blob: c3a2fa52830c9febdb3e067e80e1bdef385195ea [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4 *
5 * Copyright (C) 2014 Atmel Corporation
6 *
7 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8 */
9
10#include <asm/barrier.h>
11#include <dt-bindings/dma/at91.h>
12#include <linux/clk.h>
13#include <linux/dmaengine.h>
14#include <linux/dmapool.h>
15#include <linux/interrupt.h>
16#include <linux/irq.h>
17#include <linux/kernel.h>
18#include <linux/list.h>
19#include <linux/module.h>
20#include <linux/of_dma.h>
21#include <linux/of_platform.h>
22#include <linux/platform_device.h>
23#include <linux/pm.h>
24
25#include "dmaengine.h"
26
27/* Global registers */
28#define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
29#define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
30#define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
31#define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
32#define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
33#define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
34#define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
35#define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
36#define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
37#define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
38#define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
39#define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
40#define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
41#define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */
42#define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */
43#define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */
44#define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */
45#define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */
46#define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */
47#define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */
48#define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
49
50/* Channel relative registers offsets */
51#define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
52#define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
53#define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
54#define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
55#define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
56#define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
57#define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
58#define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
59#define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
60#define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
61#define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
62#define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
63#define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
64#define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
65#define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
66#define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
67#define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
68#define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
69#define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
70#define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
71#define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
72#define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
73#define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
74#define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
75#define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
76#define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
77#define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
78#define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
79#define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
80#define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
81#define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
82#define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
83#define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
84#define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
85#define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
86#define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
87#define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
88#define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
89#define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
90#define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
91#define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
92#define AT_XDMAC_CNDC_NDVIEW_MASK GENMASK(28, 27)
93#define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
94#define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
95#define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
96#define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
97#define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
98#define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
99#define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
100#define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
101#define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
102#define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
103#define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
104#define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
105#define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
106#define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
107#define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
108#define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
109#define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
110#define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
111#define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
112#define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
113#define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
114#define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
115#define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
116#define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
117#define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
118#define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
119#define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
120#define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
121#define AT_XDMAC_CC_DWIDTH_OFFSET 11
122#define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
123#define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
124#define AT_XDMAC_CC_DWIDTH_BYTE 0x0
125#define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
126#define AT_XDMAC_CC_DWIDTH_WORD 0x2
127#define AT_XDMAC_CC_DWIDTH_DWORD 0x3
128#define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
129#define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
130#define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
131#define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
132#define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
133#define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
134#define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
135#define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
136#define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
137#define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
138#define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
139#define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
140#define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
141#define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
142#define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
143#define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
144#define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
145#define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
146#define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
147#define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
148#define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
149#define AT_XDMAC_CC_PERID(i) ((0x7f & (i)) << 24) /* Channel Peripheral Identifier */
150#define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
151#define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
152#define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
153
154#define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */
155
156/* Microblock control members */
157#define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
158#define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
159#define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
160#define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
161#define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
162#define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
163#define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
164#define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
165
166#define AT_XDMAC_MAX_CHAN 0x20
167#define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
168#define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
169#define AT_XDMAC_RESIDUE_MAX_RETRIES 5
170
171#define AT_XDMAC_DMA_BUSWIDTHS\
172 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
173 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
174 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
175 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
176 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
177
178enum atc_status {
179 AT_XDMAC_CHAN_IS_CYCLIC = 0,
180 AT_XDMAC_CHAN_IS_PAUSED,
181};
182
183/* ----- Channels ----- */
184struct at_xdmac_chan {
185 struct dma_chan chan;
186 void __iomem *ch_regs;
187 u32 mask; /* Channel Mask */
188 u32 cfg; /* Channel Configuration Register */
189 u8 perid; /* Peripheral ID */
190 u8 perif; /* Peripheral Interface */
191 u8 memif; /* Memory Interface */
192 u32 save_cc;
193 u32 save_cim;
194 u32 save_cnda;
195 u32 save_cndc;
196 u32 irq_status;
197 unsigned long status;
198 struct tasklet_struct tasklet;
199 struct dma_slave_config sconfig;
200
201 spinlock_t lock;
202
203 struct list_head xfers_list;
204 struct list_head free_descs_list;
205};
206
207
208/* ----- Controller ----- */
209struct at_xdmac {
210 struct dma_device dma;
211 void __iomem *regs;
212 int irq;
213 struct clk *clk;
214 u32 save_gim;
215 u32 save_gs;
216 struct dma_pool *at_xdmac_desc_pool;
217 struct at_xdmac_chan chan[0];
218};
219
220
221/* ----- Descriptors ----- */
222
223/* Linked List Descriptor */
224struct at_xdmac_lld {
225 u32 mbr_nda; /* Next Descriptor Member */
226 u32 mbr_ubc; /* Microblock Control Member */
227 u32 mbr_sa; /* Source Address Member */
228 u32 mbr_da; /* Destination Address Member */
229 u32 mbr_cfg; /* Configuration Register */
230 u32 mbr_bc; /* Block Control Register */
231 u32 mbr_ds; /* Data Stride Register */
232 u32 mbr_sus; /* Source Microblock Stride Register */
233 u32 mbr_dus; /* Destination Microblock Stride Register */
234};
235
236/* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
237struct at_xdmac_desc {
238 struct at_xdmac_lld lld;
239 enum dma_transfer_direction direction;
240 struct dma_async_tx_descriptor tx_dma_desc;
241 struct list_head desc_node;
242 /* Following members are only used by the first descriptor */
243 bool active_xfer;
244 unsigned int xfer_size;
245 struct list_head descs_list;
246 struct list_head xfer_node;
247} __aligned(sizeof(u64));
248
249static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
250{
251 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
252}
253
254#define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
255#define at_xdmac_write(atxdmac, reg, value) \
256 writel_relaxed((value), (atxdmac)->regs + (reg))
257
258#define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
259#define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
260
261static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
262{
263 return container_of(dchan, struct at_xdmac_chan, chan);
264}
265
266static struct device *chan2dev(struct dma_chan *chan)
267{
268 return &chan->dev->device;
269}
270
271static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
272{
273 return container_of(ddev, struct at_xdmac, dma);
274}
275
276static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
277{
278 return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
279}
280
281static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
282{
283 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
284}
285
286static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
287{
288 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
289}
290
291static inline int at_xdmac_csize(u32 maxburst)
292{
293 int csize;
294
295 csize = ffs(maxburst) - 1;
296 if (csize > 4)
297 csize = -EINVAL;
298
299 return csize;
300};
301
302static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
303{
304 return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
305}
306
307static inline u8 at_xdmac_get_dwidth(u32 cfg)
308{
309 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
310};
311
312static unsigned int init_nr_desc_per_channel = 64;
313module_param(init_nr_desc_per_channel, uint, 0644);
314MODULE_PARM_DESC(init_nr_desc_per_channel,
315 "initial descriptors per channel (default: 64)");
316
317
318static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
319{
320 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
321}
322
323static void at_xdmac_off(struct at_xdmac *atxdmac)
324{
325 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
326
327 /* Wait that all chans are disabled. */
328 while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
329 cpu_relax();
330
331 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
332}
333
334/* Call with lock hold. */
335static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
336 struct at_xdmac_desc *first)
337{
338 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
339 u32 reg;
340
341 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
342
343 /* Set transfer as active to not try to start it again. */
344 first->active_xfer = true;
345
346 /* Tell xdmac where to get the first descriptor. */
347 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
348 | AT_XDMAC_CNDA_NDAIF(atchan->memif);
349 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
350
351 /*
352 * When doing non cyclic transfer we need to use the next
353 * descriptor view 2 since some fields of the configuration register
354 * depend on transfer size and src/dest addresses.
