h> |
| 89 | #include <asm/mmu_context.h> |
| 90 | #include <asm/pgtable.h> |
| 91 | |
| 92 | void kvm_update_va_mask(struct alt_instr *alt, |
| 93 | __le32 *origptr, __le32 *updptr, int nr_inst); |
| 94 | |
| 95 | static inline unsigned long __kern_hyp_va(unsigned long v) |
| 96 | { |
| 97 | asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n" |
| 98 | "ror %0, %0, #1\n" |
| 99 | "add %0, %0, #0\n" |
| 100 | "add %0, %0, #0, lsl 12\n" |
| 101 | "ror %0, %0, #63\n", |
| 102 | kvm_update_va_mask) |
| 103 | : "+r" (v)); |
| 104 | return v; |
| 105 | } |
| 106 | |
| 107 | #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) |
| 108 | |
| 109 | /* |
| 110 | * Obtain the PC-relative address of a kernel symbol |
| 111 | * s: symbol |
| 112 | * |
| 113 | * The goal of this macro is to return a symbol's address based on a |
| 114 | * PC-relative computation, as opposed to a loading the VA from a |
| 115 | * constant pool or something similar. This works well for HYP, as an |
| 116 | * absolute VA is guaranteed to be wrong. Only use this if trying to |
| 117 | * obtain the address of a symbol (i.e. not something you obtained by |
| 118 | * following a pointer). |
| 119 | */ |
| 120 | #define hyp_symbol_addr(s) \ |
| 121 | ({ \ |
| 122 | typeof(s) *addr; \ |
| 123 | asm("adrp %0, %1\n" \ |
| 124 | "add %0, %0, :lo12:%1\n" \ |
| 125 | : "=r" (addr) : "S" (&s)); \ |
| 126 | addr; \ |
| 127 | }) |
| 128 | |
| 129 | /* |
| 130 | * We currently support using a VM-specified IPA size. For backward |
| 131 | * compatibility, the default IPA size is fixed to 40bits. |
| 132 | */ |
| 133 | #define KVM_PHYS_SHIFT (40) |
| 134 | |
| 135 | #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr) |
| 136 | #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm)) |
| 137 | #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL)) |
| 138 | |
| 139 | static inline bool kvm_page_empty(void *ptr) |
| 140 | { |
| 141 | struct page *ptr_page = virt_to_page(ptr); |
| 142 | return page_count(ptr_page) == 1; |
| 143 | } |
| 144 | |
| 145 | #include <asm/stage2_pgtable.h> |
| 146 | |
| 147 | int create_hyp_mappings(void *from, void *to, pgprot_t prot); |
| 148 | int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size, |
| 149 | void __iomem **kaddr, |
| 150 | void __iomem **haddr); |
| 151 | int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size, |
| 152 | void **haddr); |
| 153 | void free_hyp_pgds(void); |
| 154 | |
| 155 | void stage2_unmap_vm(struct kvm *kvm); |
| 156 | int kvm_alloc_stage2_pgd(struct kvm *kvm); |
| 157 | void kvm_free_stage2_pgd(struct kvm *kvm); |
| 158 | int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa, |
| 159 | phys_addr_t pa, unsigned long size, bool writable); |
| 160 | |
| 161 | int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run); |
| 162 | |
| 163 | void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu); |
| 164 | |
| 165 | phys_addr_t kvm_mmu_get_httbr(void); |
| 166 | phys_addr_t kvm_get_idmap_vector(void); |
| 167 | int kvm_mmu_init(void); |
| 168 | void kvm_clear_hyp_idmap(void); |
| 169 | |
| 170 | #define kvm_mk_pmd(ptep) \ |
| 171 | __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE) |
| 172 | #define kvm_mk_pud(pmdp) \ |
| 173 | __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE) |
| 174 | #define kvm_mk_pgd(pudp) \ |
| 175 | __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE) |
| 176 | |
| 177 | #define kvm_set_pud(pudp, pud) set_pud(pudp, pud) |
| 178 | |
| 179 | #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot) |
| 180 | #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot) |
| 181 | #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot) |
| 182 | |
