b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * This file contains the routines for flushing entries from the |
| 4 | * TLB and MMU hash table. |
| 5 | * |
| 6 | * Derived from arch/ppc64/mm/init.c: |
| 7 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 8 | * |
| 9 | * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| 10 | * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| 11 | * Copyright (C) 1996 Paul Mackerras |
| 12 | * |
| 13 | * Derived from "arch/i386/mm/init.c" |
| 14 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 15 | * |
| 16 | * Dave Engebretsen <engebret@us.ibm.com> |
| 17 | * Rework for PPC64 port. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/kernel.h> |
| 21 | #include <linux/mm.h> |
| 22 | #include <linux/percpu.h> |
| 23 | #include <linux/hardirq.h> |
| 24 | #include <asm/pgalloc.h> |
| 25 | #include <asm/tlbflush.h> |
| 26 | #include <asm/tlb.h> |
| 27 | #include <asm/bug.h> |
| 28 | #include <asm/pte-walk.h> |
| 29 | |
| 30 | |
| 31 | #include <trace/events/thp.h> |
| 32 | |
| 33 | DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch); |
| 34 | |
| 35 | /* |
| 36 | * A linux PTE was changed and the corresponding hash table entry |
| 37 | * neesd to be flushed. This function will either perform the flush |
| 38 | * immediately or will batch it up if the current CPU has an active |
| 39 | * batch on it. |
| 40 | */ |
| 41 | void hpte_need_flush(struct mm_struct *mm, unsigned long addr, |
| 42 | pte_t *ptep, unsigned long pte, int huge) |
| 43 | { |
| 44 | unsigned long vpn; |
| 45 | struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch); |
| 46 | unsigned long vsid; |
| 47 | unsigned int psize; |
| 48 | int ssize; |
| 49 | real_pte_t rpte; |
| 50 | int i, offset; |
| 51 | |
| 52 | i = batch->index; |
| 53 | |
| 54 | /* |
| 55 | * Get page size (maybe move back to caller). |
| 56 | * |
| 57 | * NOTE: when using special 64K mappings in 4K environment like |
| 58 | * for SPEs, we obtain the page size from the slice, which thus |
| 59 | * must still exist (and thus the VMA not reused) at the time |
| 60 | * of this call |
| 61 | */ |
| 62 | if (huge) { |
| 63 | #ifdef CONFIG_HUGETLB_PAGE |
| 64 | psize = get_slice_psize(mm, addr); |
| 65 | /* Mask the address for the correct page size */ |
| 66 | addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1); |
| 67 | if (unlikely(psize == MMU_PAGE_16G)) |
| 68 | offset = PTRS_PER_PUD; |
| 69 | else |
| 70 | offset = PTRS_PER_PMD; |
| 71 | #else |
| 72 | BUG(); |
| 73 | psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */ |
| 74 | #endif |
| 75 | } else { |
| 76 | psize = pte_pagesize_index(mm, addr, pte); |
| 77 | /* |
| 78 | * Mask the address for the standard page size. If we |
| 79 | * have a 64k page kernel, but the hardware does not |
| 80 | * support 64k pages, this might be different from the |
| 81 | * hardware page size encoded in the slice table. |
| 82 | */ |
| 83 | addr &= PAGE_MASK; |
| 84 | offset = PTRS_PER_PTE; |
| 85 | } |
| 86 | |
| 87 | |
| 88 | /* Build full vaddr */ |
| 89 | if (!is_kernel_addr(addr)) { |
| 90 | ssize = user_segment_size(addr); |
| 91 | vsid = get_user_vsid(&mm->context, addr, ssize); |
| 92 | } else { |
| 93 | vsid = get_kernel_vsid(addr, mmu_kernel_ssize); |
| 94 | ssize = mmu_kernel_ssize; |
| 95 | } |
| 96 | WARN_ON(vsid == 0); |
| 97 | vpn = hpt_vpn(addr, vsid, ssize); |
| 98 | rpte = __real_pte(__pte(pte), ptep, offset); |
| 99 | |
| 100 | /* |
| 101 | * Check if we have an active batch on this CPU. If not, just |
| 102 | * flush now and return. |
| 103 | */ |
| 104 | if (!batch->active) { |
| 105 | flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm)); |
| 106 | put_cpu_var(ppc64_tlb_batch); |
| 107 | return; |
| 108 | } |
| 109 | |
| 110 | /* |
| 111 | * This can happen when we are in the middle of a TLB batch and |
| 112 | * we encounter memory pressure (eg copy_page_range when it tries |
| 113 | * to allocate a new pte). If we have to reclaim memory and end |
| 114 | * up scanning and resetting referenced bits then our batch context |
| 115 | * will change mid stream. |
| 116 | * |
| 117 | * We also need to ensure only one page size is present in a given |
| 118 | * batch |
| 119 | */ |
| 120 | if (i != 0 && (mm != batch->mm || batch->psize != psize || |
| 121 | batch->ssize != ssize)) { |
| 122 | __flush_tlb_pending(batch); |
| 123 | i = 0; |
| 124 | } |
| 125 | if (i == 0) { |
| 126 | batch->mm = mm; |
| 127 | batch->psize = psize; |
| 128 | batch->ssize = ssize; |
| 129 | } |
| 130 | batch->pte[i] = rpte; |
| 131 | batch->vpn[i] = vpn; |
| 132 | batch->index = ++i; |
| 133 | if (i >= PPC64_TLB_BATCH_NR) |
| 134 | __flush_tlb_pending(batch); |
| 135 | put_cpu_var(ppc64_tlb_batch); |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * This function is called when terminating an mmu batch or when a batch |
