| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Copyright (C) 2000,2001,2002,2003,2004 Broadcom Corporation |
| 4 | */ |
| 5 | #include <linux/kernel.h> |
| 6 | #include <linux/init.h> |
| 7 | #include <linux/linkage.h> |
| 8 | #include <linux/interrupt.h> |
| 9 | #include <linux/smp.h> |
| 10 | #include <linux/spinlock.h> |
| 11 | #include <linux/mm.h> |
| 12 | #include <linux/kernel_stat.h> |
| 13 | |
| 14 | #include <asm/errno.h> |
| 15 | #include <asm/irq_regs.h> |
| 16 | #include <asm/signal.h> |
| 17 | #include <asm/io.h> |
| 18 | |
| 19 | #include <asm/sibyte/bcm1480_regs.h> |
| 20 | #include <asm/sibyte/bcm1480_int.h> |
| 21 | #include <asm/sibyte/bcm1480_scd.h> |
| 22 | |
| 23 | #include <asm/sibyte/sb1250_uart.h> |
| 24 | #include <asm/sibyte/sb1250.h> |
| 25 | |
| 26 | /* |
| 27 | * These are the routines that handle all the low level interrupt stuff. |
| 28 | * Actions handled here are: initialization of the interrupt map, requesting of |
| 29 | * interrupt lines by handlers, dispatching if interrupts to handlers, probing |
| 30 | * for interrupt lines |
| 31 | */ |
| 32 | |
| 33 | #ifdef CONFIG_PCI |
| 34 | extern unsigned long ht_eoi_space; |
| 35 | #endif |
| 36 | |
| 37 | /* Store the CPU id (not the logical number) */ |
| 38 | int bcm1480_irq_owner[BCM1480_NR_IRQS]; |
| 39 | |
| 40 | static DEFINE_RAW_SPINLOCK(bcm1480_imr_lock); |
| 41 | |
| 42 | void bcm1480_mask_irq(int cpu, int irq) |
| 43 | { |
| 44 | unsigned long flags, hl_spacing; |
| 45 | u64 cur_ints; |
| 46 | |
| 47 | raw_spin_lock_irqsave(&bcm1480_imr_lock, flags); |
| 48 | hl_spacing = 0; |
| 49 | if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) { |
| 50 | hl_spacing = BCM1480_IMR_HL_SPACING; |
| 51 | irq -= BCM1480_NR_IRQS_HALF; |
| 52 | } |
| 53 | cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); |
| 54 | cur_ints |= (((u64) 1) << irq); |
| 55 | ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); |
| 56 | raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags); |
| 57 | } |
| 58 | |
| 59 | void bcm1480_unmask_irq(int cpu, int irq) |
| 60 | { |
| 61 | unsigned long flags, hl_spacing; |
| 62 | u64 cur_ints; |
| 63 | |
| 64 | raw_spin_lock_irqsave(&bcm1480_imr_lock, flags); |
| 65 | hl_spacing = 0; |
| 66 | if ((irq >= BCM1480_NR_IRQS_HALF) && (irq <= BCM1480_NR_IRQS)) { |
| 67 | hl_spacing = BCM1480_IMR_HL_SPACING; |
| 68 | irq -= BCM1480_NR_IRQS_HALF; |
| 69 | } |
| 70 | cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); |
| 71 | cur_ints &= ~(((u64) 1) << irq); |
| 72 | ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + hl_spacing)); |
| 73 | raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags); |
| 74 | } |
| 75 | |
| 76 | #ifdef CONFIG_SMP |
| 77 | static int bcm1480_set_affinity(struct irq_data *d, const struct cpumask *mask, |
| 78 | bool force) |
| 79 | { |
| 80 | unsigned int irq_dirty, irq = d->irq; |
| 81 | int i = 0, old_cpu, cpu, int_on, k; |
| 82 | u64 cur_ints; |
| 83 | unsigned long flags; |
| 84 | |
| 85 | i = cpumask_first_and(mask, cpu_online_mask); |
| 86 | |
| 87 | /* Convert logical CPU to physical CPU */ |
| 88 | cpu = cpu_logical_map(i); |
| 89 | |
| 90 | /* Protect against other affinity changers and IMR manipulation */ |
