| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Driver for the Analog Devices AXI-DMAC core |
| 4 | * |
| 5 | * Copyright 2013-2019 Analog Devices Inc. |
| 6 | * Author: Lars-Peter Clausen <lars@metafoo.de> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/clk.h> |
| 10 | #include <linux/device.h> |
| 11 | #include <linux/dma-mapping.h> |
| 12 | #include <linux/dmaengine.h> |
| 13 | #include <linux/err.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/io.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/module.h> |
| 18 | #include <linux/of.h> |
| 19 | #include <linux/of_dma.h> |
| 20 | #include <linux/platform_device.h> |
| 21 | #include <linux/regmap.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/fpga/adi-axi-common.h> |
| 24 | |
| 25 | #include <dt-bindings/dma/axi-dmac.h> |
| 26 | |
| 27 | #include "dmaengine.h" |
| 28 | #include "virt-dma.h" |
| 29 | |
| 30 | /* |
| 31 | * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has |
| 32 | * various instantiation parameters which decided the exact feature set support |
| 33 | * by the core. |
| 34 | * |
| 35 | * Each channel of the core has a source interface and a destination interface. |
| 36 | * The number of channels and the type of the channel interfaces is selected at |
| 37 | * configuration time. A interface can either be a connected to a central memory |
| 38 | * interconnect, which allows access to system memory, or it can be connected to |
| 39 | * a dedicated bus which is directly connected to a data port on a peripheral. |
| 40 | * Given that those are configuration options of the core that are selected when |
| 41 | * it is instantiated this means that they can not be changed by software at |
| 42 | * runtime. By extension this means that each channel is uni-directional. It can |
| 43 | * either be device to memory or memory to device, but not both. Also since the |
| 44 | * device side is a dedicated data bus only connected to a single peripheral |
| 45 | * there is no address than can or needs to be configured for the device side. |
| 46 | */ |
| 47 | |
| 48 | #define AXI_DMAC_REG_IRQ_MASK 0x80 |
| 49 | #define AXI_DMAC_REG_IRQ_PENDING 0x84 |
| 50 | #define AXI_DMAC_REG_IRQ_SOURCE 0x88 |
| 51 | |
| 52 | #define AXI_DMAC_REG_CTRL 0x400 |
| 53 | #define AXI_DMAC_REG_TRANSFER_ID 0x404 |
| 54 | #define AXI_DMAC_REG_START_TRANSFER 0x408 |
| 55 | #define AXI_DMAC_REG_FLAGS 0x40c |
| 56 | #define AXI_DMAC_REG_DEST_ADDRESS 0x410 |
| 57 | #define AXI_DMAC_REG_SRC_ADDRESS 0x414 |
| 58 | #define AXI_DMAC_REG_X_LENGTH 0x418 |
| 59 | #define AXI_DMAC_REG_Y_LENGTH 0x41c |
| 60 | #define AXI_DMAC_REG_DEST_STRIDE 0x420 |
| 61 | #define AXI_DMAC_REG_SRC_STRIDE 0x424 |
| 62 | #define AXI_DMAC_REG_TRANSFER_DONE 0x428 |
| 63 | #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c |
| 64 | #define AXI_DMAC_REG_STATUS 0x430 |
| 65 | #define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434 |
| 66 | #define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438 |
| 67 | #define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c |
| 68 | #define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450 |
| 69 | |
| 70 | #define AXI_DMAC_CTRL_ENABLE BIT(0) |
| 71 | #define AXI_DMAC_CTRL_PAUSE BIT(1) |
| 72 | |
| 73 | #define AXI_DMAC_IRQ_SOT BIT(0) |
| 74 | #define AXI_DMAC_IRQ_EOT BIT(1) |
| 75 | |
| 76 | #define AXI_DMAC_FLAG_CYCLIC BIT(0) |
| 77 | #define AXI_DMAC_FLAG_LAST BIT(1) |
| 78 | #define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2) |
| 79 | |
| 80 | #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31) |
| 81 | |
| 82 | /* The maximum ID allocated by the hardware is 31 */ |
| 83 | #define AXI_DMAC_SG_UNUSED 32U |
| 84 | |
| 85 | struct axi_dmac_sg { |
| 86 | dma_addr_t src_addr; |
| 87 | dma_addr_t dest_addr; |
| 88 | unsigned int x_len; |
| 89 | unsigned int y_len; |
| 90 | unsigned int dest_stride; |
| 91 | unsigned int src_stride; |
| 92 | unsigned int id; |
| 93 | unsigned int partial_len; |