355 */
356 if (at_xdmac_chan_is_cyclic(atchan))
357 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
358 else if ((first->lld.mbr_ubc &
359 AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
360 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
361 else
362 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
363 /*
364 * Even if the register will be updated from the configuration in the
365 * descriptor when using view 2 or higher, the PROT bit won't be set
366 * properly. This bit can be modified only by using the channel
367 * configuration register.
368 */
369 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
370
371 reg |= AT_XDMAC_CNDC_NDDUP
372 | AT_XDMAC_CNDC_NDSUP
373 | AT_XDMAC_CNDC_NDE;
374 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
375
376 dev_vdbg(chan2dev(&atchan->chan),
377 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
378 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
379 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
380 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
381 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
382 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
383 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
384
385 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
386 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
387 /*
388 * Request Overflow Error is only for peripheral synchronized transfers
389 */
390 if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
391 reg |= AT_XDMAC_CIE_ROIE;
392
393 /*
394 * There is no end of list when doing cyclic dma, we need to get
395 * an interrupt after each periods.
396 */
397 if (at_xdmac_chan_is_cyclic(atchan))
398 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 reg | AT_XDMAC_CIE_BIE);
400 else
401 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 reg | AT_XDMAC_CIE_LIE);
403 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 dev_vdbg(chan2dev(&atchan->chan),
405 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 wmb();
407 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
408
409 dev_vdbg(chan2dev(&atchan->chan),
410 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
417
418}
419
420static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
421{
422 struct at_xdmac_desc *desc = txd_to_at_desc(tx);
423 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
424 dma_cookie_t cookie;
425 unsigned long irqflags;
426
427 spin_lock_irqsave(&atchan->lock, irqflags);
428 cookie = dma_cookie_assign(tx);
429
430 list_add_tail(&desc->xfer_node, &atchan->xfers_list);
431 spin_unlock_irqrestore(&atchan->lock, irqflags);
432
433 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
434 __func__, atchan, desc);
435
436 return cookie;
437}
438
439static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
440 gfp_t gfp_flags)
441{
442 struct at_xdmac_desc *desc;
443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
444 dma_addr_t phys;
445
446 desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
447 if (desc) {
448 INIT_LIST_HEAD(&desc->descs_list);
449 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
450 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
451 desc->tx_dma_desc.phys = phys;
452 }
453
454 return desc;
455}
456
457static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
458{
459 memset(&desc->lld, 0, sizeof(desc->lld));
460 INIT_LIST_HEAD(&desc->descs_list);
461 desc->direction = DMA_TRANS_NONE;
462 desc->xfer_size = 0;
463 desc->active_xfer = false;
464}
465
466/* Call must be protected by lock. */
467static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
468{
469 struct at_xdmac_desc *desc;
470
471 if (list_empty(&atchan->free_descs_list)) {
472 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
473 } else {
474 desc = list_first_entry(&atchan->free_descs_list,
475 struct at_xdmac_desc, desc_node);
476 list_del(&desc->desc_node);
477 at_xdmac_init_used_desc(desc);
478 }
479
480 return desc;
481}
482
483static void at_xdmac_queue_desc(struct dma_chan *chan,
484 struct at_xdmac_desc *prev,
485 struct at_xdmac_desc *desc)
486{
487 if (!prev || !desc)
488 return;
489
490 prev->lld.mbr_nda = desc->tx_dma_desc.phys;
491 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
492
493 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
494 __func__, prev, &prev->lld.mbr_nda);
495}
496
497static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
498 struct at_xdmac_desc *desc)
499{
500 if (!desc)
501 return;
502
503 desc->lld.mbr_bc++;
504
505 dev_dbg(chan2dev(chan),
506 "%s: incrementing the block count of the desc 0x%p\n",
507 __func__, desc);
508}
509
510static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
511 struct of_dma *of_dma)
512{
513 struct at_xdmac *atxdmac = of_dma->of_dma_data;
514 struct at_xdmac_chan *atchan;
515 struct dma_chan *chan;
516 struct device *dev = atxdmac->dma.dev;
517
518 if (dma_spec->args_count != 1) {
519 dev_err(dev, "dma phandler args: bad number of args\n");
520 return NULL;
521 }
522
523 chan = dma_get_any_slave_channel(&atxdmac->dma);
524 if (!chan) {
525 dev_err(dev, "can't get a dma channel\n");
526 return NULL;
527 }
528
529 atchan = to_at_xdmac_chan(chan);
530 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
531 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
532 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
533 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
534 atchan->memif, atchan->perif, atchan->perid);
535
536 return chan;
537}
538
539static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
540 enum dma_transfer_direction direction)
541{
542 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
543 int csize, dwidth;
544
545 if (direction == DMA_DEV_TO_MEM) {
546 atchan->cfg =
547 AT91_XDMAC_DT_PERID(atchan->perid)
548 | AT_XDMAC_CC_DAM_INCREMENTED_AM
549 | AT_XDMAC_CC_SAM_FIXED_AM
550 | AT_XDMAC_CC_DIF(atchan->memif)
551 | AT_XDMAC_CC_SIF(atchan->perif)
552 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
553 | AT_XDMAC_CC_DSYNC_PER2MEM
554 | AT_XDMAC_CC_MBSIZE_SIXTEEN
555 | AT_XDMAC_CC_TYPE_PER_TRAN;
556 csize = ffs(atchan->sconfig.src_maxburst) - 1;
557 if (csize < 0) {
558 dev_err(chan2dev(chan), "invalid src maxburst value\n");
559 return -EINVAL;
560 }
561 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
562 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
563 if (dwidth < 0) {
564 dev_err(chan2dev(chan), "invalid src addr width value\n");
565 return -EINVAL;
566 }
567 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
568 } else if (direction == DMA_MEM_TO_DEV) {
569 atchan->cfg =
570 AT91_XDMAC_DT_PERID(atchan->perid)
571 | AT_XDMAC_CC_DAM_FIXED_AM
572 | AT_XDMAC_CC_SAM_INCREMENTED_AM
573 | AT_XDMAC_CC_DIF(atchan->perif)
574 | AT_XDMAC_CC_SIF(atchan->memif)
575 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
576 | AT_XDMAC_CC_DSYNC_MEM2PER
577 | AT_XDMAC_CC_MBSIZE_SIXTEEN
578 | AT_XDMAC_CC_TYPE_PER_TRAN;
579 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
580 if (csize < 0) {
581 dev_err(chan2dev(chan), "invalid src maxburst value\n");
582 return -EINVAL;
583 }
584 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
585 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
586 if (dwidth < 0) {
587 dev_err(chan2dev(chan), "invalid dst addr width value\n");
588 return -EINVAL;
589 }
590 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
591 }
592
593 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
594
595 return 0;
596}
597
598/*
599 * Only check that maxburst and addr width values are supported by the
600 * the controller but not that the configuration is good to perform the
601 * transfer since we don't know the direction at this stage.