| 183 | #define kvm_pud_pfn(pud) pud_pfn(pud) |
| 184 | |
| 185 | #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd) |
| 186 | #define kvm_pud_mkhuge(pud) pud_mkhuge(pud) |
| 187 | |
| 188 | static inline pte_t kvm_s2pte_mkwrite(pte_t pte) |
| 189 | { |
| 190 | pte_val(pte) |= PTE_S2_RDWR; |
| 191 | return pte; |
| 192 | } |
| 193 | |
| 194 | static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd) |
| 195 | { |
| 196 | pmd_val(pmd) |= PMD_S2_RDWR; |
| 197 | return pmd; |
| 198 | } |
| 199 | |
| 200 | static inline pud_t kvm_s2pud_mkwrite(pud_t pud) |
| 201 | { |
| 202 | pud_val(pud) |= PUD_S2_RDWR; |
| 203 | return pud; |
| 204 | } |
| 205 | |
| 206 | static inline pte_t kvm_s2pte_mkexec(pte_t pte) |
| 207 | { |
| 208 | pte_val(pte) &= ~PTE_S2_XN; |
| 209 | return pte; |
| 210 | } |
| 211 | |
| 212 | static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd) |
| 213 | { |
| 214 | pmd_val(pmd) &= ~PMD_S2_XN; |
| 215 | return pmd; |
| 216 | } |
| 217 | |
| 218 | static inline pud_t kvm_s2pud_mkexec(pud_t pud) |
| 219 | { |
| 220 | pud_val(pud) &= ~PUD_S2_XN; |
| 221 | return pud; |
| 222 | } |
| 223 | |
| 224 | static inline void kvm_set_s2pte_readonly(pte_t *ptep) |
| 225 | { |
| 226 | pteval_t old_pteval, pteval; |
| 227 | |
| 228 | pteval = READ_ONCE(pte_val(*ptep)); |
| 229 | do { |
| 230 | old_pteval = pteval; |
| 231 | pteval &= ~PTE_S2_RDWR; |
| 232 | pteval |= PTE_S2_RDONLY; |
| 233 | pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); |
| 234 | } while (pteval != old_pteval); |
| 235 | } |
| 236 | |
| 237 | static inline bool kvm_s2pte_readonly(pte_t *ptep) |
| 238 | { |
| 239 | return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY; |
| 240 | } |
| 241 | |
| 242 | static inline bool kvm_s2pte_exec(pte_t *ptep) |
| 243 | { |
| 244 | return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN); |
| 245 | } |
| 246 | |
| 247 | static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp) |
| 248 | { |
| 249 | kvm_set_s2pte_readonly((pte_t *)pmdp); |
| 250 | } |
| 251 | |
| 252 | static inline bool kvm_s2pmd_readonly(pmd_t *pmdp) |
| 253 | { |
| 254 | return kvm_s2pte_readonly((pte_t *)pmdp); |
| 255 | } |
| 256 | |
| 257 | static inline bool kvm_s2pmd_exec(pmd_t *pmdp) |
| 258 | { |
| 259 | return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN); |
| 260 | } |
| 261 | |
| 262 | static inline void kvm_set_s2pud_readonly(pud_t *pudp) |
| 263 | { |
| 264 | kvm_set_s2pte_readonly((pte_t *)pudp); |
| 265 | } |
| 266 | |
| 267 | static inline bool kvm_s2pud_readonly(pud_t *pudp) |
| 268 | { |
| 269 | return kvm_s2pte_readonly((pte_t *)pudp); |
| 270 | } |
| 271 | |
| 272 | static inline bool kvm_s2pud_exec(pud_t *pudp) |
| 273 | { |
| 274 | return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN); |
| 275 | } |
| 276 | |
| 277 | static inline pud_t kvm_s2pud_mkyoung(pud_t pud) |
| 278 | { |
| 279 | return pud_mkyoung(pud); |
| 280 | } |
| 281 | |
| 282 | static inline bool kvm_s2pud_young(pud_t pud) |
| 283 | { |
| 284 | return pud_young(pud); |
| 285 | } |
| 286 | |
| 287 | #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep) |
| 288 | |
| 289 | #ifdef __PAGETABLE_PMD_FOLDED |
| 290 | #define hyp_pmd_table_empty(pmdp) (0) |
| 291 | #else |
| 292 | #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp) |
| 293 | #endif |
| 294 | |
| 295 | #ifdef __PAGETABLE_PUD_FOLDED |
| 296 | #define hyp_pud_table_empty(pudp) (0) |
| 297 | #else |
| 298 | #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp) |
| 299 | #endif |
| 300 | |
| 301 | struct kvm; |
| 302 | |
| 303 | #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l)) |
| 304 | |
| 305 | static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu) |
| 306 | { |