| 94 | bool schedule_when_free; |
| 95 | }; |
| 96 | |
| 97 | struct axi_dmac_desc { |
| 98 | struct virt_dma_desc vdesc; |
| 99 | bool cyclic; |
| 100 | bool have_partial_xfer; |
| 101 | |
| 102 | unsigned int num_submitted; |
| 103 | unsigned int num_completed; |
| 104 | unsigned int num_sgs; |
| 105 | struct axi_dmac_sg sg[]; |
| 106 | }; |
| 107 | |
| 108 | struct axi_dmac_chan { |
| 109 | struct virt_dma_chan vchan; |
| 110 | |
| 111 | struct axi_dmac_desc *next_desc; |
| 112 | struct list_head active_descs; |
| 113 | enum dma_transfer_direction direction; |
| 114 | |
| 115 | unsigned int src_width; |
| 116 | unsigned int dest_width; |
| 117 | unsigned int src_type; |
| 118 | unsigned int dest_type; |
| 119 | |
| 120 | unsigned int max_length; |
| 121 | unsigned int address_align_mask; |
| 122 | unsigned int length_align_mask; |
| 123 | |
| 124 | bool hw_partial_xfer; |
| 125 | bool hw_cyclic; |
| 126 | bool hw_2d; |
| 127 | }; |
| 128 | |
| 129 | struct axi_dmac { |
| 130 | void __iomem *base; |
| 131 | int irq; |
| 132 | |
| 133 | struct clk *clk; |
| 134 | |
| 135 | struct dma_device dma_dev; |
| 136 | struct axi_dmac_chan chan; |
| 137 | |
| 138 | struct device_dma_parameters dma_parms; |
| 139 | }; |
| 140 | |
| 141 | static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan) |
| 142 | { |
| 143 | return container_of(chan->vchan.chan.device, struct axi_dmac, |
| 144 | dma_dev); |
| 145 | } |
| 146 | |
| 147 | static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c) |
| 148 | { |
| 149 | return container_of(c, struct axi_dmac_chan, vchan.chan); |
| 150 | } |
| 151 | |
| 152 | static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc) |
| 153 | { |
| 154 | return container_of(vdesc, struct axi_dmac_desc, vdesc); |
| 155 | } |
| 156 | |
| 157 | static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg, |
| 158 | unsigned int val) |
| 159 | { |
| 160 | writel(val, axi_dmac->base + reg); |
| 161 | } |
| 162 | |
| 163 | static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg) |
| 164 | { |
| 165 | return readl(axi_dmac->base + reg); |
| 166 | } |
| 167 | |
| 168 | static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan) |
| 169 | { |
| 170 | return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM; |
| 171 | } |
| 172 | |
| 173 | static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan) |
| 174 | { |
| 175 | return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM; |
| 176 | } |
| 177 | |
| 178 | static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len) |
| 179 | { |
| 180 | if (len == 0) |
| 181 | return false; |
| 182 | if ((len & chan->length_align_mask) != 0) /* Not aligned */ |
| 183 | return false; |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr) |
| 188 | { |
| 189 | if ((addr & chan->address_align_mask) != 0) /* Not aligned */ |
| 190 | return false; |
| 191 | return true; |
| 192 | } |
| 193 | |
| 194 | static void axi_dmac_start_transfer(struct axi_dmac_chan *chan) |
| 195 | { |
| 196 | struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| 197 | struct virt_dma_desc *vdesc; |
| 198 | struct axi_dmac_desc *desc; |
| 199 | struct axi_dmac_sg *sg; |
| 200 | unsigned int flags = 0; |
| 201 | unsigned int val; |
| 202 | |
| 203 | val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER); |
| 204 | if (val) /* Queue is full, wait for the next SOT IRQ */ |
| 205 | return; |
| 206 | |
| 207 | desc = chan->next_desc; |
| 208 | |
| 209 | if (!desc) { |
| 210 | vdesc = vchan_next_desc(&chan->vchan); |
| 211 | if (!vdesc) |
| 212 | return; |
| 213 | list_move_tail(&vdesc->node, &chan->active_descs); |
| 214 | desc = to_axi_dmac_desc(vdesc); |
| 215 | } |
| 216 | sg = &desc->sg[desc->num_submitted]; |
| 217 | |
| 218 | /* Already queued in cyclic mode. Wait for it to finish */ |
| 219 | if (sg->id != AXI_DMAC_SG_UNUSED) { |
| 220 | sg->schedule_when_free = true; |
| 221 | return; |
| 222 | } |
| 223 | |
| 224 | desc->num_submitted++; |
