| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| 4 | * |
| 5 | * Authors: |
| 6 | * Alexander Graf <agraf@suse.de> |
| 7 | * Kevin Wolf <mail@kevin-wolf.de> |
| 8 | * Paul Mackerras <paulus@samba.org> |
| 9 | * |
| 10 | * Description: |
| 11 | * Functions relating to running KVM on Book 3S processors where |
| 12 | * we don't have access to hypervisor mode, and we run the guest |
| 13 | * in problem state (user mode). |
| 14 | * |
| 15 | * This file is derived from arch/powerpc/kvm/44x.c, |
| 16 | * by Hollis Blanchard <hollisb@us.ibm.com>. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/kvm_host.h> |
| 20 | #include <linux/export.h> |
| 21 | #include <linux/err.h> |
| 22 | #include <linux/slab.h> |
| 23 | |
| 24 | #include <asm/reg.h> |
| 25 | #include <asm/cputable.h> |
| 26 | #include <asm/cacheflush.h> |
| 27 | #include <linux/uaccess.h> |
| 28 | #include <asm/io.h> |
| 29 | #include <asm/kvm_ppc.h> |
| 30 | #include <asm/kvm_book3s.h> |
| 31 | #include <asm/mmu_context.h> |
| 32 | #include <asm/switch_to.h> |
| 33 | #include <asm/firmware.h> |
| 34 | #include <asm/setup.h> |
| 35 | #include <linux/gfp.h> |
| 36 | #include <linux/sched.h> |
| 37 | #include <linux/vmalloc.h> |
| 38 | #include <linux/highmem.h> |
| 39 | #include <linux/module.h> |
| 40 | #include <linux/miscdevice.h> |
| 41 | #include <asm/asm-prototypes.h> |
| 42 | #include <asm/tm.h> |
| 43 | |
| 44 | #include "book3s.h" |
| 45 | |
| 46 | #define CREATE_TRACE_POINTS |
| 47 | #include "trace_pr.h" |
| 48 | |
| 49 | /* #define EXIT_DEBUG */ |
| 50 | /* #define DEBUG_EXT */ |
| 51 | |
| 52 | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| 53 | ulong msr); |
| 54 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 55 | static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); |
| 56 | #endif |
| 57 | |
| 58 | /* Some compatibility defines */ |
| 59 | #ifdef CONFIG_PPC_BOOK3S_32 |
| 60 | #define MSR_USER32 MSR_USER |
| 61 | #define MSR_USER64 MSR_USER |
| 62 | #define HW_PAGE_SIZE PAGE_SIZE |
| 63 | #define HPTE_R_M _PAGE_COHERENT |
| 64 | #endif |
| 65 | |
| 66 | static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) |
| 67 | { |
| 68 | ulong msr = kvmppc_get_msr(vcpu); |
| 69 | return (msr & (MSR_IR|MSR_DR)) == MSR_DR; |
| 70 | } |
| 71 | |
| 72 | static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) |
| 73 | { |
| 74 | ulong msr = kvmppc_get_msr(vcpu); |
| 75 | ulong pc = kvmppc_get_pc(vcpu); |
| 76 | |
| 77 | /* We are in DR only split real mode */ |
| 78 | if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) |
| 79 | return; |
| 80 | |
| 81 | /* We have not fixed up the guest already */ |
| 82 | if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) |
| 83 | return; |
| 84 | |
| 85 | /* The code is in fixupable address space */ |
| 86 | if (pc & SPLIT_HACK_MASK) |
| 87 | return; |
| 88 | |
| 89 | vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; |
| 90 | kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); |
| 91 | } |
| 92 | |
| 93 | void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu); |
| 94 | |
| 95 | static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) |
| 96 | { |
| 97 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 98 | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| 99 | memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); |
| 100 | svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; |
| 101 | svcpu->in_use = 0; |
| 102 | svcpu_put(svcpu); |
| 103 | #endif |
| 104 | |
| 105 | /* Disable AIL if supported */ |
| 106 | if (cpu_has_feature(CPU_FTR_HVMODE) && |
| 107 | cpu_has_feature(CPU_FTR_ARCH_207S)) |
| 108 | mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); |
| 109 | |
| 110 | vcpu->cpu = smp_processor_id(); |
| 111 | #ifdef CONFIG_PPC_BOOK3S_32 |
| 112 | current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; |
| 113 | #endif |
| 114 | |
| 115 | if (kvmppc_is_split_real(vcpu)) |
| 116 | kvmppc_fixup_split_real(vcpu); |
| 117 | |
| 118 | kvmppc_restore_tm_pr(vcpu); |
| 119 | } |
| 120 | |
| 121 | static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) |
| 122 | { |
| 123 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 124 | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| 125 | if (svcpu->in_use) { |
| 126 | kvmppc_copy_from_svcpu(vcpu); |
| 127 | } |
| 128 | memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); |
| 129 | to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; |
| 130 | svcpu_put(svcpu); |
| 131 | #endif |
| 132 | |
| 133 | if (kvmppc_is_split_real(vcpu)) |
| 134 | kvmppc_unfixup_split_real(vcpu); |
| 135 | |
| 136 | kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| 137 | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| 138 | kvmppc_save_tm_pr(vcpu); |
| 139 | |
| 140 | /* Enable AIL if supported */ |
| 141 | if (cpu_has_feature(CPU_FTR_HVMODE) && |
| 142 | cpu_has_feature(CPU_FTR_ARCH_207S)) |
| 143 | mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); |
| 144 | |
| 145 | vcpu->cpu = -1; |
| 146 | } |
| 147 | |
| 148 | /* Copy data needed by real-mode code from vcpu to shadow vcpu */ |
| 149 | void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) |
| 150 | { |
| 151 | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| 152 | |
| 153 | svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; |
| 154 | svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; |
| 155 | svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; |
| 156 | svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; |
| 157 | svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; |
| 158 | svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; |
| 159 | svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; |
| 160 | svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; |
| 161 | svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; |
| 162 | svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; |
| 163 | svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; |
| 164 | svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; |
| 165 | svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; |
| 166 | svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; |
| 167 | svcpu->cr = vcpu->arch.regs.ccr; |
| 168 | svcpu->xer = vcpu->arch.regs.xer; |
| 169 | svcpu->ctr = vcpu->arch.regs.ctr; |
| 170 | svcpu->lr = vcpu->arch.regs.link; |
| 171 | svcpu->pc = vcpu->arch.regs.nip; |
| 172 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 173 | svcpu->shadow_fscr = vcpu->arch.shadow_fscr; |
| 174 | #endif |
| 175 | /* |
| 176 | * Now also save the current time base value. We use this |
| 177 | * to find the guest purr and spurr value. |
| 178 | */ |
| 179 | vcpu->arch.entry_tb = get_tb(); |
| 180 | vcpu->arch.entry_vtb = get_vtb(); |
| 181 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| 182 | vcpu->arch.entry_ic = mfspr(SPRN_IC); |
| 183 | svcpu->in_use = true; |
| 184 | |
| 185 | svcpu_put(svcpu); |
| 186 | } |
| 187 | |
| 188 | static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) |
| 189 | { |
| 190 | ulong guest_msr = kvmppc_get_msr(vcpu); |
| 191 | ulong smsr = guest_msr; |
| 192 | |
| 193 | /* Guest MSR values */ |
| 194 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 195 | smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | |
| 196 | MSR_TM | MSR_TS_MASK; |
| 197 | #else |
| 198 | smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; |
| 199 | #endif |
| 200 | /* Process MSR values */ |
| 201 | smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; |
| 202 | /* External providers the guest reserved */ |
| 203 | smsr |= (guest_msr & vcpu->arch.guest_owned_ext); |
| 204 | /* 64-bit Process MSR values */ |
| 205 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 206 | smsr |= MSR_ISF | MSR_HV; |
| 207 | #endif |
| 208 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 209 | /* |
| 210 | * in guest privileged state, we want to fail all TM transactions. |
| 211 | * So disable MSR TM bit so that all tbegin. will be able to be |
| 212 | * trapped into host. |
| 213 | */ |
| 214 | if (!(guest_msr & MSR_PR)) |
| 215 | smsr &= ~MSR_TM; |
| 216 | #endif |
| 217 | vcpu->arch.shadow_msr = smsr; |
| 218 | } |
| 219 | |
| 220 | /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ |
| 221 | void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) |
| 222 | { |
| 223 | struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| 224 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 225 | ulong old_msr; |
| 226 | #endif |
| 227 | |
| 228 | /* |
| 229 | * Maybe we were already preempted and synced the svcpu from |
| 230 | * our preempt notifiers. Don't bother touching this svcpu then. |
| 231 | */ |
| 232 | if (!svcpu->in_use) |
| 233 | goto out; |
| 234 | |
| 235 | vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; |
| 236 | vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; |
| 237 | vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; |
| 238 | vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; |
| 239 | vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; |
| 240 | vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; |
| 241 | vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; |
| 242 | vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; |
| 243 | vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; |
| 244 | vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; |