| 91 | raw_spin_lock_irqsave(&bcm1480_imr_lock, flags); |
| 92 | |
| 93 | /* Swizzle each CPU's IMR (but leave the IP selection alone) */ |
| 94 | old_cpu = bcm1480_irq_owner[irq]; |
| 95 | irq_dirty = irq; |
| 96 | if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) { |
| 97 | irq_dirty -= BCM1480_NR_IRQS_HALF; |
| 98 | } |
| 99 | |
| 100 | for (k=0; k<2; k++) { /* Loop through high and low interrupt mask register */ |
| 101 | cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); |
| 102 | int_on = !(cur_ints & (((u64) 1) << irq_dirty)); |
| 103 | if (int_on) { |
| 104 | /* If it was on, mask it */ |
| 105 | cur_ints |= (((u64) 1) << irq_dirty); |
| 106 | ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(old_cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); |
| 107 | } |
| 108 | bcm1480_irq_owner[irq] = cpu; |
| 109 | if (int_on) { |
| 110 | /* unmask for the new CPU */ |
| 111 | cur_ints = ____raw_readq(IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); |
| 112 | cur_ints &= ~(((u64) 1) << irq_dirty); |
| 113 | ____raw_writeq(cur_ints, IOADDR(A_BCM1480_IMR_MAPPER(cpu) + R_BCM1480_IMR_INTERRUPT_MASK_H + (k*BCM1480_IMR_HL_SPACING))); |
| 114 | } |
| 115 | } |
| 116 | raw_spin_unlock_irqrestore(&bcm1480_imr_lock, flags); |
| 117 | |
| 118 | return 0; |
| 119 | } |
| 120 | #endif |
| 121 | |
| 122 | |
| 123 | /*****************************************************************************/ |
| 124 | |
| 125 | static void disable_bcm1480_irq(struct irq_data *d) |
| 126 | { |
| 127 | unsigned int irq = d->irq; |
| 128 | |
| 129 | bcm1480_mask_irq(bcm1480_irq_owner[irq], irq); |
| 130 | } |
| 131 | |
| 132 | static void enable_bcm1480_irq(struct irq_data *d) |
| 133 | { |
| 134 | unsigned int irq = d->irq; |
| 135 | |
| 136 | bcm1480_unmask_irq(bcm1480_irq_owner[irq], irq); |
| 137 | } |
| 138 | |
| 139 | |
| 140 | static void ack_bcm1480_irq(struct irq_data *d) |
| 141 | { |
| 142 | unsigned int irq_dirty, irq = d->irq; |
| 143 | u64 pending; |
| 144 | int k; |
| 145 | |
| 146 | /* |
| 147 | * If the interrupt was an HT interrupt, now is the time to |
| 148 | * clear it. NOTE: we assume the HT bridge was set up to |
| 149 | * deliver the interrupts to all CPUs (which makes affinity |
| 150 | * changing easier for us) |
| 151 | */ |
| 152 | irq_dirty = irq; |
| 153 | if ((irq_dirty >= BCM1480_NR_IRQS_HALF) && (irq_dirty <= BCM1480_NR_IRQS)) { |
| 154 | irq_dirty -= BCM1480_NR_IRQS_HALF; |
| 155 | } |
| 156 | for (k=0; k<2; k++) { /* Loop through high and low LDT interrupts */ |
| 157 | pending = __raw_readq(IOADDR(A_BCM1480_IMR_REGISTER(bcm1480_irq_owner[irq], |
| 158 | R_BCM1480_IMR_LDT_INTERRUPT_H + (k*BCM1480_IMR_HL_SPACING)))); |
| 159 | pending &= ((u64)1 << (irq_dirty)); |
| 160 | if (pending) { |
| 161 | #ifdef CONFIG_SMP |
| 162 | int i; |
| 163 | for (i=0; i<NR_CPUS; i++) { |
| 164 | /* |
| 165 | * Clear for all CPUs so an affinity switch |
| 166 | * doesn't find an old status |
| 167 | */ |
| 168 | __raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(cpu_logical_map(i), |
| 169 | R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING)))); |
| 170 | } |
| 171 | #else |
| 172 | __raw_writeq(pending, IOADDR(A_BCM1480_IMR_REGISTER(0, R_BCM1480_IMR_LDT_INTERRUPT_CLR_H + (k*BCM1480_IMR_HL_SPACING)))); |