| 225 | if (desc->num_submitted == desc->num_sgs || |
| 226 | desc->have_partial_xfer) { |
| 227 | if (desc->cyclic) |
| 228 | desc->num_submitted = 0; /* Start again */ |
| 229 | else |
| 230 | chan->next_desc = NULL; |
| 231 | flags |= AXI_DMAC_FLAG_LAST; |
| 232 | } else { |
| 233 | chan->next_desc = desc; |
| 234 | } |
| 235 | |
| 236 | sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID); |
| 237 | |
| 238 | if (axi_dmac_dest_is_mem(chan)) { |
| 239 | axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr); |
| 240 | axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride); |
| 241 | } |
| 242 | |
| 243 | if (axi_dmac_src_is_mem(chan)) { |
| 244 | axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr); |
| 245 | axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride); |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | * If the hardware supports cyclic transfers and there is no callback to |
| 250 | * call and only a single segment, enable hw cyclic mode to avoid |
| 251 | * unnecessary interrupts. |
| 252 | */ |
| 253 | if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback && |
| 254 | desc->num_sgs == 1) |
| 255 | flags |= AXI_DMAC_FLAG_CYCLIC; |
| 256 | |
| 257 | if (chan->hw_partial_xfer) |
| 258 | flags |= AXI_DMAC_FLAG_PARTIAL_REPORT; |
| 259 | |
| 260 | axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1); |
| 261 | axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1); |
| 262 | axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags); |
| 263 | axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1); |
| 264 | } |
| 265 | |
| 266 | static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan) |
| 267 | { |
| 268 | return list_first_entry_or_null(&chan->active_descs, |
| 269 | struct axi_dmac_desc, vdesc.node); |
| 270 | } |
| 271 | |
| 272 | static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan, |
| 273 | struct axi_dmac_sg *sg) |
| 274 | { |
| 275 | if (chan->hw_2d) |
| 276 | return sg->x_len * sg->y_len; |
| 277 | else |
| 278 | return sg->x_len; |
| 279 | } |
| 280 | |
| 281 | static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan) |
| 282 | { |
| 283 | struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| 284 | struct axi_dmac_desc *desc; |
| 285 | struct axi_dmac_sg *sg; |
| 286 | u32 xfer_done, len, id, i; |
| 287 | bool found_sg; |
| 288 | |
| 289 | do { |
| 290 | len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN); |
| 291 | id = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID); |
| 292 | |
| 293 | found_sg = false; |
| 294 | list_for_each_entry(desc, &chan->active_descs, vdesc.node) { |
| 295 | for (i = 0; i < desc->num_sgs; i++) { |
| 296 | sg = &desc->sg[i]; |
| 297 | if (sg->id == AXI_DMAC_SG_UNUSED) |
| 298 | continue; |
| 299 | if (sg->id == id) { |
| 300 | desc->have_partial_xfer = true; |
| 301 | sg->partial_len = len; |
| 302 | found_sg = true; |
| 303 | break; |
| 304 | } |
| 305 | } |
| 306 | if (found_sg) |
| 307 | break; |
| 308 | } |
| 309 | |
| 310 | if (found_sg) { |
| 311 | dev_dbg(dmac->dma_dev.dev, |
| 312 | "Found partial segment id=%u, len=%u\n", |
| 313 | id, len); |
| 314 | } else { |
| 315 | dev_warn(dmac->dma_dev.dev, |
| 316 | "Not found partial segment id=%u, len=%u\n", |
| 317 | id, len); |
| 318 | } |
| 319 | |
| 320 | /* Check if we have any more partial transfers */ |
| 321 | xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); |
| 322 | xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE); |
| 323 | |
| 324 | } while (!xfer_done); |
| 325 | } |
| 326 | |
| 327 | static void axi_dmac_compute_residue(struct axi_dmac_chan *chan, |
| 328 | struct axi_dmac_desc *active) |
| 329 | { |
| 330 | struct dmaengine_result *rslt = &active->vdesc.tx_result; |
| 331 | unsigned int start = active->num_completed - 1; |
| 332 | struct axi_dmac_sg *sg; |
| 333 | unsigned int i, total; |
| 334 | |
| 335 | rslt->result = DMA_TRANS_NOERROR; |
| 336 | rslt->residue = 0; |
| 337 | |
| 338 | /* |