| 245 | vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; |
| 246 | vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; |
| 247 | vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; |
| 248 | vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; |
| 249 | vcpu->arch.regs.ccr = svcpu->cr; |
| 250 | vcpu->arch.regs.xer = svcpu->xer; |
| 251 | vcpu->arch.regs.ctr = svcpu->ctr; |
| 252 | vcpu->arch.regs.link = svcpu->lr; |
| 253 | vcpu->arch.regs.nip = svcpu->pc; |
| 254 | vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; |
| 255 | vcpu->arch.fault_dar = svcpu->fault_dar; |
| 256 | vcpu->arch.fault_dsisr = svcpu->fault_dsisr; |
| 257 | vcpu->arch.last_inst = svcpu->last_inst; |
| 258 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 259 | vcpu->arch.shadow_fscr = svcpu->shadow_fscr; |
| 260 | #endif |
| 261 | /* |
| 262 | * Update purr and spurr using time base on exit. |
| 263 | */ |
| 264 | vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; |
| 265 | vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; |
| 266 | to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; |
| 267 | if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| 268 | vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; |
| 269 | |
| 270 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 271 | /* |
| 272 | * Unlike other MSR bits, MSR[TS]bits can be changed at guest without |
| 273 | * notifying host: |
| 274 | * modified by unprivileged instructions like "tbegin"/"tend"/ |
| 275 | * "tresume"/"tsuspend" in PR KVM guest. |
| 276 | * |
| 277 | * It is necessary to sync here to calculate a correct shadow_msr. |
| 278 | * |
| 279 | * privileged guest's tbegin will be failed at present. So we |
| 280 | * only take care of problem state guest. |
| 281 | */ |
| 282 | old_msr = kvmppc_get_msr(vcpu); |
| 283 | if (unlikely((old_msr & MSR_PR) && |
| 284 | (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != |
| 285 | (old_msr & (MSR_TS_MASK)))) { |
| 286 | old_msr &= ~(MSR_TS_MASK); |
| 287 | old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); |
| 288 | kvmppc_set_msr_fast(vcpu, old_msr); |
| 289 | kvmppc_recalc_shadow_msr(vcpu); |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | svcpu->in_use = false; |
| 294 | |
| 295 | out: |
| 296 | svcpu_put(svcpu); |
| 297 | } |
| 298 | |
| 299 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 300 | void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) |
| 301 | { |
| 302 | tm_enable(); |
| 303 | vcpu->arch.tfhar = mfspr(SPRN_TFHAR); |
| 304 | vcpu->arch.texasr = mfspr(SPRN_TEXASR); |
| 305 | vcpu->arch.tfiar = mfspr(SPRN_TFIAR); |
| 306 | tm_disable(); |
| 307 | } |
| 308 | |
| 309 | void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) |
| 310 | { |
| 311 | tm_enable(); |
| 312 | mtspr(SPRN_TFHAR, vcpu->arch.tfhar); |
| 313 | mtspr(SPRN_TEXASR, vcpu->arch.texasr); |
| 314 | mtspr(SPRN_TFIAR, vcpu->arch.tfiar); |
| 315 | tm_disable(); |
| 316 | } |
| 317 | |
| 318 | /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at |
| 319 | * hardware. |
| 320 | */ |
| 321 | static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) |
| 322 | { |
| 323 | ulong exit_nr; |
| 324 | ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & |
| 325 | (MSR_FP | MSR_VEC | MSR_VSX); |
| 326 | |
| 327 | if (!ext_diff) |
| 328 | return; |
| 329 | |
| 330 | if (ext_diff == MSR_FP) |
| 331 | exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; |
| 332 | else if (ext_diff == MSR_VEC) |
| 333 | exit_nr = BOOK3S_INTERRUPT_ALTIVEC; |
| 334 | else |
| 335 | exit_nr = BOOK3S_INTERRUPT_VSX; |
| 336 | |
| 337 | kvmppc_handle_ext(vcpu, exit_nr, ext_diff); |
| 338 | } |
| 339 | |
| 340 | void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) |
| 341 | { |
| 342 | if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { |
| 343 | kvmppc_save_tm_sprs(vcpu); |
| 344 | return; |
| 345 | } |
| 346 | |
| 347 | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| 348 | kvmppc_giveup_ext(vcpu, MSR_VSX); |
| 349 | |
| 350 | preempt_disable(); |
| 351 | _kvmppc_save_tm_pr(vcpu, mfmsr()); |
| 352 | preempt_enable(); |
| 353 | } |
| 354 | |
| 355 | void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) |
| 356 | { |
| 357 | if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { |
| 358 | kvmppc_restore_tm_sprs(vcpu); |
| 359 | if (kvmppc_get_msr(vcpu) & MSR_TM) { |
| 360 | kvmppc_handle_lost_math_exts(vcpu); |
| 361 | if (vcpu->arch.fscr & FSCR_TAR) |
| 362 | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| 363 | } |
| 364 | return; |
| 365 | } |
| 366 | |
| 367 | preempt_disable(); |
| 368 | _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); |
| 369 | preempt_enable(); |
| 370 | |
| 371 | if (kvmppc_get_msr(vcpu) & MSR_TM) { |
| 372 | kvmppc_handle_lost_math_exts(vcpu); |
| 373 | if (vcpu->arch.fscr & FSCR_TAR) |
| 374 | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| 375 | } |
| 376 | } |
| 377 | #endif |
| 378 | |
| 379 | static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) |
| 380 | { |
| 381 | int r = 1; /* Indicate we want to get back into the guest */ |
| 382 | |
| 383 | /* We misuse TLB_FLUSH to indicate that we want to clear |
| 384 | all shadow cache entries */ |
| 385 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| 386 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| 387 | |
| 388 | return r; |
| 389 | } |
| 390 | |
| 391 | /************* MMU Notifiers *************/ |
| 392 | static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start, |
| 393 | unsigned long end) |
| 394 | { |
| 395 | long i; |
| 396 | struct kvm_vcpu *vcpu; |
| 397 | struct kvm_memslots *slots; |
| 398 | struct kvm_memory_slot *memslot; |
| 399 | |
| 400 | slots = kvm_memslots(kvm); |
| 401 | kvm_for_each_memslot(memslot, slots) { |
| 402 | unsigned long hva_start, hva_end; |
| 403 | gfn_t gfn, gfn_end; |
| 404 | |
| 405 | hva_start = max(start, memslot->userspace_addr); |
| 406 | hva_end = min(end, memslot->userspace_addr + |
| 407 | (memslot->npages << PAGE_SHIFT)); |
| 408 | if (hva_start >= hva_end) |
| 409 | continue; |
| 410 | /* |
| 411 | * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| 412 | * {gfn, gfn+1, ..., gfn_end-1}. |
| 413 | */ |
| 414 | gfn = hva_to_gfn_memslot(hva_start, memslot); |
| 415 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| 416 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 417 | kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT, |
| 418 | gfn_end << PAGE_SHIFT); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start, |
| 423 | unsigned long end) |
| 424 | { |
| 425 | do_kvm_unmap_hva(kvm, start, end); |
| 426 | |
| 427 | return 0; |
| 428 | } |
| 429 | |
| 430 | static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start, |
| 431 | unsigned long end) |
| 432 | { |
| 433 | /* XXX could be more clever ;) */ |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva) |
| 438 | { |
| 439 | /* XXX could be more clever ;) */ |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte) |
| 444 | { |
| 445 | /* The page will get remapped properly on its next fault */ |
| 446 | do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); |
| 447 | } |
| 448 | |
| 449 | /*****************************************/ |
| 450 | |
| 451 | static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) |
| 452 | { |
| 453 | ulong old_msr; |
| 454 | |
| 455 | /* For PAPR guest, make sure MSR reflects guest mode */ |
| 456 | if (vcpu->arch.papr_enabled) |
| 457 | msr = (msr & ~MSR_HV) | MSR_ME; |
| 458 | |
| 459 | #ifdef EXIT_DEBUG |
| 460 | printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); |
| 461 | #endif |
| 462 | |
| 463 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 464 | /* We should never target guest MSR to TS=10 && PR=0, |
| 465 | * since we always fail transaction for guest privilege |
| 466 | * state. |
| 467 | */ |
| 468 | if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) |
| 469 | kvmppc_emulate_tabort(vcpu, |
| 470 | TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); |
| 471 | #endif |
| 472 | |
| 473 | old_msr = kvmppc_get_msr(vcpu); |
| 474 | msr &= to_book3s(vcpu)->msr_mask; |
| 475 | kvmppc_set_msr_fast(vcpu, msr); |
| 476 | kvmppc_recalc_shadow_msr(vcpu); |
| 477 | |
| 478 | if (msr & MSR_POW) { |
| 479 | if (!vcpu->arch.pending_exceptions) { |
| 480 | kvm_vcpu_block(vcpu); |
| 481 | kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| 482 | vcpu->stat.halt_wakeup++; |
| 483 | |
| 484 | /* Unset POW bit after we woke up */ |
| 485 | msr &= ~MSR_POW; |
| 486 | kvmppc_set_msr_fast(vcpu, msr); |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | if (kvmppc_is_split_real(vcpu)) |
| 491 | kvmppc_fixup_split_real(vcpu); |
| 492 | else |
| 493 | kvmppc_unfixup_split_real(vcpu); |
| 494 | |
| 495 | if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != |
| 496 | (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { |
| 497 | kvmppc_mmu_flush_segments(vcpu); |
| 498 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| 499 | |
| 500 | /* Preload magic page segment when in kernel mode */ |
| 501 | if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { |
| 502 | struct kvm_vcpu_arch *a = &vcpu->arch; |
| 503 | |
| 504 | if (msr & MSR_DR) |
| 505 | kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); |
| 506 | else |
| 507 | kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * When switching from 32 to 64-bit, we may have a stale 32-bit |