602 */
603static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
604{
605 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
606 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
607 return -EINVAL;
608
609 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
610 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
611 return -EINVAL;
612
613 return 0;
614}
615
616static int at_xdmac_set_slave_config(struct dma_chan *chan,
617 struct dma_slave_config *sconfig)
618{
619 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
620
621 if (at_xdmac_check_slave_config(sconfig)) {
622 dev_err(chan2dev(chan), "invalid slave configuration\n");
623 return -EINVAL;
624 }
625
626 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
627
628 return 0;
629}
630
631static struct dma_async_tx_descriptor *
632at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
633 unsigned int sg_len, enum dma_transfer_direction direction,
634 unsigned long flags, void *context)
635{
636 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
637 struct at_xdmac_desc *first = NULL, *prev = NULL;
638 struct scatterlist *sg;
639 int i;
640 unsigned int xfer_size = 0;
641 unsigned long irqflags;
642 struct dma_async_tx_descriptor *ret = NULL;
643
644 if (!sgl)
645 return NULL;
646
647 if (!is_slave_direction(direction)) {
648 dev_err(chan2dev(chan), "invalid DMA direction\n");
649 return NULL;
650 }
651
652 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
653 __func__, sg_len,
654 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
655 flags);
656
657 /* Protect dma_sconfig field that can be modified by set_slave_conf. */
658 spin_lock_irqsave(&atchan->lock, irqflags);
659
660 if (at_xdmac_compute_chan_conf(chan, direction))
661 goto spin_unlock;
662
663 /* Prepare descriptors. */
664 for_each_sg(sgl, sg, sg_len, i) {
665 struct at_xdmac_desc *desc = NULL;
666 u32 len, mem, dwidth, fixed_dwidth;
667
668 len = sg_dma_len(sg);
669 mem = sg_dma_address(sg);
670 if (unlikely(!len)) {
671 dev_err(chan2dev(chan), "sg data length is zero\n");
672 goto spin_unlock;
673 }
674 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
675 __func__, i, len, mem);
676
677 desc = at_xdmac_get_desc(atchan);
678 if (!desc) {
679 dev_err(chan2dev(chan), "can't get descriptor\n");
680 if (first)
681 list_splice_init(&first->descs_list, &atchan->free_descs_list);
682 goto spin_unlock;
683 }
684
685 /* Linked list descriptor setup. */
686 if (direction == DMA_DEV_TO_MEM) {
687 desc->lld.mbr_sa = atchan->sconfig.src_addr;
688 desc->lld.mbr_da = mem;
689 } else {
690 desc->lld.mbr_sa = mem;
691 desc->lld.mbr_da = atchan->sconfig.dst_addr;
692 }
693 dwidth = at_xdmac_get_dwidth(atchan->cfg);
694 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
695 ? dwidth
696 : AT_XDMAC_CC_DWIDTH_BYTE;
697 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
698 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
699 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
700 | (len >> fixed_dwidth); /* microblock length */
701 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
702 AT_XDMAC_CC_DWIDTH(fixed_dwidth);
703 dev_dbg(chan2dev(chan),
704 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
705 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
706
707 /* Chain lld. */
708 if (prev)
709 at_xdmac_queue_desc(chan, prev, desc);
710
711 prev = desc;
712 if (!first)
713 first = desc;
714
715 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
716 __func__, desc, first);
717 list_add_tail(&desc->desc_node, &first->descs_list);
718 xfer_size += len;
719 }
720
721
722 first->tx_dma_desc.flags = flags;
723 first->xfer_size = xfer_size;
724 first->direction = direction;
725 ret = &first->tx_dma_desc;
726
727spin_unlock:
728 spin_unlock_irqrestore(&atchan->lock, irqflags);
729 return ret;
730}
731
732static struct dma_async_tx_descriptor *
733at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
734 size_t buf_len, size_t period_len,
735 enum dma_transfer_direction direction,
736 unsigned long flags)
737{
738 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
739 struct at_xdmac_desc *first = NULL, *prev = NULL;
740 unsigned int periods = buf_len / period_len;
741 int i;
742 unsigned long irqflags;
743
744 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
745 __func__, &buf_addr, buf_len, period_len,
746 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
747
748 if (!is_slave_direction(direction)) {
749 dev_err(chan2dev(chan), "invalid DMA direction\n");
750 return NULL;
751 }
752
753 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
754 dev_err(chan2dev(chan), "channel currently used\n");
755 return NULL;
756 }
757
758 if (at_xdmac_compute_chan_conf(chan, direction))
759 return NULL;
760
761 for (i = 0; i < periods; i++) {
762 struct at_xdmac_desc *desc = NULL;
763
764 spin_lock_irqsave(&atchan->lock, irqflags);
765 desc = at_xdmac_get_desc(atchan);
766 if (!desc) {
767 dev_err(chan2dev(chan), "can't get descriptor\n");
768 if (first)
769 list_splice_init(&first->descs_list, &atchan->free_descs_list);
770 spin_unlock_irqrestore(&atchan->lock, irqflags);
771 return NULL;
772 }
773 spin_unlock_irqrestore(&atchan->lock, irqflags);
774 dev_dbg(chan2dev(chan),
775 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
776 __func__, desc, &desc->tx_dma_desc.phys);
777
778 if (direction == DMA_DEV_TO_MEM) {
779 desc->lld.mbr_sa = atchan->sconfig.src_addr;
780 desc->lld.mbr_da = buf_addr + i * period_len;
781 } else {
782 desc->lld.mbr_sa = buf_addr + i * period_len;
783 desc->lld.mbr_da = atchan->sconfig.dst_addr;
784 }
785 desc->lld.mbr_cfg = atchan->cfg;
786 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
787 | AT_XDMAC_MBR_UBC_NDEN
788 | AT_XDMAC_MBR_UBC_NSEN
789 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
790
791 dev_dbg(chan2dev(chan),
792 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
793 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
794
795 /* Chain lld. */
796 if (prev)
797 at_xdmac_queue_desc(chan, prev, desc);
798
799 prev = desc;
800 if (!first)
801 first = desc;
802
803 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
804 __func__, desc, first);
805 list_add_tail(&desc->desc_node, &first->descs_list);
806 }
807
808 at_xdmac_queue_desc(chan, prev, first);
809 first->tx_dma_desc.flags = flags;
810 first->xfer_size = buf_len;
811 first->direction = direction;
812
813 return &first->tx_dma_desc;
814}
815
816static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
817{
818 u32 width;
819
820 /*
821 * Check address alignment to select the greater data width we
822 * can use.
823 *
824 * Some XDMAC implementations don't provide dword transfer, in
825 * this case selecting dword has the same behavior as
826 * selecting word transfers.
827 */
828 if (!(addr & 7)) {
829 width = AT_XDMAC_CC_DWIDTH_DWORD;
830 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
831 } else if (!(addr & 3)) {
832 width = AT_XDMAC_CC_DWIDTH_WORD;
833 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
834 } else if (!(addr & 1)) {
835 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
836 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
837 } else {
838 width = AT_XDMAC_CC_DWIDTH_BYTE;
839 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
840 }
841
842 return width;
843}
844
845static struct at_xdmac_desc *
846at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
847 struct at_xdmac_chan *atchan,
848 struct at_xdmac_desc *prev,
849 dma_addr_t src, dma_addr_t dst,
850 struct dma_interleaved_template *xt,
851 struct data_chunk *chunk)
852{
853 struct at_xdmac_desc *desc;
854 u32 dwidth;
855 unsigned long flags;
856 size_t ublen;
857 /*
858 * WARNING: The channel configuration is set here since there is no
859 * dmaengine_slave_config call in this case. Moreover we don't know the
860 * direction, it involves we can't dynamically set the source and dest
861 * interface so we have to use the same one. Only interface 0 allows EBI
862 * access. Hopefully we can access DDR through both ports (at least on
863 * SAMA5D4x), so we can use the same interface for source and dest,
864 * that solves the fact we don't know the direction.
865 * ERRATA: Even if useless for memory transfers, the PERID has to not
866 * match the one of another channel. If not, it could lead to spurious
867 * flag status.