| 339 | * We get here if the last completed segment is partial, which |
| 340 | * means we can compute the residue from that segment onwards |
| 341 | */ |
| 342 | for (i = start; i < active->num_sgs; i++) { |
| 343 | sg = &active->sg[i]; |
| 344 | total = axi_dmac_total_sg_bytes(chan, sg); |
| 345 | rslt->residue += (total - sg->partial_len); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan, |
| 350 | unsigned int completed_transfers) |
| 351 | { |
| 352 | struct axi_dmac_desc *active; |
| 353 | struct axi_dmac_sg *sg; |
| 354 | bool start_next = false; |
| 355 | |
| 356 | active = axi_dmac_active_desc(chan); |
| 357 | if (!active) |
| 358 | return false; |
| 359 | |
| 360 | if (chan->hw_partial_xfer && |
| 361 | (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE)) |
| 362 | axi_dmac_dequeue_partial_xfers(chan); |
| 363 | |
| 364 | do { |
| 365 | sg = &active->sg[active->num_completed]; |
| 366 | if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */ |
| 367 | break; |
| 368 | if (!(BIT(sg->id) & completed_transfers)) |
| 369 | break; |
| 370 | active->num_completed++; |
| 371 | sg->id = AXI_DMAC_SG_UNUSED; |
| 372 | if (sg->schedule_when_free) { |
| 373 | sg->schedule_when_free = false; |
| 374 | start_next = true; |
| 375 | } |
| 376 | |
| 377 | if (sg->partial_len) |
| 378 | axi_dmac_compute_residue(chan, active); |
| 379 | |
| 380 | if (active->cyclic) |
| 381 | vchan_cyclic_callback(&active->vdesc); |
| 382 | |
| 383 | if (active->num_completed == active->num_sgs || |
| 384 | sg->partial_len) { |
| 385 | if (active->cyclic) { |
| 386 | active->num_completed = 0; /* wrap around */ |
| 387 | } else { |
| 388 | list_del(&active->vdesc.node); |
| 389 | vchan_cookie_complete(&active->vdesc); |
| 390 | active = axi_dmac_active_desc(chan); |
| 391 | } |
| 392 | } |
| 393 | } while (active); |
| 394 | |
| 395 | return start_next; |
| 396 | } |
| 397 | |
| 398 | static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid) |
| 399 | { |
| 400 | struct axi_dmac *dmac = devid; |
| 401 | unsigned int pending; |
| 402 | bool start_next = false; |
| 403 | |
| 404 | pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING); |
| 405 | if (!pending) |
| 406 | return IRQ_NONE; |
| 407 | |
| 408 | axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending); |
| 409 | |
| 410 | spin_lock(&dmac->chan.vchan.lock); |
| 411 | /* One or more transfers have finished */ |
| 412 | if (pending & AXI_DMAC_IRQ_EOT) { |
| 413 | unsigned int completed; |
| 414 | |
| 415 | completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); |
| 416 | start_next = axi_dmac_transfer_done(&dmac->chan, completed); |
| 417 | } |
| 418 | /* Space has become available in the descriptor queue */ |
| 419 | if ((pending & AXI_DMAC_IRQ_SOT) || start_next) |
| 420 | axi_dmac_start_transfer(&dmac->chan); |
| 421 | spin_unlock(&dmac->chan.vchan.lock); |
| 422 | |
| 423 | return IRQ_HANDLED; |
| 424 | } |
| 425 | |
| 426 | static int axi_dmac_terminate_all(struct dma_chan *c) |
| 427 | { |
| 428 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 429 | struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| 430 | unsigned long flags; |
| 431 | LIST_HEAD(head); |
| 432 | |
| 433 | spin_lock_irqsave(&chan->vchan.lock, flags); |
| 434 | axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0); |
| 435 | chan->next_desc = NULL; |
| 436 | vchan_get_all_descriptors(&chan->vchan, &head); |
| 437 | list_splice_tail_init(&chan->active_descs, &head); |
| 438 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| 439 | |
| 440 | vchan_dma_desc_free_list(&chan->vchan, &head); |
| 441 | |
| 442 | return 0; |
| 443 | } |
| 444 | |
| 445 | static void axi_dmac_synchronize(struct dma_chan *c) |
| 446 | { |
| 447 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 448 | |
| 449 | vchan_synchronize(&chan->vchan); |
| 450 | } |
| 451 | |
| 452 | static void axi_dmac_issue_pending(struct dma_chan *c) |
| 453 | { |