| 513 | * magic page around, we need to flush it. Typically 32-bit magic |
| 514 | * page will be instantiated when calling into RTAS. Note: We |
| 515 | * assume that such transition only happens while in kernel mode, |
| 516 | * ie, we never transition from user 32-bit to kernel 64-bit with |
| 517 | * a 32-bit magic page around. |
| 518 | */ |
| 519 | if (vcpu->arch.magic_page_pa && |
| 520 | !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { |
| 521 | /* going from RTAS to normal kernel code */ |
| 522 | kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, |
| 523 | ~0xFFFUL); |
| 524 | } |
| 525 | |
| 526 | /* Preload FPU if it's enabled */ |
| 527 | if (kvmppc_get_msr(vcpu) & MSR_FP) |
| 528 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| 529 | |
| 530 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 531 | if (kvmppc_get_msr(vcpu) & MSR_TM) |
| 532 | kvmppc_handle_lost_math_exts(vcpu); |
| 533 | #endif |
| 534 | } |
| 535 | |
| 536 | void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) |
| 537 | { |
| 538 | u32 host_pvr; |
| 539 | |
| 540 | vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; |
| 541 | vcpu->arch.pvr = pvr; |
| 542 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 543 | if ((pvr >= 0x330000) && (pvr < 0x70330000)) { |
| 544 | kvmppc_mmu_book3s_64_init(vcpu); |
| 545 | if (!to_book3s(vcpu)->hior_explicit) |
| 546 | to_book3s(vcpu)->hior = 0xfff00000; |
| 547 | to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; |
| 548 | vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| 549 | } else |
| 550 | #endif |
| 551 | { |
| 552 | kvmppc_mmu_book3s_32_init(vcpu); |
| 553 | if (!to_book3s(vcpu)->hior_explicit) |
| 554 | to_book3s(vcpu)->hior = 0; |
| 555 | to_book3s(vcpu)->msr_mask = 0xffffffffULL; |
| 556 | vcpu->arch.cpu_type = KVM_CPU_3S_32; |
| 557 | } |
| 558 | |
| 559 | kvmppc_sanity_check(vcpu); |
| 560 | |
| 561 | /* If we are in hypervisor level on 970, we can tell the CPU to |
| 562 | * treat DCBZ as 32 bytes store */ |
| 563 | vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; |
| 564 | if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && |
| 565 | !strcmp(cur_cpu_spec->platform, "ppc970")) |
| 566 | vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| 567 | |
| 568 | /* Cell performs badly if MSR_FEx are set. So let's hope nobody |
| 569 | really needs them in a VM on Cell and force disable them. */ |
| 570 | if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) |
| 571 | to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); |
| 572 | |
| 573 | /* |
| 574 | * If they're asking for POWER6 or later, set the flag |
| 575 | * indicating that we can do multiple large page sizes |
| 576 | * and 1TB segments. |
| 577 | * Also set the flag that indicates that tlbie has the large |
| 578 | * page bit in the RB operand instead of the instruction. |
| 579 | */ |
| 580 | switch (PVR_VER(pvr)) { |
| 581 | case PVR_POWER6: |
| 582 | case PVR_POWER7: |
| 583 | case PVR_POWER7p: |
| 584 | case PVR_POWER8: |
| 585 | case PVR_POWER8E: |
| 586 | case PVR_POWER8NVL: |
| 587 | case PVR_POWER9: |
| 588 | vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | |
| 589 | BOOK3S_HFLAG_NEW_TLBIE; |
| 590 | break; |
| 591 | } |
| 592 | |
| 593 | #ifdef CONFIG_PPC_BOOK3S_32 |
| 594 | /* 32 bit Book3S always has 32 byte dcbz */ |
| 595 | vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| 596 | #endif |
| 597 | |
| 598 | /* On some CPUs we can execute paired single operations natively */ |
| 599 | asm ( "mfpvr %0" : "=r"(host_pvr)); |
| 600 | switch (host_pvr) { |
| 601 | case 0x00080200: /* lonestar 2.0 */ |
| 602 | case 0x00088202: /* lonestar 2.2 */ |
| 603 | case 0x70000100: /* gekko 1.0 */ |
| 604 | case 0x00080100: /* gekko 2.0 */ |
| 605 | case 0x00083203: /* gekko 2.3a */ |
| 606 | case 0x00083213: /* gekko 2.3b */ |
| 607 | case 0x00083204: /* gekko 2.4 */ |
| 608 | case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ |
| 609 | case 0x00087200: /* broadway */ |
| 610 | vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; |
| 611 | /* Enable HID2.PSE - in case we need it later */ |
| 612 | mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To |
| 617 | * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to |
| 618 | * emulate 32 bytes dcbz length. |
| 619 | * |
| 620 | * The Book3s_64 inventors also realized this case and implemented a special bit |
| 621 | * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. |
| 622 | * |
| 623 | * My approach here is to patch the dcbz instruction on executing pages. |
| 624 | */ |
| 625 | static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) |
| 626 | { |
| 627 | struct page *hpage; |
| 628 | u64 hpage_offset; |
| 629 | u32 *page; |
| 630 | int i; |
| 631 | |
| 632 | hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); |
| 633 | if (is_error_page(hpage)) |
| 634 | return; |
| 635 | |
| 636 | hpage_offset = pte->raddr & ~PAGE_MASK; |
| 637 | hpage_offset &= ~0xFFFULL; |
| 638 | hpage_offset /= 4; |
| 639 | |
| 640 | get_page(hpage); |
| 641 | page = kmap_atomic(hpage); |
| 642 | |
| 643 | /* patch dcbz into reserved instruction, so we trap */ |
| 644 | for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) |
| 645 | if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) |
| 646 | page[i] &= cpu_to_be32(0xfffffff7); |
| 647 | |
| 648 | kunmap_atomic(page); |
| 649 | put_page(hpage); |
| 650 | } |
| 651 | |
| 652 | static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) |
| 653 | { |
| 654 | ulong mp_pa = vcpu->arch.magic_page_pa; |
| 655 | |
| 656 | if (!(kvmppc_get_msr(vcpu) & MSR_SF)) |
| 657 | mp_pa = (uint32_t)mp_pa; |
| 658 | |
| 659 | gpa &= ~0xFFFULL; |
| 660 | if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { |
| 661 | return true; |
| 662 | } |
| 663 | |
| 664 | return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); |
| 665 | } |
| 666 | |
| 667 | int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| 668 | ulong eaddr, int vec) |
| 669 | { |
| 670 | bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); |
| 671 | bool iswrite = false; |
| 672 | int r = RESUME_GUEST; |
| 673 | int relocated; |
| 674 | int page_found = 0; |
| 675 | struct kvmppc_pte pte = { 0 }; |
| 676 | bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; |
| 677 | bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; |
| 678 | u64 vsid; |
| 679 | |
| 680 | relocated = data ? dr : ir; |
| 681 | if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) |
| 682 | iswrite = true; |
| 683 | |
| 684 | /* Resolve real address if translation turned on */ |
| 685 | if (relocated) { |
| 686 | page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); |
| 687 | } else { |
| 688 | pte.may_execute = true; |
| 689 | pte.may_read = true; |
| 690 | pte.may_write = true; |
| 691 | pte.raddr = eaddr & KVM_PAM; |
| 692 | pte.eaddr = eaddr; |
| 693 | pte.vpage = eaddr >> 12; |
| 694 | pte.page_size = MMU_PAGE_64K; |
| 695 | pte.wimg = HPTE_R_M; |
| 696 | } |
| 697 | |
| 698 | switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { |
| 699 | case 0: |
| 700 | pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); |
| 701 | break; |
| 702 | case MSR_DR: |
| 703 | if (!data && |
| 704 | (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && |
| 705 | ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) |
| 706 | pte.raddr &= ~SPLIT_HACK_MASK; |
| 707 | /* fall through */ |
| 708 | case MSR_IR: |
| 709 | vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); |
| 710 | |
| 711 | if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) |
| 712 | pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); |
| 713 | else |
| 714 | pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); |
| 715 | pte.vpage |= vsid; |
| 716 | |
| 717 | if (vsid == -1) |
| 718 | page_found = -EINVAL; |
| 719 | break; |
| 720 | } |
| 721 | |
| 722 | if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| 723 | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| 724 | /* |
| 725 | * If we do the dcbz hack, we have to NX on every execution, |
| 726 | * so we can patch the executing code. This renders our guest |
| 727 | * NX-less. |
| 728 | */ |
| 729 | pte.may_execute = !data; |
| 730 | } |
| 731 | |
| 732 | if (page_found == -ENOENT || page_found == -EPERM) { |
| 733 | /* Page not found in guest PTE entries, or protection fault */ |
| 734 | u64 flags; |
| 735 | |
| 736 | if (page_found == -EPERM) |
| 737 | flags = DSISR_PROTFAULT; |
| 738 | else |
| 739 | flags = DSISR_NOHPTE; |
| 740 | if (data) { |
| 741 | flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; |
| 742 | kvmppc_core_queue_data_storage(vcpu, eaddr, flags); |
| 743 | } else { |
| 744 | kvmppc_core_queue_inst_storage(vcpu, flags); |
| 745 | } |
| 746 | } else if (page_found == -EINVAL) { |
| 747 | /* Page not found in guest SLB */ |
| 748 | kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); |
| 749 | kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); |
| 750 | } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { |
| 751 | if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { |
| 752 | /* |
| 753 | * There is already a host HPTE there, presumably |
| 754 | * a read-only one for a page the guest thinks |
| 755 | * is writable, so get rid of it first. |
| 756 | */ |
| 757 | kvmppc_mmu_unmap_page(vcpu, &pte); |
| 758 | } |
| 759 | /* The guest's PTE is not mapped yet. Map on the host */ |