| 173 | #endif |
| 174 | |
| 175 | /* |
| 176 | * Generate EOI. For Pass 1 parts, EOI is a nop. For |
| 177 | * Pass 2, the LDT world may be edge-triggered, but |
| 178 | * this EOI shouldn't hurt. If they are |
| 179 | * level-sensitive, the EOI is required. |
| 180 | */ |
| 181 | #ifdef CONFIG_PCI |
| 182 | if (ht_eoi_space) |
| 183 | *(uint32_t *)(ht_eoi_space+(irq<<16)+(7<<2)) = 0; |
| 184 | #endif |
| 185 | } |
| 186 | } |
| 187 | bcm1480_mask_irq(bcm1480_irq_owner[irq], irq); |
| 188 | } |
| 189 | |
| 190 | static struct irq_chip bcm1480_irq_type = { |
| 191 | .name = "BCM1480-IMR", |
| 192 | .irq_mask_ack = ack_bcm1480_irq, |
| 193 | .irq_mask = disable_bcm1480_irq, |
| 194 | .irq_unmask = enable_bcm1480_irq, |
| 195 | #ifdef CONFIG_SMP |
| 196 | .irq_set_affinity = bcm1480_set_affinity |
| 197 | #endif |
| 198 | }; |
| 199 | |
| 200 | void __init init_bcm1480_irqs(void) |
| 201 | { |
| 202 | int i; |
| 203 | |
| 204 | for (i = 0; i < BCM1480_NR_IRQS; i++) { |
| 205 | irq_set_chip_and_handler(i, &bcm1480_irq_type, |
| 206 | handle_level_irq); |
| 207 | bcm1480_irq_owner[i] = 0; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | /* |
| 212 | * init_IRQ is called early in the boot sequence from init/main.c. It |
| 213 | * is responsible for setting up the interrupt mapper and installing the |
| 214 | * handler that will be responsible for dispatching interrupts to the |
| 215 | * "right" place. |
| 216 | */ |
| 217 | /* |
| 218 | * For now, map all interrupts to IP[2]. We could save |
| 219 | * some cycles by parceling out system interrupts to different |
| 220 | * IP lines, but keep it simple for bringup. We'll also direct |
| 221 | * all interrupts to a single CPU; we should probably route |
| 222 | * PCI and LDT to one cpu and everything else to the other |
| 223 | * to balance the load a bit. |
| 224 | * |
| 225 | * On the second cpu, everything is set to IP5, which is |
| 226 | * ignored, EXCEPT the mailbox interrupt. That one is |
| 227 | * set to IP[2] so it is handled. This is needed so we |
| 228 | * can do cross-cpu function calls, as required by SMP |
| 229 | */ |
| 230 | |
| 231 | #define IMR_IP2_VAL K_BCM1480_INT_MAP_I0 |
| 232 | #define IMR_IP3_VAL K_BCM1480_INT_MAP_I1 |
| 233 | #define IMR_IP4_VAL K_BCM1480_INT_MAP_I2 |
| 234 | #define IMR_IP5_VAL K_BCM1480_INT_MAP_I3 |
| 235 | #define IMR_IP6_VAL K_BCM1480_INT_MAP_I4 |
| 236 | |
| 237 | void __init arch_init_irq(void) |
| 238 | { |
| 239 | unsigned int i, cpu; |
| 240 | u64 tmp; |
| 241 | unsigned int imask = STATUSF_IP4 | STATUSF_IP3 | STATUSF_IP2 | |
| 242 | STATUSF_IP1 | STATUSF_IP0; |
| 243 | |
| 244 | /* Default everything to IP2 */ |
| 245 | /* Start with _high registers which has no bit 0 interrupt source */ |
| 246 | for (i = 1; i < BCM1480_NR_IRQS_HALF; i++) { /* was I0 */ |
| 247 | for (cpu = 0; cpu < 4; cpu++) { |
| 248 | __raw_writeq(IMR_IP2_VAL, |
| 249 | IOADDR(A_BCM1480_IMR_REGISTER(cpu, |
| 250 | R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + (i << 3))); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | /* Now do _low registers */ |
| 255 | for (i = 0; i < BCM1480_NR_IRQS_HALF; i++) { |
| 256 | for (cpu = 0; cpu < 4; cpu++) { |
| 257 | __raw_writeq(IMR_IP2_VAL, |