868 */
869 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
870 | AT_XDMAC_CC_DIF(0)
871 | AT_XDMAC_CC_SIF(0)
872 | AT_XDMAC_CC_MBSIZE_SIXTEEN
873 | AT_XDMAC_CC_TYPE_MEM_TRAN;
874
875 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
876 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
877 dev_dbg(chan2dev(chan),
878 "%s: chunk too big (%zu, max size %lu)...\n",
879 __func__, chunk->size,
880 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
881 return NULL;
882 }
883
884 if (prev)
885 dev_dbg(chan2dev(chan),
886 "Adding items at the end of desc 0x%p\n", prev);
887
888 if (xt->src_inc) {
889 if (xt->src_sgl)
890 chan_cc |= AT_XDMAC_CC_SAM_UBS_AM;
891 else
892 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
893 }
894
895 if (xt->dst_inc) {
896 if (xt->dst_sgl)
897 chan_cc |= AT_XDMAC_CC_DAM_UBS_AM;
898 else
899 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
900 }
901
902 spin_lock_irqsave(&atchan->lock, flags);
903 desc = at_xdmac_get_desc(atchan);
904 spin_unlock_irqrestore(&atchan->lock, flags);
905 if (!desc) {
906 dev_err(chan2dev(chan), "can't get descriptor\n");
907 return NULL;
908 }
909
910 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
911
912 ublen = chunk->size >> dwidth;
913
914 desc->lld.mbr_sa = src;
915 desc->lld.mbr_da = dst;
916 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
917 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
918
919 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
920 | AT_XDMAC_MBR_UBC_NDEN
921 | AT_XDMAC_MBR_UBC_NSEN
922 | ublen;
923 desc->lld.mbr_cfg = chan_cc;
924
925 dev_dbg(chan2dev(chan),
926 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
927 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
928 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
929
930 /* Chain lld. */
931 if (prev)
932 at_xdmac_queue_desc(chan, prev, desc);
933
934 return desc;
935}
936
937static struct dma_async_tx_descriptor *
938at_xdmac_prep_interleaved(struct dma_chan *chan,
939 struct dma_interleaved_template *xt,
940 unsigned long flags)
941{
942 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
943 struct at_xdmac_desc *prev = NULL, *first = NULL;
944 dma_addr_t dst_addr, src_addr;
945 size_t src_skip = 0, dst_skip = 0, len = 0;
946 struct data_chunk *chunk;
947 int i;
948
949 if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
950 return NULL;
951
952 /*
953 * TODO: Handle the case where we have to repeat a chain of
954 * descriptors...
955 */
956 if ((xt->numf > 1) && (xt->frame_size > 1))
957 return NULL;
958
959 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
960 __func__, &xt->src_start, &xt->dst_start, xt->numf,
961 xt->frame_size, flags);
962
963 src_addr = xt->src_start;
964 dst_addr = xt->dst_start;
965
966 if (xt->numf > 1) {
967 first = at_xdmac_interleaved_queue_desc(chan, atchan,
968 NULL,
969 src_addr, dst_addr,
970 xt, xt->sgl);
971
972 /* Length of the block is (BLEN+1) microblocks. */
973 for (i = 0; i < xt->numf - 1; i++)
974 at_xdmac_increment_block_count(chan, first);
975
976 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
977 __func__, first, first);
978 list_add_tail(&first->desc_node, &first->descs_list);
979 } else {
980 for (i = 0; i < xt->frame_size; i++) {
981 size_t src_icg = 0, dst_icg = 0;
982 struct at_xdmac_desc *desc;
983
984 chunk = xt->sgl + i;
985
986 dst_icg = dmaengine_get_dst_icg(xt, chunk);
987 src_icg = dmaengine_get_src_icg(xt, chunk);
988
989 src_skip = chunk->size + src_icg;
990 dst_skip = chunk->size + dst_icg;
991
992 dev_dbg(chan2dev(chan),
993 "%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
994 __func__, chunk->size, src_icg, dst_icg);
995
996 desc = at_xdmac_interleaved_queue_desc(chan, atchan,
997 prev,
998 src_addr, dst_addr,
999 xt, chunk);
1000 if (!desc) {
1001 list_splice_init(&first->descs_list,
1002 &atchan->free_descs_list);
1003 return NULL;
1004 }
1005
1006 if (!first)
1007 first = desc;
1008
1009 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1010 __func__, desc, first);
1011 list_add_tail(&desc->desc_node, &first->descs_list);
1012
1013 if (xt->src_sgl)
1014 src_addr += src_skip;
1015
1016 if (xt->dst_sgl)
1017 dst_addr += dst_skip;
1018
1019 len += chunk->size;
1020 prev = desc;
1021 }
1022 }
1023
1024 first->tx_dma_desc.cookie = -EBUSY;
1025 first->tx_dma_desc.flags = flags;
1026 first->xfer_size = len;
1027
1028 return &first->tx_dma_desc;
1029}
1030
1031static struct dma_async_tx_descriptor *
1032at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1033 size_t len, unsigned long flags)
1034{
1035 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1036 struct at_xdmac_desc *first = NULL, *prev = NULL;
1037 size_t remaining_size = len, xfer_size = 0, ublen;
1038 dma_addr_t src_addr = src, dst_addr = dest;
1039 u32 dwidth;
1040 /*
1041 * WARNING: We don't know the direction, it involves we can't
1042 * dynamically set the source and dest interface so we have to use the
1043 * same one. Only interface 0 allows EBI access. Hopefully we can
1044 * access DDR through both ports (at least on SAMA5D4x), so we can use
1045 * the same interface for source and dest, that solves the fact we
1046 * don't know the direction.
1047 * ERRATA: Even if useless for memory transfers, the PERID has to not
1048 * match the one of another channel. If not, it could lead to spurious
1049 * flag status.
1050 */
1051 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1052 | AT_XDMAC_CC_DAM_INCREMENTED_AM
1053 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1054 | AT_XDMAC_CC_DIF(0)
1055 | AT_XDMAC_CC_SIF(0)
1056 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1057 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1058 unsigned long irqflags;
1059
1060 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1061 __func__, &src, &dest, len, flags);
1062
1063 if (unlikely(!len))
1064 return NULL;
1065
1066 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1067
1068 /* Prepare descriptors. */
1069 while (remaining_size) {
1070 struct at_xdmac_desc *desc = NULL;
1071
1072 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1073
1074 spin_lock_irqsave(&atchan->lock, irqflags);
1075 desc = at_xdmac_get_desc(atchan);
1076 spin_unlock_irqrestore(&atchan->lock, irqflags);
1077 if (!desc) {
1078 dev_err(chan2dev(chan), "can't get descriptor\n");
1079 if (first)
1080 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1081 return NULL;
1082 }
1083
1084 /* Update src and dest addresses. */
1085 src_addr += xfer_size;
1086 dst_addr += xfer_size;
1087
1088 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1089 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1090 else
1091 xfer_size = remaining_size;
1092
1093 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1094
1095 /* Check remaining length and change data width if needed. */
1096 dwidth = at_xdmac_align_width(chan,
1097 src_addr | dst_addr | xfer_size);
1098 chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1099 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1100
1101 ublen = xfer_size >> dwidth;
1102 remaining_size -= xfer_size;
1103
1104 desc->lld.mbr_sa = src_addr;
1105 desc->lld.mbr_da = dst_addr;
1106 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1107 | AT_XDMAC_MBR_UBC_NDEN
1108 | AT_XDMAC_MBR_UBC_NSEN
1109 | ublen;
1110 desc->lld.mbr_cfg = chan_cc;
1111
1112 dev_dbg(chan2dev(chan),
1113 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1114 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1115
1116 /* Chain lld. */
1117 if (prev)
1118 at_xdmac_queue_desc(chan, prev, desc);
1119
1120 prev = desc;
1121 if (!first)
1122 first = desc;
1123
1124 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1125 __func__, desc, first);
1126 list_add_tail(&desc->desc_node, &first->descs_list);
1127 }
1128
1129 first->tx_dma_desc.flags = flags;
1130 first->xfer_size = len;
1131
1132 return &first->tx_dma_desc;
1133}
1134
1135static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1136 struct at_xdmac_chan *atchan,
1137 dma_addr_t dst_addr,
1138 size_t len,
1139 int value)
1140{
1141 struct at_xdmac_desc *desc;
1142 unsigned long flags;
1143 size_t ublen;
1144 u32 dwidth;
1145 /*
1146 * WARNING: The channel configuration is set here since there is no
1147 * dmaengine_slave_config call in this case. Moreover we don't know the
1148 * direction, it involves we can't dynamically set the source and dest
1149 * interface so we have to use the same one. Only interface 0 allows EBI
1150 * access. Hopefully we can access DDR through both ports (at least on
1151 * SAMA5D4x), so we can use the same interface for source and dest,
1152 * that solves the fact we don't know the direction.