| 760 | if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { |
| 761 | /* Exit KVM if mapping failed */ |
| 762 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 763 | return RESUME_HOST; |
| 764 | } |
| 765 | if (data) |
| 766 | vcpu->stat.sp_storage++; |
| 767 | else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| 768 | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) |
| 769 | kvmppc_patch_dcbz(vcpu, &pte); |
| 770 | } else { |
| 771 | /* MMIO */ |
| 772 | vcpu->stat.mmio_exits++; |
| 773 | vcpu->arch.paddr_accessed = pte.raddr; |
| 774 | vcpu->arch.vaddr_accessed = pte.eaddr; |
| 775 | r = kvmppc_emulate_mmio(run, vcpu); |
| 776 | if ( r == RESUME_HOST_NV ) |
| 777 | r = RESUME_HOST; |
| 778 | } |
| 779 | |
| 780 | return r; |
| 781 | } |
| 782 | |
| 783 | /* Give up external provider (FPU, Altivec, VSX) */ |
| 784 | void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) |
| 785 | { |
| 786 | struct thread_struct *t = ¤t->thread; |
| 787 | |
| 788 | /* |
| 789 | * VSX instructions can access FP and vector registers, so if |
| 790 | * we are giving up VSX, make sure we give up FP and VMX as well. |
| 791 | */ |
| 792 | if (msr & MSR_VSX) |
| 793 | msr |= MSR_FP | MSR_VEC; |
| 794 | |
| 795 | msr &= vcpu->arch.guest_owned_ext; |
| 796 | if (!msr) |
| 797 | return; |
| 798 | |
| 799 | #ifdef DEBUG_EXT |
| 800 | printk(KERN_INFO "Giving up ext 0x%lx\n", msr); |
| 801 | #endif |
| 802 | |
| 803 | if (msr & MSR_FP) { |
| 804 | /* |
| 805 | * Note that on CPUs with VSX, giveup_fpu stores |
| 806 | * both the traditional FP registers and the added VSX |
| 807 | * registers into thread.fp_state.fpr[]. |
| 808 | */ |
| 809 | if (t->regs->msr & MSR_FP) |
| 810 | giveup_fpu(current); |
| 811 | t->fp_save_area = NULL; |
| 812 | } |
| 813 | |
| 814 | #ifdef CONFIG_ALTIVEC |
| 815 | if (msr & MSR_VEC) { |
| 816 | if (current->thread.regs->msr & MSR_VEC) |
| 817 | giveup_altivec(current); |
| 818 | t->vr_save_area = NULL; |
| 819 | } |
| 820 | #endif |
| 821 | |
| 822 | vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); |
| 823 | kvmppc_recalc_shadow_msr(vcpu); |
| 824 | } |
| 825 | |
| 826 | /* Give up facility (TAR / EBB / DSCR) */ |
| 827 | void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) |
| 828 | { |
| 829 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 830 | if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { |
| 831 | /* Facility not available to the guest, ignore giveup request*/ |
| 832 | return; |
| 833 | } |
| 834 | |
| 835 | switch (fac) { |
| 836 | case FSCR_TAR_LG: |
| 837 | vcpu->arch.tar = mfspr(SPRN_TAR); |
| 838 | mtspr(SPRN_TAR, current->thread.tar); |
| 839 | vcpu->arch.shadow_fscr &= ~FSCR_TAR; |
| 840 | break; |
| 841 | } |
| 842 | #endif |
| 843 | } |
| 844 | |
| 845 | /* Handle external providers (FPU, Altivec, VSX) */ |
| 846 | static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| 847 | ulong msr) |
| 848 | { |
| 849 | struct thread_struct *t = ¤t->thread; |
| 850 | |
| 851 | /* When we have paired singles, we emulate in software */ |
| 852 | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) |
| 853 | return RESUME_GUEST; |
| 854 | |
| 855 | if (!(kvmppc_get_msr(vcpu) & msr)) { |
| 856 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| 857 | return RESUME_GUEST; |
| 858 | } |
| 859 | |
| 860 | if (msr == MSR_VSX) { |
| 861 | /* No VSX? Give an illegal instruction interrupt */ |
| 862 | #ifdef CONFIG_VSX |
| 863 | if (!cpu_has_feature(CPU_FTR_VSX)) |
| 864 | #endif |
| 865 | { |
| 866 | kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| 867 | return RESUME_GUEST; |
| 868 | } |
| 869 | |
| 870 | /* |
| 871 | * We have to load up all the FP and VMX registers before |
| 872 | * we can let the guest use VSX instructions. |
| 873 | */ |
| 874 | msr = MSR_FP | MSR_VEC | MSR_VSX; |
| 875 | } |
| 876 | |
| 877 | /* See if we already own all the ext(s) needed */ |
| 878 | msr &= ~vcpu->arch.guest_owned_ext; |
| 879 | if (!msr) |
| 880 | return RESUME_GUEST; |
| 881 | |
| 882 | #ifdef DEBUG_EXT |
| 883 | printk(KERN_INFO "Loading up ext 0x%lx\n", msr); |
| 884 | #endif |
| 885 | |
| 886 | if (msr & MSR_FP) { |
| 887 | preempt_disable(); |
| 888 | enable_kernel_fp(); |
| 889 | load_fp_state(&vcpu->arch.fp); |
| 890 | disable_kernel_fp(); |
| 891 | t->fp_save_area = &vcpu->arch.fp; |
| 892 | preempt_enable(); |
| 893 | } |
| 894 | |
| 895 | if (msr & MSR_VEC) { |
| 896 | #ifdef CONFIG_ALTIVEC |
| 897 | preempt_disable(); |
| 898 | enable_kernel_altivec(); |
| 899 | load_vr_state(&vcpu->arch.vr); |
| 900 | disable_kernel_altivec(); |
| 901 | t->vr_save_area = &vcpu->arch.vr; |
| 902 | preempt_enable(); |
| 903 | #endif |
| 904 | } |
| 905 | |
| 906 | t->regs->msr |= msr; |
| 907 | vcpu->arch.guest_owned_ext |= msr; |
| 908 | kvmppc_recalc_shadow_msr(vcpu); |
| 909 | |
| 910 | return RESUME_GUEST; |
| 911 | } |
| 912 | |
| 913 | /* |
| 914 | * Kernel code using FP or VMX could have flushed guest state to |
| 915 | * the thread_struct; if so, get it back now. |
| 916 | */ |
| 917 | static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) |
| 918 | { |
| 919 | unsigned long lost_ext; |
| 920 | |
| 921 | lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; |
| 922 | if (!lost_ext) |
| 923 | return; |
| 924 | |
| 925 | if (lost_ext & MSR_FP) { |
| 926 | preempt_disable(); |
| 927 | enable_kernel_fp(); |
| 928 | load_fp_state(&vcpu->arch.fp); |
| 929 | disable_kernel_fp(); |
| 930 | preempt_enable(); |
| 931 | } |
| 932 | #ifdef CONFIG_ALTIVEC |
| 933 | if (lost_ext & MSR_VEC) { |
| 934 | preempt_disable(); |
| 935 | enable_kernel_altivec(); |
| 936 | load_vr_state(&vcpu->arch.vr); |
| 937 | disable_kernel_altivec(); |
| 938 | preempt_enable(); |
| 939 | } |
| 940 | #endif |
| 941 | current->thread.regs->msr |= lost_ext; |
| 942 | } |
| 943 | |
| 944 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 945 | |
| 946 | void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) |
| 947 | { |
| 948 | /* Inject the Interrupt Cause field and trigger a guest interrupt */ |
| 949 | vcpu->arch.fscr &= ~(0xffULL << 56); |
| 950 | vcpu->arch.fscr |= (fac << 56); |
| 951 | kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); |
| 952 | } |
| 953 | |
| 954 | static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) |
| 955 | { |
| 956 | enum emulation_result er = EMULATE_FAIL; |
| 957 | |
| 958 | if (!(kvmppc_get_msr(vcpu) & MSR_PR)) |
| 959 | er = kvmppc_emulate_instruction(vcpu->run, vcpu); |
| 960 | |
| 961 | if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { |
| 962 | /* Couldn't emulate, trigger interrupt in guest */ |
| 963 | kvmppc_trigger_fac_interrupt(vcpu, fac); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | /* Enable facilities (TAR, EBB, DSCR) for the guest */ |
| 968 | static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) |
| 969 | { |
| 970 | bool guest_fac_enabled; |
| 971 | BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); |
| 972 | |
| 973 | /* |
| 974 | * Not every facility is enabled by FSCR bits, check whether the |
| 975 | * guest has this facility enabled at all. |
| 976 | */ |
| 977 | switch (fac) { |
| 978 | case FSCR_TAR_LG: |
| 979 | case FSCR_EBB_LG: |
| 980 | guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); |
| 981 | break; |
| 982 | case FSCR_TM_LG: |
| 983 | guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; |
| 984 | break; |
| 985 | default: |
| 986 | guest_fac_enabled = false; |
| 987 | break; |
| 988 | } |
| 989 | |
| 990 | if (!guest_fac_enabled) { |
| 991 | /* Facility not enabled by the guest */ |
| 992 | kvmppc_trigger_fac_interrupt(vcpu, fac); |
| 993 | return RESUME_GUEST; |
| 994 | } |
| 995 | |
| 996 | switch (fac) { |
| 997 | case FSCR_TAR_LG: |
| 998 | /* TAR switching isn't lazy in Linux yet */ |
| 999 | current->thread.tar = mfspr(SPRN_TAR); |
| 1000 | mtspr(SPRN_TAR, vcpu->arch.tar); |
| 1001 | vcpu->arch.shadow_fscr |= FSCR_TAR; |
| 1002 | break; |
| 1003 | default: |
| 1004 | kvmppc_emulate_fac(vcpu, fac); |
| 1005 | break; |
| 1006 | } |
| 1007 | |
| 1008 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1009 | /* Since we disabled MSR_TM at privilege state, the mfspr instruction |
| 1010 | * for TM spr can trigger TM fac unavailable. In this case, the |
| 1011 | * emulation is handled by kvmppc_emulate_fac(), which invokes |
| 1012 | * kvmppc_emulate_mfspr() finally. But note the mfspr can include |
| 1013 | * RT for NV registers. So it need to restore those NV reg to reflect |
| 1014 | * the update. |
| 1015 | */ |
| 1016 | if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) |
| 1017 | return RESUME_GUEST_NV; |
| 1018 | #endif |
| 1019 | |
| 1020 | return RESUME_GUEST; |
| 1021 | } |
| 1022 | |
| 1023 | void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) |
| 1024 | { |
| 1025 | if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { |
| 1026 | /* TAR got dropped, drop it in shadow too */ |
| 1027 | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| 1028 | } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { |
| 1029 | vcpu->arch.fscr = fscr; |
| 1030 | kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| 1031 | return; |
| 1032 | } |
| 1033 | |
| 1034 | vcpu->arch.fscr = fscr; |
| 1035 | } |
| 1036 | #endif |
| 1037 | |
| 1038 | static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) |
| 1039 | { |
| 1040 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 1041 | u64 msr = kvmppc_get_msr(vcpu); |
| 1042 | |