| 258 | IOADDR(A_BCM1480_IMR_REGISTER(cpu, |
| 259 | R_BCM1480_IMR_INTERRUPT_MAP_BASE_L) + (i << 3))); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | init_bcm1480_irqs(); |
| 264 | |
| 265 | /* |
| 266 | * Map the high 16 bits of mailbox_0 registers to IP[3], for |
| 267 | * inter-cpu messages |
| 268 | */ |
| 269 | /* Was I1 */ |
| 270 | for (cpu = 0; cpu < 4; cpu++) { |
| 271 | __raw_writeq(IMR_IP3_VAL, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MAP_BASE_H) + |
| 272 | (K_BCM1480_INT_MBOX_0_0 << 3))); |
| 273 | } |
| 274 | |
| 275 | |
| 276 | /* Clear the mailboxes. The firmware may leave them dirty */ |
| 277 | for (cpu = 0; cpu < 4; cpu++) { |
| 278 | __raw_writeq(0xffffffffffffffffULL, |
| 279 | IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_0_CLR_CPU))); |
| 280 | __raw_writeq(0xffffffffffffffffULL, |
| 281 | IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_MAILBOX_1_CLR_CPU))); |
| 282 | } |
| 283 | |
| 284 | |
| 285 | /* Mask everything except the high 16 bit of mailbox_0 registers for all cpus */ |
| 286 | tmp = ~((u64) 0) ^ ( (((u64) 1) << K_BCM1480_INT_MBOX_0_0)); |
| 287 | for (cpu = 0; cpu < 4; cpu++) { |
| 288 | __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_H))); |
| 289 | } |
| 290 | tmp = ~((u64) 0); |
| 291 | for (cpu = 0; cpu < 4; cpu++) { |
| 292 | __raw_writeq(tmp, IOADDR(A_BCM1480_IMR_REGISTER(cpu, R_BCM1480_IMR_INTERRUPT_MASK_L))); |
| 293 | } |
| 294 | |
| 295 | /* |
| 296 | * Note that the timer interrupts are also mapped, but this is |
| 297 | * done in bcm1480_time_init(). Also, the profiling driver |
| 298 | * does its own management of IP7. |
| 299 | */ |
| 300 | |
| 301 | /* Enable necessary IPs, disable the rest */ |
| 302 | change_c0_status(ST0_IM, imask); |
| 303 | } |
| 304 | |
| 305 | extern void bcm1480_mailbox_interrupt(void); |
| 306 | |
| 307 | static inline void dispatch_ip2(void) |
| 308 | { |
| 309 | unsigned long long mask_h, mask_l; |
| 310 | unsigned int cpu = smp_processor_id(); |
| 311 | unsigned long base; |
| 312 | |
| 313 | /* |
| 314 | * Default...we've hit an IP[2] interrupt, which means we've got to |
| 315 | * check the 1480 interrupt registers to figure out what to do. Need |
| 316 | * to detect which CPU we're on, now that smp_affinity is supported. |
| 317 | */ |
| 318 | base = A_BCM1480_IMR_MAPPER(cpu); |
| 319 | mask_h = __raw_readq( |
| 320 | IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_H)); |
| 321 | mask_l = __raw_readq( |
| 322 | IOADDR(base + R_BCM1480_IMR_INTERRUPT_STATUS_BASE_L)); |
| 323 | |
| 324 | if (mask_h) { |
| 325 | if (mask_h ^ 1) |
| 326 | do_IRQ(fls64(mask_h) - 1); |
| 327 | else if (mask_l) |
| 328 | do_IRQ(63 + fls64(mask_l)); |
| 329 | } |
| 330 | } |
| 331 | |
| 332 | asmlinkage void plat_irq_dispatch(void) |
| 333 | { |
| 334 | unsigned int cpu = smp_processor_id(); |
| 335 | unsigned int pending; |
| 336 | |
| 337 | pending = read_c0_cause() & read_c0_status(); |
| 338 | |
| 339 | if (pending & CAUSEF_IP4) |
| 340 | do_IRQ(K_BCM1480_INT_TIMER_0 + cpu); |
| 341 | #ifdef CONFIG_SMP |
| 342 | else if (pending & CAUSEF_IP3) |
| 343 | bcm1480_mailbox_interrupt(); |
| 344 | #endif |
| 345 | |
| 346 | else if (pending & CAUSEF_IP2) |
| 347 | dispatch_ip2(); |
| 348 | } |