1153 * ERRATA: Even if useless for memory transfers, the PERID has to not
1154 * match the one of another channel. If not, it could lead to spurious
1155 * flag status.
1156 */
1157 u32 chan_cc = AT_XDMAC_CC_PERID(0x3f)
1158 | AT_XDMAC_CC_DAM_UBS_AM
1159 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1160 | AT_XDMAC_CC_DIF(0)
1161 | AT_XDMAC_CC_SIF(0)
1162 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1163 | AT_XDMAC_CC_MEMSET_HW_MODE
1164 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1165
1166 dwidth = at_xdmac_align_width(chan, dst_addr);
1167
1168 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1169 dev_err(chan2dev(chan),
1170 "%s: Transfer too large, aborting...\n",
1171 __func__);
1172 return NULL;
1173 }
1174
1175 spin_lock_irqsave(&atchan->lock, flags);
1176 desc = at_xdmac_get_desc(atchan);
1177 spin_unlock_irqrestore(&atchan->lock, flags);
1178 if (!desc) {
1179 dev_err(chan2dev(chan), "can't get descriptor\n");
1180 return NULL;
1181 }
1182
1183 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1184
1185 ublen = len >> dwidth;
1186
1187 desc->lld.mbr_da = dst_addr;
1188 desc->lld.mbr_ds = value;
1189 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1190 | AT_XDMAC_MBR_UBC_NDEN
1191 | AT_XDMAC_MBR_UBC_NSEN
1192 | ublen;
1193 desc->lld.mbr_cfg = chan_cc;
1194
1195 dev_dbg(chan2dev(chan),
1196 "%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1197 __func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1198 desc->lld.mbr_cfg);
1199
1200 return desc;
1201}
1202
1203static struct dma_async_tx_descriptor *
1204at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1205 size_t len, unsigned long flags)
1206{
1207 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1208 struct at_xdmac_desc *desc;
1209
1210 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1211 __func__, &dest, len, value, flags);
1212
1213 if (unlikely(!len))
1214 return NULL;
1215
1216 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1217 if (!desc)
1218 return NULL;
1219 list_add_tail(&desc->desc_node, &desc->descs_list);
1220
1221 desc->tx_dma_desc.cookie = -EBUSY;
1222 desc->tx_dma_desc.flags = flags;
1223 desc->xfer_size = len;
1224
1225 return &desc->tx_dma_desc;
1226}
1227
1228static struct dma_async_tx_descriptor *
1229at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1230 unsigned int sg_len, int value,
1231 unsigned long flags)
1232{
1233 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1234 struct at_xdmac_desc *desc, *pdesc = NULL,
1235 *ppdesc = NULL, *first = NULL;
1236 struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
1237 size_t stride = 0, pstride = 0, len = 0;
1238 int i;
1239
1240 if (!sgl)
1241 return NULL;
1242
1243 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1244 __func__, sg_len, value, flags);
1245
1246 /* Prepare descriptors. */
1247 for_each_sg(sgl, sg, sg_len, i) {
1248 dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1249 __func__, &sg_dma_address(sg), sg_dma_len(sg),
1250 value, flags);
1251 desc = at_xdmac_memset_create_desc(chan, atchan,
1252 sg_dma_address(sg),
1253 sg_dma_len(sg),
1254 value);
1255 if (!desc && first)
1256 list_splice_init(&first->descs_list,
1257 &atchan->free_descs_list);
1258
1259 if (!first)
1260 first = desc;
1261
1262 /* Update our strides */
1263 pstride = stride;
1264 if (psg)
1265 stride = sg_dma_address(sg) -
1266 (sg_dma_address(psg) + sg_dma_len(psg));
1267
1268 /*
1269 * The scatterlist API gives us only the address and
1270 * length of each elements.
1271 *
1272 * Unfortunately, we don't have the stride, which we
1273 * will need to compute.
1274 *
1275 * That make us end up in a situation like this one:
1276 * len stride len stride len
1277 * +-------+ +-------+ +-------+
1278 * | N-2 | | N-1 | | N |
1279 * +-------+ +-------+ +-------+
1280 *
1281 * We need all these three elements (N-2, N-1 and N)
1282 * to actually take the decision on whether we need to
1283 * queue N-1 or reuse N-2.
1284 *
1285 * We will only consider N if it is the last element.
1286 */
1287 if (ppdesc && pdesc) {
1288 if ((stride == pstride) &&
1289 (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1290 dev_dbg(chan2dev(chan),
1291 "%s: desc 0x%p can be merged with desc 0x%p\n",
1292 __func__, pdesc, ppdesc);
1293
1294 /*
1295 * Increment the block count of the
1296 * N-2 descriptor
1297 */
1298 at_xdmac_increment_block_count(chan, ppdesc);
1299 ppdesc->lld.mbr_dus = stride;
1300
1301 /*
1302 * Put back the N-1 descriptor in the
1303 * free descriptor list
1304 */
1305 list_add_tail(&pdesc->desc_node,
1306 &atchan->free_descs_list);
1307
1308 /*
1309 * Make our N-1 descriptor pointer
1310 * point to the N-2 since they were
1311 * actually merged.
1312 */
1313 pdesc = ppdesc;
1314
1315 /*
1316 * Rule out the case where we don't have
1317 * pstride computed yet (our second sg
1318 * element)
1319 *
1320 * We also want to catch the case where there
1321 * would be a negative stride,
1322 */
1323 } else if (pstride ||
1324 sg_dma_address(sg) < sg_dma_address(psg)) {
1325 /*
1326 * Queue the N-1 descriptor after the
1327 * N-2
1328 */
1329 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1330
1331 /*
1332 * Add the N-1 descriptor to the list
1333 * of the descriptors used for this
1334 * transfer
1335 */
1336 list_add_tail(&desc->desc_node,
1337 &first->descs_list);
1338 dev_dbg(chan2dev(chan),
1339 "%s: add desc 0x%p to descs_list 0x%p\n",
1340 __func__, desc, first);
1341 }
1342 }
1343
1344 /*
1345 * If we are the last element, just see if we have the
1346 * same size than the previous element.
1347 *
1348 * If so, we can merge it with the previous descriptor
1349 * since we don't care about the stride anymore.