| 1043 | kvmppc_set_msr(vcpu, msr | MSR_SE); |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) |
| 1048 | { |
| 1049 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 1050 | u64 msr = kvmppc_get_msr(vcpu); |
| 1051 | |
| 1052 | kvmppc_set_msr(vcpu, msr & ~MSR_SE); |
| 1053 | } |
| 1054 | } |
| 1055 | |
| 1056 | static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| 1057 | unsigned int exit_nr) |
| 1058 | { |
| 1059 | enum emulation_result er; |
| 1060 | ulong flags; |
| 1061 | u32 last_inst; |
| 1062 | int emul, r; |
| 1063 | |
| 1064 | /* |
| 1065 | * shadow_srr1 only contains valid flags if we came here via a program |
| 1066 | * exception. The other exceptions (emulation assist, FP unavailable, |
| 1067 | * etc.) do not provide flags in SRR1, so use an illegal-instruction |
| 1068 | * exception when injecting a program interrupt into the guest. |
| 1069 | */ |
| 1070 | if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) |
| 1071 | flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; |
| 1072 | else |
| 1073 | flags = SRR1_PROGILL; |
| 1074 | |
| 1075 | emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); |
| 1076 | if (emul != EMULATE_DONE) |
| 1077 | return RESUME_GUEST; |
| 1078 | |
| 1079 | if (kvmppc_get_msr(vcpu) & MSR_PR) { |
| 1080 | #ifdef EXIT_DEBUG |
| 1081 | pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", |
| 1082 | kvmppc_get_pc(vcpu), last_inst); |
| 1083 | #endif |
| 1084 | if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { |
| 1085 | kvmppc_core_queue_program(vcpu, flags); |
| 1086 | return RESUME_GUEST; |
| 1087 | } |
| 1088 | } |
| 1089 | |
| 1090 | vcpu->stat.emulated_inst_exits++; |
| 1091 | er = kvmppc_emulate_instruction(run, vcpu); |
| 1092 | switch (er) { |
| 1093 | case EMULATE_DONE: |
| 1094 | r = RESUME_GUEST_NV; |
| 1095 | break; |
| 1096 | case EMULATE_AGAIN: |
| 1097 | r = RESUME_GUEST; |
| 1098 | break; |
| 1099 | case EMULATE_FAIL: |
| 1100 | pr_crit("%s: emulation at %lx failed (%08x)\n", |
| 1101 | __func__, kvmppc_get_pc(vcpu), last_inst); |
| 1102 | kvmppc_core_queue_program(vcpu, flags); |
| 1103 | r = RESUME_GUEST; |
| 1104 | break; |
| 1105 | case EMULATE_DO_MMIO: |
| 1106 | run->exit_reason = KVM_EXIT_MMIO; |
| 1107 | r = RESUME_HOST_NV; |
| 1108 | break; |
| 1109 | case EMULATE_EXIT_USER: |
| 1110 | r = RESUME_HOST_NV; |
| 1111 | break; |
| 1112 | default: |
| 1113 | BUG(); |
| 1114 | } |
| 1115 | |
| 1116 | return r; |
| 1117 | } |
| 1118 | |
| 1119 | int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| 1120 | unsigned int exit_nr) |
| 1121 | { |
| 1122 | int r = RESUME_HOST; |
| 1123 | int s; |
| 1124 | |
| 1125 | vcpu->stat.sum_exits++; |
| 1126 | |
| 1127 | run->exit_reason = KVM_EXIT_UNKNOWN; |
| 1128 | run->ready_for_interrupt_injection = 1; |
| 1129 | |
| 1130 | /* We get here with MSR.EE=1 */ |
| 1131 | |
| 1132 | trace_kvm_exit(exit_nr, vcpu); |
| 1133 | guest_exit(); |
| 1134 | |
| 1135 | switch (exit_nr) { |
| 1136 | case BOOK3S_INTERRUPT_INST_STORAGE: |
| 1137 | { |
| 1138 | ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| 1139 | vcpu->stat.pf_instruc++; |
| 1140 | |
| 1141 | if (kvmppc_is_split_real(vcpu)) |
| 1142 | kvmppc_fixup_split_real(vcpu); |
| 1143 | |
| 1144 | #ifdef CONFIG_PPC_BOOK3S_32 |
| 1145 | /* We set segments as unused segments when invalidating them. So |
| 1146 | * treat the respective fault as segment fault. */ |
| 1147 | { |
| 1148 | struct kvmppc_book3s_shadow_vcpu *svcpu; |
| 1149 | u32 sr; |
| 1150 | |
| 1151 | svcpu = svcpu_get(vcpu); |
| 1152 | sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; |
| 1153 | svcpu_put(svcpu); |
| 1154 | if (sr == SR_INVALID) { |
| 1155 | kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| 1156 | r = RESUME_GUEST; |
| 1157 | break; |
| 1158 | } |
| 1159 | } |
| 1160 | #endif |
| 1161 | |
| 1162 | /* only care about PTEG not found errors, but leave NX alone */ |
| 1163 | if (shadow_srr1 & 0x40000000) { |
| 1164 | int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 1165 | r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); |
| 1166 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| 1167 | vcpu->stat.sp_instruc++; |
| 1168 | } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| 1169 | (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| 1170 | /* |
| 1171 | * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, |
| 1172 | * so we can't use the NX bit inside the guest. Let's cross our fingers, |
| 1173 | * that no guest that needs the dcbz hack does NX. |
| 1174 | */ |
| 1175 | kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); |
| 1176 | r = RESUME_GUEST; |
| 1177 | } else { |
| 1178 | kvmppc_core_queue_inst_storage(vcpu, |
| 1179 | shadow_srr1 & 0x58000000); |
| 1180 | r = RESUME_GUEST; |
| 1181 | } |
| 1182 | break; |
| 1183 | } |
| 1184 | case BOOK3S_INTERRUPT_DATA_STORAGE: |
| 1185 | { |
| 1186 | ulong dar = kvmppc_get_fault_dar(vcpu); |
| 1187 | u32 fault_dsisr = vcpu->arch.fault_dsisr; |
| 1188 | vcpu->stat.pf_storage++; |
| 1189 | |
| 1190 | #ifdef CONFIG_PPC_BOOK3S_32 |
| 1191 | /* We set segments as unused segments when invalidating them. So |
| 1192 | * treat the respective fault as segment fault. */ |
| 1193 | { |
| 1194 | struct kvmppc_book3s_shadow_vcpu *svcpu; |
| 1195 | u32 sr; |
| 1196 | |
| 1197 | svcpu = svcpu_get(vcpu); |
| 1198 | sr = svcpu->sr[dar >> SID_SHIFT]; |
| 1199 | svcpu_put(svcpu); |
| 1200 | if (sr == SR_INVALID) { |
| 1201 | kvmppc_mmu_map_segment(vcpu, dar); |
| 1202 | r = RESUME_GUEST; |
| 1203 | break; |
| 1204 | } |
| 1205 | } |
| 1206 | #endif |
| 1207 | |
| 1208 | /* |
| 1209 | * We need to handle missing shadow PTEs, and |
| 1210 | * protection faults due to us mapping a page read-only |
| 1211 | * when the guest thinks it is writable. |
| 1212 | */ |
| 1213 | if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { |
| 1214 | int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| 1215 | r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); |
| 1216 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| 1217 | } else { |
| 1218 | kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); |
| 1219 | r = RESUME_GUEST; |
| 1220 | } |
| 1221 | break; |
| 1222 | } |
| 1223 | case BOOK3S_INTERRUPT_DATA_SEGMENT: |
| 1224 | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { |
| 1225 | kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); |
| 1226 | kvmppc_book3s_queue_irqprio(vcpu, |
| 1227 | BOOK3S_INTERRUPT_DATA_SEGMENT); |
| 1228 | } |
| 1229 | r = RESUME_GUEST; |
| 1230 | break; |
| 1231 | case BOOK3S_INTERRUPT_INST_SEGMENT: |
| 1232 | if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { |
| 1233 | kvmppc_book3s_queue_irqprio(vcpu, |
| 1234 | BOOK3S_INTERRUPT_INST_SEGMENT); |
| 1235 | } |
| 1236 | r = RESUME_GUEST; |
| 1237 | break; |
| 1238 | /* We're good on these - the host merely wanted to get our attention */ |
| 1239 | case BOOK3S_INTERRUPT_DECREMENTER: |
| 1240 | case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| 1241 | case BOOK3S_INTERRUPT_DOORBELL: |
| 1242 | case BOOK3S_INTERRUPT_H_DOORBELL: |
| 1243 | vcpu->stat.dec_exits++; |
| 1244 | r = RESUME_GUEST; |
| 1245 | break; |
| 1246 | case BOOK3S_INTERRUPT_EXTERNAL: |
| 1247 | case BOOK3S_INTERRUPT_EXTERNAL_HV: |
| 1248 | case BOOK3S_INTERRUPT_H_VIRT: |
| 1249 | vcpu->stat.ext_intr_exits++; |
| 1250 | r = RESUME_GUEST; |
| 1251 | break; |
| 1252 | case BOOK3S_INTERRUPT_HMI: |
| 1253 | case BOOK3S_INTERRUPT_PERFMON: |
| 1254 | case BOOK3S_INTERRUPT_SYSTEM_RESET: |
| 1255 | r = RESUME_GUEST; |
| 1256 | break; |
| 1257 | case BOOK3S_INTERRUPT_PROGRAM: |
| 1258 | case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| 1259 | r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); |
| 1260 | break; |
| 1261 | case BOOK3S_INTERRUPT_SYSCALL: |
| 1262 | { |
| 1263 | u32 last_sc; |
| 1264 | int emul; |
| 1265 | |
| 1266 | /* Get last sc for papr */ |
| 1267 | if (vcpu->arch.papr_enabled) { |
| 1268 | /* The sc instuction points SRR0 to the next inst */ |
| 1269 | emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); |
| 1270 | if (emul != EMULATE_DONE) { |
| 1271 | kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); |
| 1272 | r = RESUME_GUEST; |
| 1273 | break; |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | if (vcpu->arch.papr_enabled && |
| 1278 | (last_sc == 0x44000022) && |
| 1279 | !(kvmppc_get_msr(vcpu) & MSR_PR)) { |
| 1280 | /* SC 1 papr hypercalls */ |
| 1281 | ulong cmd = kvmppc_get_gpr(vcpu, 3); |
| 1282 | int i; |
| 1283 | |
| 1284 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 1285 | if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { |
| 1286 | r = RESUME_GUEST; |
| 1287 | break; |
| 1288 | } |
| 1289 | #endif |
| 1290 | |
| 1291 | run->papr_hcall.nr = cmd; |
| 1292 | for (i = 0; i < 9; ++i) { |
| 1293 | ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); |
| 1294 | run->papr_hcall.args[i] = gpr; |
| 1295 | } |
| 1296 | run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| 1297 | vcpu->arch.hcall_needed = 1; |
| 1298 | r = RESUME_HOST; |
| 1299 | } else if (vcpu->arch.osi_enabled && |
| 1300 | (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && |
| 1301 | (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { |
| 1302 | /* MOL hypercalls */ |
| 1303 | u64 *gprs = run->osi.gprs; |
| 1304 | int i; |
| 1305 | |
| 1306 | run->exit_reason = KVM_EXIT_OSI; |
| 1307 | for (i = 0; i < 32; i++) |
| 1308 | gprs[i] = kvmppc_get_gpr(vcpu, i); |