| 307 | return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101; |
| 308 | } |
| 309 | |
| 310 | static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size) |
| 311 | { |
| 312 | void *va = page_address(pfn_to_page(pfn)); |
| 313 | |
| 314 | /* |
| 315 | * With FWB, we ensure that the guest always accesses memory using |
| 316 | * cacheable attributes, and we don't have to clean to PoC when |
| 317 | * faulting in pages. Furthermore, FWB implies IDC, so cleaning to |
| 318 | * PoU is not required either in this case. |
| 319 | */ |
| 320 | if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) |
| 321 | return; |
| 322 | |
| 323 | kvm_flush_dcache_to_poc(va, size); |
| 324 | } |
| 325 | |
| 326 | static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn, |
| 327 | unsigned long size) |
| 328 | { |
| 329 | if (icache_is_aliasing()) { |
| 330 | /* any kind of VIPT cache */ |
| 331 | __flush_icache_all(); |
| 332 | } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) { |
| 333 | /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */ |
| 334 | void *va = page_address(pfn_to_page(pfn)); |
| 335 | |
| 336 | invalidate_icache_range((unsigned long)va, |
| 337 | (unsigned long)va + size); |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | static inline void __kvm_flush_dcache_pte(pte_t pte) |
| 342 | { |
| 343 | if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| 344 | struct page *page = pte_page(pte); |
| 345 | kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | static inline void __kvm_flush_dcache_pmd(pmd_t pmd) |
| 350 | { |
| 351 | if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| 352 | struct page *page = pmd_page(pmd); |
| 353 | kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | static inline void __kvm_flush_dcache_pud(pud_t pud) |
| 358 | { |
| 359 | if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) { |
| 360 | struct page *page = pud_page(pud); |
| 361 | kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | #define kvm_virt_to_phys(x) __pa_symbol(x) |
| 366 | |
| 367 | void kvm_set_way_flush(struct kvm_vcpu *vcpu); |
| 368 | void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled); |
| 369 | |
| 370 | static inline bool __kvm_cpu_uses_extended_idmap(void) |
| 371 | { |
| 372 | return __cpu_uses_extended_idmap_level(); |
| 373 | } |
| 374 | |
| 375 | static inline unsigned long __kvm_idmap_ptrs_per_pgd(void) |
| 376 | { |
| 377 | return idmap_ptrs_per_pgd; |
| 378 | } |
| 379 | |
| 380 | /* |
| 381 | * Can't use pgd_populate here, because the extended idmap adds an extra level |
| 382 | * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended |
| 383 | * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4. |
| 384 | */ |
| 385 | static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd, |
| 386 | pgd_t *hyp_pgd, |
| 387 | pgd_t *merged_hyp_pgd, |
| 388 | unsigned long hyp_idmap_start) |
| 389 | { |
| 390 | int idmap_idx; |
| 391 | u64 pgd_addr; |
| 392 | |
| 393 | /* |
| 394 | * Use the first entry to access the HYP mappings. It is |
| 395 | * guaranteed to be free, otherwise we wouldn't use an |
| 396 | * extended idmap. |
| 397 | */ |
| 398 | VM_BUG_ON(pgd_val(merged_hyp_pgd[0])); |
| 399 | pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd)); |
| 400 | merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE); |
| 401 | |
| 402 | /* |
| 403 | * Create another extended level entry that points to the boot HYP map, |
| 404 | * which contains an ID mapping of the HYP init code. We essentially |
| 405 | * merge the boot and runtime HYP maps by doing so, but they don't |
| 406 | * overlap anyway, so this is fine. |
| 407 | */ |
| 408 | idmap_idx = hyp_idmap_start >> VA_BITS; |