1350 */
1351 if ((i == (sg_len - 1)) &&
1352 sg_dma_len(psg) == sg_dma_len(sg)) {
1353 dev_dbg(chan2dev(chan),
1354 "%s: desc 0x%p can be merged with desc 0x%p\n",
1355 __func__, desc, pdesc);
1356
1357 /*
1358 * Increment the block count of the N-1
1359 * descriptor
1360 */
1361 at_xdmac_increment_block_count(chan, pdesc);
1362 pdesc->lld.mbr_dus = stride;
1363
1364 /*
1365 * Put back the N descriptor in the free
1366 * descriptor list
1367 */
1368 list_add_tail(&desc->desc_node,
1369 &atchan->free_descs_list);
1370 }
1371
1372 /* Update our descriptors */
1373 ppdesc = pdesc;
1374 pdesc = desc;
1375
1376 /* Update our scatter pointers */
1377 ppsg = psg;
1378 psg = sg;
1379
1380 len += sg_dma_len(sg);
1381 }
1382
1383 first->tx_dma_desc.cookie = -EBUSY;
1384 first->tx_dma_desc.flags = flags;
1385 first->xfer_size = len;
1386
1387 return &first->tx_dma_desc;
1388}
1389
1390static enum dma_status
1391at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1392 struct dma_tx_state *txstate)
1393{
1394 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1395 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1396 struct at_xdmac_desc *desc, *_desc, *iter;
1397 struct list_head *descs_list;
1398 enum dma_status ret;
1399 int residue, retry;
1400 u32 cur_nda, check_nda, cur_ubc, mask, value;
1401 u8 dwidth = 0;
1402 unsigned long flags;
1403 bool initd;
1404
1405 ret = dma_cookie_status(chan, cookie, txstate);
1406 if (ret == DMA_COMPLETE)
1407 return ret;
1408
1409 if (!txstate)
1410 return ret;
1411
1412 spin_lock_irqsave(&atchan->lock, flags);
1413
1414 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1415
1416 /*
1417 * If the transfer has not been started yet, don't need to compute the
1418 * residue, it's the transfer length.
1419 */
1420 if (!desc->active_xfer) {
1421 dma_set_residue(txstate, desc->xfer_size);
1422 goto spin_unlock;
1423 }
1424
1425 residue = desc->xfer_size;
1426 /*
1427 * Flush FIFO: only relevant when the transfer is source peripheral
1428 * synchronized. Flush is needed before reading CUBC because data in
1429 * the FIFO are not reported by CUBC. Reporting a residue of the
1430 * transfer length while we have data in FIFO can cause issue.
1431 * Usecase: atmel USART has a timeout which means I have received
1432 * characters but there is no more character received for a while. On
1433 * timeout, it requests the residue. If the data are in the DMA FIFO,
1434 * we will return a residue of the transfer length. It means no data
1435 * received. If an application is waiting for these data, it will hang
1436 * since we won't have another USART timeout without receiving new
1437 * data.
1438 */
1439 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1440 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1441 if ((desc->lld.mbr_cfg & mask) == value) {
1442 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1443 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1444 cpu_relax();
1445 }
1446
1447 /*
1448 * The easiest way to compute the residue should be to pause the DMA
1449 * but doing this can lead to miss some data as some devices don't
1450 * have FIFO.
1451 * We need to read several registers because:
1452 * - DMA is running therefore a descriptor change is possible while
1453 * reading these registers
1454 * - When the block transfer is done, the value of the CUBC register
1455 * is set to its initial value until the fetch of the next descriptor.
1456 * This value will corrupt the residue calculation so we have to skip
1457 * it.
1458 *
1459 * INITD -------- ------------
1460 * |____________________|
1461 * _______________________ _______________
1462 * NDA @desc2 \/ @desc3
1463 * _______________________/\_______________
1464 * __________ ___________ _______________
1465 * CUBC 0 \/ MAX desc1 \/ MAX desc2
1466 * __________/\___________/\_______________
1467 *
1468 * Since descriptors are aligned on 64 bits, we can assume that
1469 * the update of NDA and CUBC is atomic.
1470 * Memory barriers are used to ensure the read order of the registers.
1471 * A max number of retries is set because unlikely it could never ends.
1472 */
1473 for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1474 check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1475 rmb();
1476 cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1477 rmb();
1478 initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1479 rmb();
1480 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1481 rmb();
1482
1483 if ((check_nda == cur_nda) && initd)
1484 break;
1485 }
1486
1487 if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1488 ret = DMA_ERROR;
1489 goto spin_unlock;
1490 }
1491
1492 /*
1493 * Flush FIFO: only relevant when the transfer is source peripheral
1494 * synchronized. Another flush is needed here because CUBC is updated
1495 * when the controller sends the data write command. It can lead to
1496 * report data that are not written in the memory or the device. The
1497 * FIFO flush ensures that data are really written.
1498 */
1499 if ((desc->lld.mbr_cfg & mask) == value) {
1500 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1501 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1502 cpu_relax();
1503 }
1504
1505 /*
1506 * Remove size of all microblocks already transferred and the current
1507 * one. Then add the remaining size to transfer of the current
1508 * microblock.
1509 */
1510 descs_list = &desc->descs_list;
1511 list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1512 dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1513 residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1514 if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1515 desc = iter;
1516 break;
1517 }
1518 }
1519 residue += cur_ubc << dwidth;
1520
1521 dma_set_residue(txstate, residue);
1522
1523 dev_dbg(chan2dev(chan),
1524 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1525 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1526
1527spin_unlock:
1528 spin_unlock_irqrestore(&atchan->lock, flags);
1529 return ret;
1530}
1531
1532/* Call must be protected by lock. */
1533static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1534 struct at_xdmac_desc *desc)
1535{
1536 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1537
1538 /*
1539 * Remove the transfer from the transfer list then move the transfer
1540 * descriptors into the free descriptors list.
1541 */
1542 list_del(&desc->xfer_node);
1543 list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1544}
1545
1546static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1547{
1548 struct at_xdmac_desc *desc;
1549 unsigned long flags;
1550
1551 spin_lock_irqsave(&atchan->lock, flags);
1552
1553 /*
1554 * If channel is enabled, do nothing, advance_work will be triggered
1555 * after the interruption.
1556 */
1557 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1558 desc = list_first_entry(&atchan->xfers_list,
1559 struct at_xdmac_desc,
1560 xfer_node);
1561 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1562 if (!desc->active_xfer)
1563 at_xdmac_start_xfer(atchan, desc);
1564 }
1565
1566 spin_unlock_irqrestore(&atchan->lock, flags);
1567}
1568
1569static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1570{
1571 struct at_xdmac_desc *desc;
1572 struct dma_async_tx_descriptor *txd;
1573
1574 spin_lock_irq(&atchan->lock);
1575 if (list_empty(&atchan->xfers_list)) {
1576 spin_unlock_irq(&atchan->lock);
1577 return;
1578 }
1579 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1580 xfer_node);
1581 spin_unlock_irq(&atchan->lock);
1582 txd = &desc->tx_dma_desc;
1583 if (txd->flags & DMA_PREP_INTERRUPT)
1584 dmaengine_desc_get_callback_invoke(txd, NULL);
1585}
1586
1587static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1588{
1589 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1590 struct at_xdmac_desc *bad_desc;
1591
1592 /*
1593 * The descriptor currently at the head of the active list is
1594 * broken. Since we don't have any way to report errors, we'll
1595 * just have to scream loudly and try to continue with other
1596 * descriptors queued (if any).