| 1309 | vcpu->arch.osi_needed = 1; |
| 1310 | r = RESUME_HOST_NV; |
| 1311 | } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && |
| 1312 | (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { |
| 1313 | /* KVM PV hypercalls */ |
| 1314 | kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); |
| 1315 | r = RESUME_GUEST; |
| 1316 | } else { |
| 1317 | /* Guest syscalls */ |
| 1318 | vcpu->stat.syscall_exits++; |
| 1319 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| 1320 | r = RESUME_GUEST; |
| 1321 | } |
| 1322 | break; |
| 1323 | } |
| 1324 | case BOOK3S_INTERRUPT_FP_UNAVAIL: |
| 1325 | case BOOK3S_INTERRUPT_ALTIVEC: |
| 1326 | case BOOK3S_INTERRUPT_VSX: |
| 1327 | { |
| 1328 | int ext_msr = 0; |
| 1329 | int emul; |
| 1330 | u32 last_inst; |
| 1331 | |
| 1332 | if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { |
| 1333 | /* Do paired single instruction emulation */ |
| 1334 | emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, |
| 1335 | &last_inst); |
| 1336 | if (emul == EMULATE_DONE) |
| 1337 | r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); |
| 1338 | else |
| 1339 | r = RESUME_GUEST; |
| 1340 | |
| 1341 | break; |
| 1342 | } |
| 1343 | |
| 1344 | /* Enable external provider */ |
| 1345 | switch (exit_nr) { |
| 1346 | case BOOK3S_INTERRUPT_FP_UNAVAIL: |
| 1347 | ext_msr = MSR_FP; |
| 1348 | break; |
| 1349 | |
| 1350 | case BOOK3S_INTERRUPT_ALTIVEC: |
| 1351 | ext_msr = MSR_VEC; |
| 1352 | break; |
| 1353 | |
| 1354 | case BOOK3S_INTERRUPT_VSX: |
| 1355 | ext_msr = MSR_VSX; |
| 1356 | break; |
| 1357 | } |
| 1358 | |
| 1359 | r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); |
| 1360 | break; |
| 1361 | } |
| 1362 | case BOOK3S_INTERRUPT_ALIGNMENT: |
| 1363 | { |
| 1364 | u32 last_inst; |
| 1365 | int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); |
| 1366 | |
| 1367 | if (emul == EMULATE_DONE) { |
| 1368 | u32 dsisr; |
| 1369 | u64 dar; |
| 1370 | |
| 1371 | dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); |
| 1372 | dar = kvmppc_alignment_dar(vcpu, last_inst); |
| 1373 | |
| 1374 | kvmppc_set_dsisr(vcpu, dsisr); |
| 1375 | kvmppc_set_dar(vcpu, dar); |
| 1376 | |
| 1377 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| 1378 | } |
| 1379 | r = RESUME_GUEST; |
| 1380 | break; |
| 1381 | } |
| 1382 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 1383 | case BOOK3S_INTERRUPT_FAC_UNAVAIL: |
| 1384 | r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); |
| 1385 | break; |
| 1386 | #endif |
| 1387 | case BOOK3S_INTERRUPT_MACHINE_CHECK: |
| 1388 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| 1389 | r = RESUME_GUEST; |
| 1390 | break; |
| 1391 | case BOOK3S_INTERRUPT_TRACE: |
| 1392 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 1393 | run->exit_reason = KVM_EXIT_DEBUG; |
| 1394 | r = RESUME_HOST; |
| 1395 | } else { |
| 1396 | kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| 1397 | r = RESUME_GUEST; |
| 1398 | } |
| 1399 | break; |
| 1400 | default: |
| 1401 | { |
| 1402 | ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| 1403 | /* Ugh - bork here! What did we get? */ |
| 1404 | printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", |
| 1405 | exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); |
| 1406 | r = RESUME_HOST; |
| 1407 | BUG(); |
| 1408 | break; |
| 1409 | } |
| 1410 | } |
| 1411 | |
| 1412 | if (!(r & RESUME_HOST)) { |
| 1413 | /* To avoid clobbering exit_reason, only check for signals if |
| 1414 | * we aren't already exiting to userspace for some other |
| 1415 | * reason. */ |
| 1416 | |
| 1417 | /* |
| 1418 | * Interrupts could be timers for the guest which we have to |
| 1419 | * inject again, so let's postpone them until we're in the guest |
| 1420 | * and if we really did time things so badly, then we just exit |
| 1421 | * again due to a host external interrupt. |
| 1422 | */ |
| 1423 | s = kvmppc_prepare_to_enter(vcpu); |
| 1424 | if (s <= 0) |
| 1425 | r = s; |
| 1426 | else { |
| 1427 | /* interrupts now hard-disabled */ |
| 1428 | kvmppc_fix_ee_before_entry(); |
| 1429 | } |
| 1430 | |
| 1431 | kvmppc_handle_lost_ext(vcpu); |
| 1432 | } |
| 1433 | |
| 1434 | trace_kvm_book3s_reenter(r, vcpu); |
| 1435 | |
| 1436 | return r; |
| 1437 | } |
| 1438 | |
| 1439 | static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, |
| 1440 | struct kvm_sregs *sregs) |
| 1441 | { |
| 1442 | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| 1443 | int i; |
| 1444 | |
| 1445 | sregs->pvr = vcpu->arch.pvr; |
| 1446 | |
| 1447 | sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; |
| 1448 | if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| 1449 | for (i = 0; i < 64; i++) { |
| 1450 | sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; |
| 1451 | sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| 1452 | } |
| 1453 | } else { |
| 1454 | for (i = 0; i < 16; i++) |
| 1455 | sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); |
| 1456 | |
| 1457 | for (i = 0; i < 8; i++) { |
| 1458 | sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; |
| 1459 | sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | return 0; |
| 1464 | } |
| 1465 | |
| 1466 | static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, |
| 1467 | struct kvm_sregs *sregs) |
| 1468 | { |
| 1469 | struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| 1470 | int i; |
| 1471 | |
| 1472 | kvmppc_set_pvr_pr(vcpu, sregs->pvr); |
| 1473 | |
| 1474 | vcpu3s->sdr1 = sregs->u.s.sdr1; |
| 1475 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 1476 | if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| 1477 | /* Flush all SLB entries */ |
| 1478 | vcpu->arch.mmu.slbmte(vcpu, 0, 0); |
| 1479 | vcpu->arch.mmu.slbia(vcpu); |
| 1480 | |
| 1481 | for (i = 0; i < 64; i++) { |
| 1482 | u64 rb = sregs->u.s.ppc64.slb[i].slbe; |
| 1483 | u64 rs = sregs->u.s.ppc64.slb[i].slbv; |
| 1484 | |
| 1485 | if (rb & SLB_ESID_V) |
| 1486 | vcpu->arch.mmu.slbmte(vcpu, rs, rb); |
| 1487 | } |
| 1488 | } else |
| 1489 | #endif |
| 1490 | { |
| 1491 | for (i = 0; i < 16; i++) { |
| 1492 | vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); |
| 1493 | } |
| 1494 | for (i = 0; i < 8; i++) { |
| 1495 | kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, |
| 1496 | (u32)sregs->u.s.ppc32.ibat[i]); |
| 1497 | kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, |
| 1498 | (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); |
| 1499 | kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, |
| 1500 | (u32)sregs->u.s.ppc32.dbat[i]); |
| 1501 | kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, |
| 1502 | (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | /* Flush the MMU after messing with the segments */ |
| 1507 | kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| 1508 | |
| 1509 | return 0; |
| 1510 | } |
| 1511 | |
| 1512 | static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, |
| 1513 | union kvmppc_one_reg *val) |
| 1514 | { |
| 1515 | int r = 0; |
| 1516 | |
| 1517 | switch (id) { |
| 1518 | case KVM_REG_PPC_DEBUG_INST: |
| 1519 | *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); |
| 1520 | break; |
| 1521 | case KVM_REG_PPC_HIOR: |
| 1522 | *val = get_reg_val(id, to_book3s(vcpu)->hior); |
| 1523 | break; |
| 1524 | case KVM_REG_PPC_VTB: |
| 1525 | *val = get_reg_val(id, to_book3s(vcpu)->vtb); |
| 1526 | break; |
| 1527 | case KVM_REG_PPC_LPCR: |
| 1528 | case KVM_REG_PPC_LPCR_64: |
| 1529 | /* |
| 1530 | * We are only interested in the LPCR_ILE bit |
| 1531 | */ |
| 1532 | if (vcpu->arch.intr_msr & MSR_LE) |
| 1533 | *val = get_reg_val(id, LPCR_ILE); |
| 1534 | else |
| 1535 | *val = get_reg_val(id, 0); |
| 1536 | break; |
| 1537 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1538 | case KVM_REG_PPC_TFHAR: |
| 1539 | *val = get_reg_val(id, vcpu->arch.tfhar); |
| 1540 | break; |
| 1541 | case KVM_REG_PPC_TFIAR: |
| 1542 | *val = get_reg_val(id, vcpu->arch.tfiar); |
| 1543 | break; |
| 1544 | case KVM_REG_PPC_TEXASR: |
| 1545 | *val = get_reg_val(id, vcpu->arch.texasr); |
| 1546 | break; |
| 1547 | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| 1548 | *val = get_reg_val(id, |
| 1549 | vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); |
| 1550 | break; |
| 1551 | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| 1552 | { |
| 1553 | int i, j; |
| 1554 | |
| 1555 | i = id - KVM_REG_PPC_TM_VSR0; |
| 1556 | if (i < 32) |
| 1557 | for (j = 0; j < TS_FPRWIDTH; j++) |
| 1558 | val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; |
| 1559 | else { |
| 1560 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 1561 | val->vval = vcpu->arch.vr_tm.vr[i-32]; |
| 1562 | else |
| 1563 | r = -ENXIO; |
| 1564 | } |
| 1565 | break; |
| 1566 | } |
| 1567 | case KVM_REG_PPC_TM_CR: |
| 1568 | *val = get_reg_val(id, vcpu->arch.cr_tm); |
| 1569 | break; |
| 1570 | case KVM_REG_PPC_TM_XER: |
| 1571 | *val = get_reg_val(id, vcpu->arch.xer_tm); |
| 1572 | break; |
| 1573 | case KVM_REG_PPC_TM_LR: |
| 1574 | *val = get_reg_val(id, vcpu->arch.lr_tm); |
| 1575 | break; |
| 1576 | case KVM_REG_PPC_TM_CTR: |
| 1577 | *val = get_reg_val(id, vcpu->arch.ctr_tm); |
| 1578 | break; |
| 1579 | case KVM_REG_PPC_TM_FPSCR: |
| 1580 | *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); |
| 1581 | break; |
| 1582 | case KVM_REG_PPC_TM_AMR: |
| 1583 | *val = get_reg_val(id, vcpu->arch.amr_tm); |
| 1584 | break; |
| 1585 | case KVM_REG_PPC_TM_PPR: |