| 409 | VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx])); |
| 410 | pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd)); |
| 411 | merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE); |
| 412 | } |
| 413 | |
| 414 | static inline unsigned int kvm_get_vmid_bits(void) |
| 415 | { |
| 416 | int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); |
| 417 | |
| 418 | return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8; |
| 419 | } |
| 420 | |
| 421 | /* |
| 422 | * We are not in the kvm->srcu critical section most of the time, so we take |
| 423 | * the SRCU read lock here. Since we copy the data from the user page, we |
| 424 | * can immediately drop the lock again. |
| 425 | */ |
| 426 | static inline int kvm_read_guest_lock(struct kvm *kvm, |
| 427 | gpa_t gpa, void *data, unsigned long len) |
| 428 | { |
| 429 | int srcu_idx = srcu_read_lock(&kvm->srcu); |
| 430 | int ret = kvm_read_guest(kvm, gpa, data, len); |
| 431 | |
| 432 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 433 | |
| 434 | return ret; |
| 435 | } |
| 436 | |
| 437 | static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa, |
| 438 | const void *data, unsigned long len) |
| 439 | { |
| 440 | int srcu_idx = srcu_read_lock(&kvm->srcu); |
| 441 | int ret = kvm_write_guest(kvm, gpa, data, len); |
| 442 | |
| 443 | srcu_read_unlock(&kvm->srcu, srcu_idx); |
| 444 | |
| 445 | return ret; |
| 446 | } |
| 447 | |
| 448 | #ifdef CONFIG_KVM_INDIRECT_VECTORS |
| 449 | /* |
| 450 | * EL2 vectors can be mapped and rerouted in a number of ways, |
| 451 | * depending on the kernel configuration and CPU present: |
| 452 | * |
| 453 | * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the |
| 454 | * hardening sequence is placed in one of the vector slots, which is |
| 455 | * executed before jumping to the real vectors. |
| 456 | * |
| 457 | * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the |
| 458 | * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the |
| 459 | * hardening sequence is mapped next to the idmap page, and executed |
| 460 | * before jumping to the real vectors. |
| 461 | * |
| 462 | * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an |
| 463 | * empty slot is selected, mapped next to the idmap page, and |
| 464 | * executed before jumping to the real vectors. |
| 465 | * |
| 466 | * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with |
| 467 | * VHE, as we don't have hypervisor-specific mappings. If the system |
| 468 | * is VHE and yet selects this capability, it will be ignored. |
| 469 | */ |
| 470 | #include <asm/mmu.h> |
| 471 | |
| 472 | extern void *__kvm_bp_vect_base; |
| 473 | extern int __kvm_harden_el2_vector_slot; |
| 474 | |
| 475 | static inline void *kvm_get_hyp_vector(void) |
| 476 | { |
| 477 | struct bp_hardening_data *data = arm64_get_bp_hardening_data(); |
| 478 | void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| 479 | int slot = -1; |
| 480 | |
| 481 | if ((cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) || |
| 482 | cpus_have_const_cap(ARM64_SPECTRE_BHB)) && |
| 483 | data && data->template_start) { |
| 484 | vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start)); |
| 485 | slot = data->hyp_vectors_slot; |
| 486 | } |
| 487 | |
| 488 | if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) { |
| 489 | vect = __kvm_bp_vect_base; |
| 490 | if (slot == -1) |
| 491 | slot = __kvm_harden_el2_vector_slot; |
| 492 | } |
| 493 | |
| 494 | if (slot != -1) |
| 495 | vect += slot * SZ_2K; |
| 496 | |
| 497 | return vect; |
| 498 | } |
| 499 | |
| 500 | /* This is only called on a !VHE system */ |
| 501 | static inline int kvm_map_vectors(void) |
| 502 | { |
| 503 | /* |
| 504 | * HBP = ARM64_HARDEN_BRANCH_PREDICTOR |