1597 */
1598 if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1599 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1600 if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1601 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1602 if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1603 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1604
1605 spin_lock_bh(&atchan->lock);
1606
1607 /* Channel must be disabled first as it's not done automatically */
1608 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1609 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1610 cpu_relax();
1611
1612 bad_desc = list_first_entry(&atchan->xfers_list,
1613 struct at_xdmac_desc,
1614 xfer_node);
1615
1616 spin_unlock_bh(&atchan->lock);
1617
1618 /* Print bad descriptor's details if needed */
1619 dev_dbg(chan2dev(&atchan->chan),
1620 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1621 __func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1622 bad_desc->lld.mbr_ubc);
1623
1624 /* Then continue with usual descriptor management */
1625}
1626
1627static void at_xdmac_tasklet(unsigned long data)
1628{
1629 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data;
1630 struct at_xdmac_desc *desc;
1631 u32 error_mask;
1632
1633 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1634 __func__, atchan->irq_status);
1635
1636 error_mask = AT_XDMAC_CIS_RBEIS
1637 | AT_XDMAC_CIS_WBEIS
1638 | AT_XDMAC_CIS_ROIS;
1639
1640 if (at_xdmac_chan_is_cyclic(atchan)) {
1641 at_xdmac_handle_cyclic(atchan);
1642 } else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1643 || (atchan->irq_status & error_mask)) {
1644 struct dma_async_tx_descriptor *txd;
1645
1646 if (atchan->irq_status & error_mask)
1647 at_xdmac_handle_error(atchan);
1648
1649 spin_lock(&atchan->lock);
1650 desc = list_first_entry(&atchan->xfers_list,
1651 struct at_xdmac_desc,
1652 xfer_node);
1653 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1654 if (!desc->active_xfer) {
1655 dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1656 spin_unlock(&atchan->lock);
1657 return;
1658 }
1659
1660 txd = &desc->tx_dma_desc;
1661
1662 at_xdmac_remove_xfer(atchan, desc);
1663 spin_unlock(&atchan->lock);
1664
1665 if (!at_xdmac_chan_is_cyclic(atchan)) {
1666 dma_cookie_complete(txd);
1667 if (txd->flags & DMA_PREP_INTERRUPT)
1668 dmaengine_desc_get_callback_invoke(txd, NULL);
1669 }
1670
1671 dma_run_dependencies(txd);
1672
1673 at_xdmac_advance_work(atchan);
1674 }
1675}
1676
1677static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1678{
1679 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
1680 struct at_xdmac_chan *atchan;
1681 u32 imr, status, pending;
1682 u32 chan_imr, chan_status;
1683 int i, ret = IRQ_NONE;
1684
1685 do {
1686 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1687 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1688 pending = status & imr;
1689
1690 dev_vdbg(atxdmac->dma.dev,
1691 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1692 __func__, status, imr, pending);
1693
1694 if (!pending)
1695 break;
1696
1697 /* We have to find which channel has generated the interrupt. */
1698 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1699 if (!((1 << i) & pending))
1700 continue;
1701
1702 atchan = &atxdmac->chan[i];
1703 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1704 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1705 atchan->irq_status = chan_status & chan_imr;
1706 dev_vdbg(atxdmac->dma.dev,
1707 "%s: chan%d: imr=0x%x, status=0x%x\n",
1708 __func__, i, chan_imr, chan_status);
1709 dev_vdbg(chan2dev(&atchan->chan),
1710 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1711 __func__,
1712 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1713 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1714 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1715 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1716 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1717 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1718
1719 if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1720 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1721
1722 tasklet_schedule(&atchan->tasklet);
1723 ret = IRQ_HANDLED;
1724 }
1725
1726 } while (pending);
1727
1728 return ret;
1729}
1730
1731static void at_xdmac_issue_pending(struct dma_chan *chan)
1732{
1733 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1734 unsigned long flags;
1735
1736 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1737
1738 spin_lock_irqsave(&atchan->lock, flags);
1739 at_xdmac_advance_work(atchan);
1740 spin_unlock_irqrestore(&atchan->lock, flags);
1741
1742 return;
1743}
1744
1745static int at_xdmac_device_config(struct dma_chan *chan,
1746 struct dma_slave_config *config)
1747{
1748 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1749 int ret;
1750 unsigned long flags;
1751
1752 dev_dbg(chan2dev(chan), "%s\n", __func__);
1753
1754 spin_lock_irqsave(&atchan->lock, flags);
1755 ret = at_xdmac_set_slave_config(chan, config);
1756 spin_unlock_irqrestore(&atchan->lock, flags);
1757
1758 return ret;
1759}
1760
1761static int at_xdmac_device_pause(struct dma_chan *chan)
1762{
1763 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1764 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1765 unsigned long flags;
1766
1767 dev_dbg(chan2dev(chan), "%s\n", __func__);
1768
1769 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1770 return 0;
1771
1772 spin_lock_irqsave(&atchan->lock, flags);
1773 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1774 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1775 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1776 cpu_relax();
1777 spin_unlock_irqrestore(&atchan->lock, flags);
1778
1779 return 0;
1780}
1781
1782static int at_xdmac_device_resume(struct dma_chan *chan)
1783{
1784 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1785 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1786 unsigned long flags;
1787
1788 dev_dbg(chan2dev(chan), "%s\n", __func__);
1789
1790 spin_lock_irqsave(&atchan->lock, flags);
1791 if (!at_xdmac_chan_is_paused(atchan)) {
1792 spin_unlock_irqrestore(&atchan->lock, flags);
1793 return 0;
1794 }
1795
1796 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1797 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1798 spin_unlock_irqrestore(&atchan->lock, flags);
1799
1800 return 0;
1801}
1802
1803static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1804{
1805 struct at_xdmac_desc *desc, *_desc;
1806 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1807 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1808 unsigned long flags;
1809
1810 dev_dbg(chan2dev(chan), "%s\n", __func__);
1811
1812 spin_lock_irqsave(&atchan->lock, flags);
1813 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1814 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1815 cpu_relax();
1816
1817 /* Cancel all pending transfers. */
1818 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1819 at_xdmac_remove_xfer(atchan, desc);
1820
1821 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1822 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1823 spin_unlock_irqrestore(&atchan->lock, flags);
1824
1825 return 0;
1826}
1827
1828static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1829{
1830 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1831 struct at_xdmac_desc *desc;
1832 int i;
1833 unsigned long flags;
1834
1835 spin_lock_irqsave(&atchan->lock, flags);
1836
1837 if (at_xdmac_chan_is_enabled(atchan)) {
1838 dev_err(chan2dev(chan),
1839 "can't allocate channel resources (channel enabled)\n");
1840 i = -EIO;
1841 goto spin_unlock;
1842 }
1843
1844 if (!list_empty(&atchan->free_descs_list)) {
1845 dev_err(chan2dev(chan),
1846 "can't allocate channel resources (channel not free from a previous use)\n");
1847 i = -EIO;
1848 goto spin_unlock;
1849 }
1850
1851 for (i = 0; i < init_nr_desc_per_channel; i++) {
1852 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1853 if (!desc) {
1854 if (i == 0) {
1855 dev_warn(chan2dev(chan),
1856 "can't allocate any descriptors\n");
1857 return -EIO;
1858 }
1859 dev_warn(chan2dev(chan),
1860 "only %d descriptors have been allocated\n", i);
1861 break;
1862 }
1863 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1864 }
1865
1866 dma_cookie_init(chan);
1867
1868 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1869
1870spin_unlock:
1871 spin_unlock_irqrestore(&atchan->lock, flags);
1872 return i;
1873}
1874
1875static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1876{
1877 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1878 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
1879 struct at_xdmac_desc *desc, *_desc;
1880
1881 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1882 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1883 list_del(&desc->desc_node);
1884 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1885 }
1886
1887 return;
1888}
1889
1890#ifdef CONFIG_PM
1891static int atmel_xdmac_prepare(struct device *dev)
1892{
1893 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1894 struct dma_chan *chan, *_chan;
1895
1896 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1897 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1898
1899 /* Wait for transfer completion, except in cyclic case. */
1900 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1901 return -EAGAIN;
1902 }
1903 return 0;
1904}
1905#else
1906# define atmel_xdmac_prepare NULL
1907#endif
1908
1909#ifdef CONFIG_PM_SLEEP
1910static int atmel_xdmac_suspend(struct device *dev)
1911{
1912 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1913 struct dma_chan *chan, *_chan;
1914
1915 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1916 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1917
1918 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1919 if (at_xdmac_chan_is_cyclic(atchan)) {
1920 if (!at_xdmac_chan_is_paused(atchan))
1921 at_xdmac_device_pause(chan);
1922 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1923 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1924 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1925 }
1926 }
1927 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1928 atxdmac->save_gs = at_xdmac_read(atxdmac, AT_XDMAC_GS);
1929
1930 at_xdmac_off(atxdmac);
1931 clk_disable_unprepare(atxdmac->clk);
1932 return 0;
1933}
1934
1935static int atmel_xdmac_resume(struct device *dev)
1936{
1937 struct at_xdmac *atxdmac = dev_get_drvdata(dev);
1938 struct at_xdmac_chan *atchan;
1939 struct dma_chan *chan, *_chan;
1940 int i;
1941 int ret;
1942
1943 ret = clk_prepare_enable(atxdmac->clk);
1944 if (ret)
1945 return ret;
1946
1947 /* Clear pending interrupts. */
1948 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1949 atchan = &atxdmac->chan[i];
1950 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1951 cpu_relax();
1952 }
1953
1954 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1955 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1956 atchan = to_at_xdmac_chan(chan);
1957 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1958 if (at_xdmac_chan_is_cyclic(atchan)) {
1959 if (at_xdmac_chan_is_paused(atchan))
1960 at_xdmac_device_resume(chan);
1961 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1962 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1963 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1964 wmb();
1965 if (atxdmac->save_gs & atchan->mask)
1966 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1967 }
1968 }
1969 return 0;
1970}
1971#endif /* CONFIG_PM_SLEEP */
1972
1973static int at_xdmac_probe(struct platform_device *pdev)
1974{
1975 struct resource *res;
1976 struct at_xdmac *atxdmac;
1977 int irq, size, nr_channels, i, ret;
1978 void __iomem *base;
1979 u32 reg;
1980
1981 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1982 if (!res)
1983 return -EINVAL;
1984
1985 irq = platform_get_irq(pdev, 0);
1986 if (irq < 0)
1987 return irq;
1988
1989 base = devm_ioremap_resource(&pdev->dev, res);
1990 if (IS_ERR(base))
1991 return PTR_ERR(base);
1992
1993 /*
1994 * Read number of xdmac channels, read helper function can't be used
1995 * since atxdmac is not yet allocated and we need to know the number
1996 * of channels to do the allocation.