| 1586 | *val = get_reg_val(id, vcpu->arch.ppr_tm); |
| 1587 | break; |
| 1588 | case KVM_REG_PPC_TM_VRSAVE: |
| 1589 | *val = get_reg_val(id, vcpu->arch.vrsave_tm); |
| 1590 | break; |
| 1591 | case KVM_REG_PPC_TM_VSCR: |
| 1592 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 1593 | *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); |
| 1594 | else |
| 1595 | r = -ENXIO; |
| 1596 | break; |
| 1597 | case KVM_REG_PPC_TM_DSCR: |
| 1598 | *val = get_reg_val(id, vcpu->arch.dscr_tm); |
| 1599 | break; |
| 1600 | case KVM_REG_PPC_TM_TAR: |
| 1601 | *val = get_reg_val(id, vcpu->arch.tar_tm); |
| 1602 | break; |
| 1603 | #endif |
| 1604 | default: |
| 1605 | r = -EINVAL; |
| 1606 | break; |
| 1607 | } |
| 1608 | |
| 1609 | return r; |
| 1610 | } |
| 1611 | |
| 1612 | static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) |
| 1613 | { |
| 1614 | if (new_lpcr & LPCR_ILE) |
| 1615 | vcpu->arch.intr_msr |= MSR_LE; |
| 1616 | else |
| 1617 | vcpu->arch.intr_msr &= ~MSR_LE; |
| 1618 | } |
| 1619 | |
| 1620 | static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, |
| 1621 | union kvmppc_one_reg *val) |
| 1622 | { |
| 1623 | int r = 0; |
| 1624 | |
| 1625 | switch (id) { |
| 1626 | case KVM_REG_PPC_HIOR: |
| 1627 | to_book3s(vcpu)->hior = set_reg_val(id, *val); |
| 1628 | to_book3s(vcpu)->hior_explicit = true; |
| 1629 | break; |
| 1630 | case KVM_REG_PPC_VTB: |
| 1631 | to_book3s(vcpu)->vtb = set_reg_val(id, *val); |
| 1632 | break; |
| 1633 | case KVM_REG_PPC_LPCR: |
| 1634 | case KVM_REG_PPC_LPCR_64: |
| 1635 | kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); |
| 1636 | break; |
| 1637 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 1638 | case KVM_REG_PPC_TFHAR: |
| 1639 | vcpu->arch.tfhar = set_reg_val(id, *val); |
| 1640 | break; |
| 1641 | case KVM_REG_PPC_TFIAR: |
| 1642 | vcpu->arch.tfiar = set_reg_val(id, *val); |
| 1643 | break; |
| 1644 | case KVM_REG_PPC_TEXASR: |
| 1645 | vcpu->arch.texasr = set_reg_val(id, *val); |
| 1646 | break; |
| 1647 | case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| 1648 | vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = |
| 1649 | set_reg_val(id, *val); |
| 1650 | break; |
| 1651 | case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| 1652 | { |
| 1653 | int i, j; |
| 1654 | |
| 1655 | i = id - KVM_REG_PPC_TM_VSR0; |
| 1656 | if (i < 32) |
| 1657 | for (j = 0; j < TS_FPRWIDTH; j++) |
| 1658 | vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; |
| 1659 | else |
| 1660 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 1661 | vcpu->arch.vr_tm.vr[i-32] = val->vval; |
| 1662 | else |
| 1663 | r = -ENXIO; |
| 1664 | break; |
| 1665 | } |
| 1666 | case KVM_REG_PPC_TM_CR: |
| 1667 | vcpu->arch.cr_tm = set_reg_val(id, *val); |
| 1668 | break; |
| 1669 | case KVM_REG_PPC_TM_XER: |
| 1670 | vcpu->arch.xer_tm = set_reg_val(id, *val); |
| 1671 | break; |
| 1672 | case KVM_REG_PPC_TM_LR: |
| 1673 | vcpu->arch.lr_tm = set_reg_val(id, *val); |
| 1674 | break; |
| 1675 | case KVM_REG_PPC_TM_CTR: |
| 1676 | vcpu->arch.ctr_tm = set_reg_val(id, *val); |
| 1677 | break; |
| 1678 | case KVM_REG_PPC_TM_FPSCR: |
| 1679 | vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); |
| 1680 | break; |
| 1681 | case KVM_REG_PPC_TM_AMR: |
| 1682 | vcpu->arch.amr_tm = set_reg_val(id, *val); |
| 1683 | break; |
| 1684 | case KVM_REG_PPC_TM_PPR: |
| 1685 | vcpu->arch.ppr_tm = set_reg_val(id, *val); |
| 1686 | break; |
| 1687 | case KVM_REG_PPC_TM_VRSAVE: |
| 1688 | vcpu->arch.vrsave_tm = set_reg_val(id, *val); |
| 1689 | break; |
| 1690 | case KVM_REG_PPC_TM_VSCR: |
| 1691 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 1692 | vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); |
| 1693 | else |
| 1694 | r = -ENXIO; |
| 1695 | break; |
| 1696 | case KVM_REG_PPC_TM_DSCR: |
| 1697 | vcpu->arch.dscr_tm = set_reg_val(id, *val); |
| 1698 | break; |
| 1699 | case KVM_REG_PPC_TM_TAR: |
| 1700 | vcpu->arch.tar_tm = set_reg_val(id, *val); |
| 1701 | break; |
| 1702 | #endif |
| 1703 | default: |
| 1704 | r = -EINVAL; |
| 1705 | break; |
| 1706 | } |
| 1707 | |
| 1708 | return r; |
| 1709 | } |
| 1710 | |
| 1711 | static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm, |
| 1712 | unsigned int id) |
| 1713 | { |
| 1714 | struct kvmppc_vcpu_book3s *vcpu_book3s; |
| 1715 | struct kvm_vcpu *vcpu; |
| 1716 | int err = -ENOMEM; |
| 1717 | unsigned long p; |
| 1718 | |
| 1719 | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| 1720 | if (!vcpu) |
| 1721 | goto out; |
| 1722 | |
| 1723 | vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); |
| 1724 | if (!vcpu_book3s) |
| 1725 | goto free_vcpu; |
| 1726 | vcpu->arch.book3s = vcpu_book3s; |
| 1727 | |
| 1728 | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| 1729 | vcpu->arch.shadow_vcpu = |
| 1730 | kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); |
| 1731 | if (!vcpu->arch.shadow_vcpu) |
| 1732 | goto free_vcpu3s; |
| 1733 | #endif |
| 1734 | |
| 1735 | err = kvm_vcpu_init(vcpu, kvm, id); |
| 1736 | if (err) |
| 1737 | goto free_shadow_vcpu; |
| 1738 | |
| 1739 | err = -ENOMEM; |
| 1740 | p = __get_free_page(GFP_KERNEL|__GFP_ZERO); |
| 1741 | if (!p) |
| 1742 | goto uninit_vcpu; |
| 1743 | vcpu->arch.shared = (void *)p; |
| 1744 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 1745 | /* Always start the shared struct in native endian mode */ |
| 1746 | #ifdef __BIG_ENDIAN__ |
| 1747 | vcpu->arch.shared_big_endian = true; |
| 1748 | #else |
| 1749 | vcpu->arch.shared_big_endian = false; |
| 1750 | #endif |
| 1751 | |
| 1752 | /* |
| 1753 | * Default to the same as the host if we're on sufficiently |
| 1754 | * recent machine that we have 1TB segments; |
| 1755 | * otherwise default to PPC970FX. |
| 1756 | */ |
| 1757 | vcpu->arch.pvr = 0x3C0301; |
| 1758 | if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| 1759 | vcpu->arch.pvr = mfspr(SPRN_PVR); |
| 1760 | vcpu->arch.intr_msr = MSR_SF; |
| 1761 | #else |
| 1762 | /* default to book3s_32 (750) */ |
| 1763 | vcpu->arch.pvr = 0x84202; |
| 1764 | #endif |
| 1765 | kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); |
| 1766 | vcpu->arch.slb_nr = 64; |
| 1767 | |
| 1768 | vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; |
| 1769 | |
| 1770 | err = kvmppc_mmu_init(vcpu); |
| 1771 | if (err < 0) |
| 1772 | goto free_shared_page; |
| 1773 | |
| 1774 | return vcpu; |
| 1775 | |
| 1776 | free_shared_page: |
| 1777 | free_page((unsigned long)vcpu->arch.shared); |
| 1778 | uninit_vcpu: |
| 1779 | kvm_vcpu_uninit(vcpu); |
| 1780 | free_shadow_vcpu: |
| 1781 | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| 1782 | kfree(vcpu->arch.shadow_vcpu); |
| 1783 | free_vcpu3s: |
| 1784 | #endif |
| 1785 | vfree(vcpu_book3s); |
| 1786 | free_vcpu: |
| 1787 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 1788 | out: |
| 1789 | return ERR_PTR(err); |
| 1790 | } |
| 1791 | |
| 1792 | static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) |
| 1793 | { |
| 1794 | struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| 1795 | |
| 1796 | free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); |
| 1797 | kvm_vcpu_uninit(vcpu); |
| 1798 | #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| 1799 | kfree(vcpu->arch.shadow_vcpu); |
| 1800 | #endif |
| 1801 | vfree(vcpu_book3s); |
| 1802 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 1803 | } |
| 1804 | |
| 1805 | static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| 1806 | { |
| 1807 | int ret; |
| 1808 | #ifdef CONFIG_ALTIVEC |
| 1809 | unsigned long uninitialized_var(vrsave); |
| 1810 | #endif |
| 1811 | |
| 1812 | /* Check if we can run the vcpu at all */ |
| 1813 | if (!vcpu->arch.sane) { |
| 1814 | kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| 1815 | ret = -EINVAL; |
| 1816 | goto out; |
| 1817 | } |
| 1818 | |
| 1819 | kvmppc_setup_debug(vcpu); |
| 1820 | |
| 1821 | /* |
| 1822 | * Interrupts could be timers for the guest which we have to inject |
| 1823 | * again, so let's postpone them until we're in the guest and if we |
| 1824 | * really did time things so badly, then we just exit again due to |
| 1825 | * a host external interrupt. |
| 1826 | */ |
| 1827 | ret = kvmppc_prepare_to_enter(vcpu); |
| 1828 | if (ret <= 0) |
| 1829 | goto out; |
| 1830 | /* interrupts now hard-disabled */ |
| 1831 | |
| 1832 | /* Save FPU, Altivec and VSX state */ |
| 1833 | giveup_all(current); |
| 1834 | |
| 1835 | /* Preload FPU if it's enabled */ |
| 1836 | if (kvmppc_get_msr(vcpu) & MSR_FP) |
| 1837 | kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| 1838 | |
| 1839 | kvmppc_fix_ee_before_entry(); |
| 1840 | |
| 1841 | ret = __kvmppc_vcpu_run(kvm_run, vcpu); |
| 1842 | |
| 1843 | kvmppc_clear_debug(vcpu); |
| 1844 | |
| 1845 | /* No need for guest_exit. It's done in handle_exit. |
| 1846 | We also get here with interrupts enabled. */ |
| 1847 | |
| 1848 | /* Make sure we save the guest FPU/Altivec/VSX state */ |
| 1849 | kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| 1850 | |
| 1851 | /* Make sure we save the guest TAR/EBB/DSCR state */ |
| 1852 | kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| 1853 | |
| 1854 | out: |
| 1855 | vcpu->mode = OUTSIDE_GUEST_MODE; |
| 1856 | return ret; |
| 1857 | } |
| 1858 | |
| 1859 | /* |
| 1860 | * Get (and clear) the dirty memory log for a memory slot. |
| 1861 | */ |
| 1862 | static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, |