| 140 | * is full. It will perform the flush of all the entries currently stored |
| 141 | * in a batch. |
| 142 | * |
| 143 | * Must be called from within some kind of spinlock/non-preempt region... |
| 144 | */ |
| 145 | void __flush_tlb_pending(struct ppc64_tlb_batch *batch) |
| 146 | { |
| 147 | int i, local; |
| 148 | |
| 149 | i = batch->index; |
| 150 | local = mm_is_thread_local(batch->mm); |
| 151 | if (i == 1) |
| 152 | flush_hash_page(batch->vpn[0], batch->pte[0], |
| 153 | batch->psize, batch->ssize, local); |
| 154 | else |
| 155 | flush_hash_range(i, local); |
| 156 | batch->index = 0; |
| 157 | } |
| 158 | |
| 159 | void hash__tlb_flush(struct mmu_gather *tlb) |
| 160 | { |
| 161 | struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch); |
| 162 | |
| 163 | /* |
| 164 | * If there's a TLB batch pending, then we must flush it because the |
| 165 | * pages are going to be freed and we really don't want to have a CPU |
| 166 | * access a freed page because it has a stale TLB |
| 167 | */ |
| 168 | if (tlbbatch->index) |
| 169 | __flush_tlb_pending(tlbbatch); |
| 170 | |
| 171 | put_cpu_var(ppc64_tlb_batch); |
| 172 | } |
| 173 | |
| 174 | /** |
| 175 | * __flush_hash_table_range - Flush all HPTEs for a given address range |
| 176 | * from the hash table (and the TLB). But keeps |
| 177 | * the linux PTEs intact. |
| 178 | * |
| 179 | * @mm : mm_struct of the target address space (generally init_mm) |
| 180 | * @start : starting address |
| 181 | * @end : ending address (not included in the flush) |
| 182 | * |
| 183 | * This function is mostly to be used by some IO hotplug code in order |
| 184 | * to remove all hash entries from a given address range used to map IO |
| 185 | * space on a removed PCI-PCI bidge without tearing down the full mapping |
| 186 | * since 64K pages may overlap with other bridges when using 64K pages |
| 187 | * with 4K HW pages on IO space. |
| 188 | * |
| 189 | * Because of that usage pattern, it is implemented for small size rather |
| 190 | * than speed. |
| 191 | */ |
| 192 | void __flush_hash_table_range(struct mm_struct *mm, unsigned long start, |
| 193 | unsigned long end) |
| 194 | { |
| 195 | bool is_thp; |
| 196 | int hugepage_shift; |
| 197 | unsigned long flags; |
| 198 | |
| 199 | start = _ALIGN_DOWN(start, PAGE_SIZE); |
| 200 | end = _ALIGN_UP(end, PAGE_SIZE); |
| 201 | |
| 202 | BUG_ON(!mm->pgd); |
| 203 | |
| 204 | /* |
| 205 | * Note: Normally, we should only ever use a batch within a |
| 206 | * PTE locked section. This violates the rule, but will work |
| 207 | * since we don't actually modify the PTEs, we just flush the |
| 208 | * hash while leaving the PTEs intact (including their reference |
| 209 | * to being hashed). This is not the most performance oriented |
| 210 | * way to do things but is fine for our needs here. |
| 211 | */ |
| 212 | local_irq_save(flags); |
| 213 | arch_enter_lazy_mmu_mode(); |
| 214 | for (; start < end; start += PAGE_SIZE) { |
| 215 | pte_t *ptep = find_current_mm_pte(mm->pgd, start, &is_thp, |
| 216 | &hugepage_shift); |
| 217 | unsigned long pte; |
| 218 | |
| 219 | if (ptep == NULL) |
| 220 | continue; |
| 221 | pte = pte_val(*ptep); |
| 222 | if (is_thp) |
| 223 | trace_hugepage_invalidate(start, pte); |
| 224 | if (!(pte & H_PAGE_HASHPTE)) |
| 225 | continue; |
| 226 | if (unlikely(is_thp)) |
| 227 | hpte_do_hugepage_flush(mm, start, (pmd_t *)ptep, pte); |
| 228 | else |
| 229 | hpte_need_flush(mm, start, ptep, pte, hugepage_shift); |
| 230 | } |
| 231 | arch_leave_lazy_mmu_mode(); |
| 232 | local_irq_restore(flags); |
| 233 | } |
| 234 | |
| 235 | void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr) |
| 236 | { |
| 237 | pte_t *pte; |
| 238 | pte_t *start_pte; |
| 239 | unsigned long flags; |
| 240 | |
| 241 | addr = _ALIGN_DOWN(addr, PMD_SIZE); |
| 242 | /* |
| 243 | * Note: Normally, we should only ever use a batch within a |
| 244 | * PTE locked section. This violates the rule, but will work |
| 245 | * since we don't actually modify the PTEs, we just flush the |
| 246 | * hash while leaving the PTEs intact (including their reference |
| 247 | * to being hashed). This is not the most performance oriented |
| 248 | * way to do things but is fine for our needs here. |
| 249 | */ |
| 250 | local_irq_save(flags); |
| 251 | arch_enter_lazy_mmu_mode(); |
| 252 | start_pte = pte_offset_map(pmd, addr); |
| 253 | for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) { |
| 254 | unsigned long pteval = pte_val(*pte); |
| 255 | if (pteval & H_PAGE_HASHPTE) |
| 256 | hpte_need_flush(mm, addr, pte, pteval, 0); |
| 257 | addr += PAGE_SIZE; |
| 258 | } |
| 259 | arch_leave_lazy_mmu_mode(); |
| 260 | local_irq_restore(flags); |
| 261 | } |