1997 */
1998 reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1999 nr_channels = AT_XDMAC_NB_CH(reg);
2000 if (nr_channels > AT_XDMAC_MAX_CHAN) {
2001 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
2002 nr_channels);
2003 return -EINVAL;
2004 }
2005
2006 size = sizeof(*atxdmac);
2007 size += nr_channels * sizeof(struct at_xdmac_chan);
2008 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2009 if (!atxdmac) {
2010 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
2011 return -ENOMEM;
2012 }
2013
2014 atxdmac->regs = base;
2015 atxdmac->irq = irq;
2016
2017 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
2018 if (IS_ERR(atxdmac->clk)) {
2019 dev_err(&pdev->dev, "can't get dma_clk\n");
2020 return PTR_ERR(atxdmac->clk);
2021 }
2022
2023 /* Do not use dev res to prevent races with tasklet */
2024 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2025 if (ret) {
2026 dev_err(&pdev->dev, "can't request irq\n");
2027 return ret;
2028 }
2029
2030 ret = clk_prepare_enable(atxdmac->clk);
2031 if (ret) {
2032 dev_err(&pdev->dev, "can't prepare or enable clock\n");
2033 goto err_free_irq;
2034 }
2035
2036 atxdmac->at_xdmac_desc_pool =
2037 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2038 sizeof(struct at_xdmac_desc), 4, 0);
2039 if (!atxdmac->at_xdmac_desc_pool) {
2040 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2041 ret = -ENOMEM;
2042 goto err_clk_disable;
2043 }
2044
2045 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2046 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2047 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2048 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2049 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2050 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2051 /*
2052 * Without DMA_PRIVATE the driver is not able to allocate more than
2053 * one channel, second allocation fails in private_candidate.
2054 */
2055 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2056 atxdmac->dma.dev = &pdev->dev;
2057 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
2058 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
2059 atxdmac->dma.device_tx_status = at_xdmac_tx_status;
2060 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
2061 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
2062 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
2063 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
2064 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
2065 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
2066 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
2067 atxdmac->dma.device_config = at_xdmac_device_config;
2068 atxdmac->dma.device_pause = at_xdmac_device_pause;
2069 atxdmac->dma.device_resume = at_xdmac_device_resume;
2070 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
2071 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2072 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2073 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2074 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2075
2076 /* Disable all chans and interrupts. */
2077 at_xdmac_off(atxdmac);
2078
2079 /* Init channels. */
2080 INIT_LIST_HEAD(&atxdmac->dma.channels);
2081 for (i = 0; i < nr_channels; i++) {
2082 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2083
2084 atchan->chan.device = &atxdmac->dma;
2085 list_add_tail(&atchan->chan.device_node,
2086 &atxdmac->dma.channels);
2087
2088 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2089 atchan->mask = 1 << i;
2090
2091 spin_lock_init(&atchan->lock);
2092 INIT_LIST_HEAD(&atchan->xfers_list);
2093 INIT_LIST_HEAD(&atchan->free_descs_list);
2094 tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
2095 (unsigned long)atchan);
2096
2097 /* Clear pending interrupts. */
2098 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2099 cpu_relax();
2100 }
2101 platform_set_drvdata(pdev, atxdmac);
2102
2103 ret = dma_async_device_register(&atxdmac->dma);
2104 if (ret) {
2105 dev_err(&pdev->dev, "fail to register DMA engine device\n");
2106 goto err_clk_disable;
2107 }
2108
2109 ret = of_dma_controller_register(pdev->dev.of_node,
2110 at_xdmac_xlate, atxdmac);
2111 if (ret) {
2112 dev_err(&pdev->dev, "could not register of dma controller\n");
2113 goto err_dma_unregister;
2114 }
2115
2116 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2117 nr_channels, atxdmac->regs);
2118
2119 return 0;
2120
2121err_dma_unregister:
2122 dma_async_device_unregister(&atxdmac->dma);
2123err_clk_disable:
2124 clk_disable_unprepare(atxdmac->clk);
2125err_free_irq:
2126 free_irq(atxdmac->irq, atxdmac);
2127 return ret;
2128}
2129
2130static int at_xdmac_remove(struct platform_device *pdev)
2131{
2132 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2133 int i;
2134
2135 at_xdmac_off(atxdmac);
2136 of_dma_controller_free(pdev->dev.of_node);
2137 dma_async_device_unregister(&atxdmac->dma);
2138 clk_disable_unprepare(atxdmac->clk);
2139
2140 free_irq(atxdmac->irq, atxdmac);
2141
2142 for (i = 0; i < atxdmac->dma.chancnt; i++) {
2143 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2144
2145 tasklet_kill(&atchan->tasklet);
2146 at_xdmac_free_chan_resources(&atchan->chan);
2147 }
2148
2149 return 0;
2150}
2151
2152static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2153 .prepare = atmel_xdmac_prepare,
2154 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2155};
2156
2157static const struct of_device_id atmel_xdmac_dt_ids[] = {
2158 {
2159 .compatible = "atmel,sama5d4-dma",
2160 }, {
2161 /* sentinel */
2162 }
2163};
2164MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2165
2166static struct platform_driver at_xdmac_driver = {
2167 .probe = at_xdmac_probe,
2168 .remove = at_xdmac_remove,
2169 .driver = {
2170 .name = "at_xdmac",
2171 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2172 .pm = &atmel_xdmac_dev_pm_ops,
2173 }
2174};
2175
2176static int __init at_xdmac_init(void)
2177{
2178 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2179}
2180subsys_initcall(at_xdmac_init);
2181
2182MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2183MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2184MODULE_LICENSE("GPL");