| 1863 | struct kvm_dirty_log *log) |
| 1864 | { |
| 1865 | struct kvm_memslots *slots; |
| 1866 | struct kvm_memory_slot *memslot; |
| 1867 | struct kvm_vcpu *vcpu; |
| 1868 | ulong ga, ga_end; |
| 1869 | int is_dirty = 0; |
| 1870 | int r; |
| 1871 | unsigned long n; |
| 1872 | |
| 1873 | mutex_lock(&kvm->slots_lock); |
| 1874 | |
| 1875 | r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| 1876 | if (r) |
| 1877 | goto out; |
| 1878 | |
| 1879 | /* If nothing is dirty, don't bother messing with page tables. */ |
| 1880 | if (is_dirty) { |
| 1881 | slots = kvm_memslots(kvm); |
| 1882 | memslot = id_to_memslot(slots, log->slot); |
| 1883 | |
| 1884 | ga = memslot->base_gfn << PAGE_SHIFT; |
| 1885 | ga_end = ga + (memslot->npages << PAGE_SHIFT); |
| 1886 | |
| 1887 | kvm_for_each_vcpu(n, vcpu, kvm) |
| 1888 | kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); |
| 1889 | |
| 1890 | n = kvm_dirty_bitmap_bytes(memslot); |
| 1891 | memset(memslot->dirty_bitmap, 0, n); |
| 1892 | } |
| 1893 | |
| 1894 | r = 0; |
| 1895 | out: |
| 1896 | mutex_unlock(&kvm->slots_lock); |
| 1897 | return r; |
| 1898 | } |
| 1899 | |
| 1900 | static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, |
| 1901 | struct kvm_memory_slot *memslot) |
| 1902 | { |
| 1903 | return; |
| 1904 | } |
| 1905 | |
| 1906 | static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, |
| 1907 | struct kvm_memory_slot *memslot, |
| 1908 | const struct kvm_userspace_memory_region *mem) |
| 1909 | { |
| 1910 | return 0; |
| 1911 | } |
| 1912 | |
| 1913 | static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, |
| 1914 | const struct kvm_userspace_memory_region *mem, |
| 1915 | const struct kvm_memory_slot *old, |
| 1916 | const struct kvm_memory_slot *new, |
| 1917 | enum kvm_mr_change change) |
| 1918 | { |
| 1919 | return; |
| 1920 | } |
| 1921 | |
| 1922 | static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free, |
| 1923 | struct kvm_memory_slot *dont) |
| 1924 | { |
| 1925 | return; |
| 1926 | } |
| 1927 | |
| 1928 | static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot, |
| 1929 | unsigned long npages) |
| 1930 | { |
| 1931 | return 0; |
| 1932 | } |
| 1933 | |
| 1934 | |
| 1935 | #ifdef CONFIG_PPC64 |
| 1936 | static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, |
| 1937 | struct kvm_ppc_smmu_info *info) |
| 1938 | { |
| 1939 | long int i; |
| 1940 | struct kvm_vcpu *vcpu; |
| 1941 | |
| 1942 | info->flags = 0; |
| 1943 | |
| 1944 | /* SLB is always 64 entries */ |
| 1945 | info->slb_size = 64; |
| 1946 | |
| 1947 | /* Standard 4k base page size segment */ |
| 1948 | info->sps[0].page_shift = 12; |
| 1949 | info->sps[0].slb_enc = 0; |
| 1950 | info->sps[0].enc[0].page_shift = 12; |
| 1951 | info->sps[0].enc[0].pte_enc = 0; |
| 1952 | |
| 1953 | /* |
| 1954 | * 64k large page size. |
| 1955 | * We only want to put this in if the CPUs we're emulating |
| 1956 | * support it, but unfortunately we don't have a vcpu easily |
| 1957 | * to hand here to test. Just pick the first vcpu, and if |
| 1958 | * that doesn't exist yet, report the minimum capability, |
| 1959 | * i.e., no 64k pages. |
| 1960 | * 1T segment support goes along with 64k pages. |
| 1961 | */ |
| 1962 | i = 1; |
| 1963 | vcpu = kvm_get_vcpu(kvm, 0); |
| 1964 | if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { |
| 1965 | info->flags = KVM_PPC_1T_SEGMENTS; |
| 1966 | info->sps[i].page_shift = 16; |
| 1967 | info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; |
| 1968 | info->sps[i].enc[0].page_shift = 16; |
| 1969 | info->sps[i].enc[0].pte_enc = 1; |
| 1970 | ++i; |
| 1971 | } |
| 1972 | |
| 1973 | /* Standard 16M large page size segment */ |
| 1974 | info->sps[i].page_shift = 24; |
| 1975 | info->sps[i].slb_enc = SLB_VSID_L; |
| 1976 | info->sps[i].enc[0].page_shift = 24; |
| 1977 | info->sps[i].enc[0].pte_enc = 0; |
| 1978 | |
| 1979 | return 0; |
| 1980 | } |
| 1981 | |
| 1982 | static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) |
| 1983 | { |
| 1984 | if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| 1985 | return -ENODEV; |
| 1986 | /* Require flags and process table base and size to all be zero. */ |
| 1987 | if (cfg->flags || cfg->process_table) |
| 1988 | return -EINVAL; |
| 1989 | return 0; |
| 1990 | } |
| 1991 | |
| 1992 | #else |
| 1993 | static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, |
| 1994 | struct kvm_ppc_smmu_info *info) |
| 1995 | { |
| 1996 | /* We should not get called */ |
| 1997 | BUG(); |
| 1998 | } |
| 1999 | #endif /* CONFIG_PPC64 */ |
| 2000 | |
| 2001 | static unsigned int kvm_global_user_count = 0; |
| 2002 | static DEFINE_SPINLOCK(kvm_global_user_count_lock); |
| 2003 | |
| 2004 | static int kvmppc_core_init_vm_pr(struct kvm *kvm) |
| 2005 | { |
| 2006 | mutex_init(&kvm->arch.hpt_mutex); |
| 2007 | |
| 2008 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 2009 | /* Start out with the default set of hcalls enabled */ |
| 2010 | kvmppc_pr_init_default_hcalls(kvm); |
| 2011 | #endif |
| 2012 | |
| 2013 | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| 2014 | spin_lock(&kvm_global_user_count_lock); |
| 2015 | if (++kvm_global_user_count == 1) |
| 2016 | pseries_disable_reloc_on_exc(); |
| 2017 | spin_unlock(&kvm_global_user_count_lock); |
| 2018 | } |
| 2019 | return 0; |
| 2020 | } |
| 2021 | |
| 2022 | static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) |
| 2023 | { |
| 2024 | #ifdef CONFIG_PPC64 |
| 2025 | WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); |
| 2026 | #endif |
| 2027 | |
| 2028 | if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| 2029 | spin_lock(&kvm_global_user_count_lock); |
| 2030 | BUG_ON(kvm_global_user_count == 0); |
| 2031 | if (--kvm_global_user_count == 0) |
| 2032 | pseries_enable_reloc_on_exc(); |
| 2033 | spin_unlock(&kvm_global_user_count_lock); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | static int kvmppc_core_check_processor_compat_pr(void) |
| 2038 | { |
| 2039 | /* |
| 2040 | * PR KVM can work on POWER9 inside a guest partition |
| 2041 | * running in HPT mode. It can't work if we are using |
| 2042 | * radix translation (because radix provides no way for |
| 2043 | * a process to have unique translations in quadrant 3). |
| 2044 | */ |
| 2045 | if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) |
| 2046 | return -EIO; |
| 2047 | return 0; |
| 2048 | } |
| 2049 | |
| 2050 | static long kvm_arch_vm_ioctl_pr(struct file *filp, |
| 2051 | unsigned int ioctl, unsigned long arg) |
| 2052 | { |
| 2053 | return -ENOTTY; |
| 2054 | } |
| 2055 | |
| 2056 | static struct kvmppc_ops kvm_ops_pr = { |
| 2057 | .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, |
| 2058 | .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, |
| 2059 | .get_one_reg = kvmppc_get_one_reg_pr, |
| 2060 | .set_one_reg = kvmppc_set_one_reg_pr, |
| 2061 | .vcpu_load = kvmppc_core_vcpu_load_pr, |
| 2062 | .vcpu_put = kvmppc_core_vcpu_put_pr, |
| 2063 | .set_msr = kvmppc_set_msr_pr, |
| 2064 | .vcpu_run = kvmppc_vcpu_run_pr, |
| 2065 | .vcpu_create = kvmppc_core_vcpu_create_pr, |
| 2066 | .vcpu_free = kvmppc_core_vcpu_free_pr, |
| 2067 | .check_requests = kvmppc_core_check_requests_pr, |
| 2068 | .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, |
| 2069 | .flush_memslot = kvmppc_core_flush_memslot_pr, |
| 2070 | .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, |
| 2071 | .commit_memory_region = kvmppc_core_commit_memory_region_pr, |
| 2072 | .unmap_hva_range = kvm_unmap_hva_range_pr, |
| 2073 | .age_hva = kvm_age_hva_pr, |
| 2074 | .test_age_hva = kvm_test_age_hva_pr, |
| 2075 | .set_spte_hva = kvm_set_spte_hva_pr, |
| 2076 | .mmu_destroy = kvmppc_mmu_destroy_pr, |
| 2077 | .free_memslot = kvmppc_core_free_memslot_pr, |
| 2078 | .create_memslot = kvmppc_core_create_memslot_pr, |
| 2079 | .init_vm = kvmppc_core_init_vm_pr, |
| 2080 | .destroy_vm = kvmppc_core_destroy_vm_pr, |
| 2081 | .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, |
| 2082 | .emulate_op = kvmppc_core_emulate_op_pr, |
| 2083 | .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, |
| 2084 | .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, |
| 2085 | .fast_vcpu_kick = kvm_vcpu_kick, |
| 2086 | .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, |
| 2087 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 2088 | .hcall_implemented = kvmppc_hcall_impl_pr, |
| 2089 | .configure_mmu = kvm_configure_mmu_pr, |
| 2090 | #endif |
| 2091 | .giveup_ext = kvmppc_giveup_ext, |
| 2092 | }; |
| 2093 | |
| 2094 | |
| 2095 | int kvmppc_book3s_init_pr(void) |
| 2096 | { |
| 2097 | int r; |
| 2098 | |
| 2099 | r = kvmppc_core_check_processor_compat_pr(); |
| 2100 | if (r < 0) |
| 2101 | return r; |
| 2102 | |
| 2103 | kvm_ops_pr.owner = THIS_MODULE; |
| 2104 | kvmppc_pr_ops = &kvm_ops_pr; |
| 2105 | |
| 2106 | r = kvmppc_mmu_hpte_sysinit(); |
| 2107 | return r; |
| 2108 | } |
| 2109 | |
| 2110 | void kvmppc_book3s_exit_pr(void) |
| 2111 | { |
| 2112 | kvmppc_pr_ops = NULL; |
| 2113 | kvmppc_mmu_hpte_sysexit(); |
| 2114 | } |
| 2115 | |
| 2116 | /* |
| 2117 | * We only support separate modules for book3s 64 |
| 2118 | */ |
| 2119 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 2120 | |
| 2121 | module_init(kvmppc_book3s_init_pr); |
| 2122 | module_exit(kvmppc_book3s_exit_pr); |
| 2123 | |
| 2124 | MODULE_LICENSE("GPL"); |
| 2125 | MODULE_ALIAS_MISCDEV(KVM_MINOR); |
| 2126 | MODULE_ALIAS("devname:kvm"); |
| 2127 | #endif |