| 505 | * HEL2 = ARM64_HARDEN_EL2_VECTORS |
| 506 | * |
| 507 | * !HBP + !HEL2 -> use direct vectors |
| 508 | * HBP + !HEL2 -> use hardened vectors in place |
| 509 | * !HBP + HEL2 -> allocate one vector slot and use exec mapping |
| 510 | * HBP + HEL2 -> use hardened vertors and use exec mapping |
| 511 | */ |
| 512 | if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) || |
| 513 | cpus_have_const_cap(ARM64_SPECTRE_BHB)) { |
| 514 | __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start); |
| 515 | __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base); |
| 516 | } |
| 517 | |
| 518 | if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) { |
| 519 | phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start); |
| 520 | unsigned long size = (__bp_harden_hyp_vecs_end - |
| 521 | __bp_harden_hyp_vecs_start); |
| 522 | |
| 523 | /* |
| 524 | * Always allocate a spare vector slot, as we don't |
| 525 | * know yet which CPUs have a BP hardening slot that |
| 526 | * we can reuse. |
| 527 | */ |
| 528 | __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot); |
| 529 | BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS); |
| 530 | return create_hyp_exec_mappings(vect_pa, size, |
| 531 | &__kvm_bp_vect_base); |
| 532 | } |
| 533 | |
| 534 | return 0; |
| 535 | } |
| 536 | #else |
| 537 | static inline void *kvm_get_hyp_vector(void) |
| 538 | { |
| 539 | return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); |
| 540 | } |
| 541 | |
| 542 | static inline int kvm_map_vectors(void) |
| 543 | { |
| 544 | return 0; |
| 545 | } |
| 546 | #endif |
| 547 | |
| 548 | #ifdef CONFIG_ARM64_SSBD |
| 549 | DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required); |
| 550 | |
| 551 | static inline int hyp_map_aux_data(void) |
| 552 | { |
| 553 | int cpu, err; |
| 554 | |
| 555 | for_each_possible_cpu(cpu) { |
| 556 | u64 *ptr; |
| 557 | |
| 558 | ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu); |
| 559 | err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP); |
| 560 | if (err) |
| 561 | return err; |
| 562 | } |
| 563 | return 0; |
| 564 | } |
| 565 | #else |
| 566 | static inline int hyp_map_aux_data(void) |
| 567 | { |
| 568 | return 0; |
| 569 | } |
| 570 | #endif |
| 571 | |
| 572 | #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr) |
| 573 | |
| 574 | /* |
| 575 | * Get the magic number 'x' for VTTBR:BADDR of this KVM instance. |
| 576 | * With v8.2 LVA extensions, 'x' should be a minimum of 6 with |
| 577 | * 52bit IPS. |
| 578 | */ |
| 579 | static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels) |
| 580 | { |
| 581 | int x = ARM64_VTTBR_X(ipa_shift, levels); |
| 582 | |
| 583 | return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x; |
| 584 | } |
| 585 | |
| 586 | static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels) |
| 587 | { |
| 588 | unsigned int x = arm64_vttbr_x(ipa_shift, levels); |
| 589 | |
| 590 | return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x); |
| 591 | } |
| 592 | |
| 593 | static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm) |
| 594 | { |
| 595 | return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm)); |
| 596 | } |
| 597 | |
| 598 | static __always_inline u64 kvm_get_vttbr(struct kvm *kvm) |
| 599 | { |
| 600 | struct kvm_vmid *vmid = &kvm->arch.vmid; |
| 601 | u64 vmid_field, baddr; |
| 602 | u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0; |
| 603 | |
| 604 | baddr = kvm->arch.pgd_phys; |
| 605 | vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT; |
| 606 | return kvm_phys_to_vttbr(baddr) | vmid_field | cnp; |
| 607 | } |
| 608 | |
| 609 | #endif /* __ASSEMBLY__ */ |
| 610 | #endif /* __ARM64_KVM_MMU_H__ */ |