| 454 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 455 | struct axi_dmac *dmac = chan_to_axi_dmac(chan); |
| 456 | unsigned long flags; |
| 457 | |
| 458 | axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE); |
| 459 | |
| 460 | spin_lock_irqsave(&chan->vchan.lock, flags); |
| 461 | if (vchan_issue_pending(&chan->vchan)) |
| 462 | axi_dmac_start_transfer(chan); |
| 463 | spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| 464 | } |
| 465 | |
| 466 | static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs) |
| 467 | { |
| 468 | struct axi_dmac_desc *desc; |
| 469 | unsigned int i; |
| 470 | |
| 471 | desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT); |
| 472 | if (!desc) |
| 473 | return NULL; |
| 474 | |
| 475 | for (i = 0; i < num_sgs; i++) |
| 476 | desc->sg[i].id = AXI_DMAC_SG_UNUSED; |
| 477 | |
| 478 | desc->num_sgs = num_sgs; |
| 479 | |
| 480 | return desc; |
| 481 | } |
| 482 | |
| 483 | static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan, |
| 484 | enum dma_transfer_direction direction, dma_addr_t addr, |
| 485 | unsigned int num_periods, unsigned int period_len, |
| 486 | struct axi_dmac_sg *sg) |
| 487 | { |
| 488 | unsigned int num_segments, i; |
| 489 | unsigned int segment_size; |
| 490 | unsigned int len; |
| 491 | |
| 492 | /* Split into multiple equally sized segments if necessary */ |
| 493 | num_segments = DIV_ROUND_UP(period_len, chan->max_length); |
| 494 | segment_size = DIV_ROUND_UP(period_len, num_segments); |
| 495 | /* Take care of alignment */ |
| 496 | segment_size = ((segment_size - 1) | chan->length_align_mask) + 1; |
| 497 | |
| 498 | for (i = 0; i < num_periods; i++) { |
| 499 | len = period_len; |
| 500 | |
| 501 | while (len > segment_size) { |
| 502 | if (direction == DMA_DEV_TO_MEM) |
| 503 | sg->dest_addr = addr; |
| 504 | else |
| 505 | sg->src_addr = addr; |
| 506 | sg->x_len = segment_size; |
| 507 | sg->y_len = 1; |
| 508 | sg++; |
| 509 | addr += segment_size; |
| 510 | len -= segment_size; |
| 511 | } |
| 512 | |
| 513 | if (direction == DMA_DEV_TO_MEM) |
| 514 | sg->dest_addr = addr; |
| 515 | else |
| 516 | sg->src_addr = addr; |
| 517 | sg->x_len = len; |
| 518 | sg->y_len = 1; |
| 519 | sg++; |
| 520 | addr += len; |
| 521 | } |
| 522 | |
| 523 | return sg; |
| 524 | } |
| 525 | |
| 526 | static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg( |
| 527 | struct dma_chan *c, struct scatterlist *sgl, |
| 528 | unsigned int sg_len, enum dma_transfer_direction direction, |
| 529 | unsigned long flags, void *context) |
| 530 | { |
| 531 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 532 | struct axi_dmac_desc *desc; |
| 533 | struct axi_dmac_sg *dsg; |
| 534 | struct scatterlist *sg; |
| 535 | unsigned int num_sgs; |
| 536 | unsigned int i; |
| 537 | |
| 538 | if (direction != chan->direction) |
| 539 | return NULL; |
| 540 | |
| 541 | num_sgs = 0; |
| 542 | for_each_sg(sgl, sg, sg_len, i) |
| 543 | num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length); |
| 544 | |
| 545 | desc = axi_dmac_alloc_desc(num_sgs); |
| 546 | if (!desc) |
| 547 | return NULL; |
| 548 | |
| 549 | dsg = desc->sg; |
| 550 | |
| 551 | for_each_sg(sgl, sg, sg_len, i) { |
| 552 | if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) || |
| 553 | !axi_dmac_check_len(chan, sg_dma_len(sg))) { |
| 554 | kfree(desc); |
| 555 | return NULL; |
| 556 | } |
| 557 | |
| 558 | dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1, |
| 559 | sg_dma_len(sg), dsg); |
| 560 | } |
| 561 | |
| 562 | desc->cyclic = false; |
| 563 | |
| 564 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| 565 | } |
| 566 | |
| 567 | static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic( |
| 568 | struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, |
| 569 | size_t period_len, enum dma_transfer_direction direction, |
| 570 | unsigned long flags) |
| 571 | { |
| 572 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 573 | struct axi_dmac_desc *desc; |
| 574 | unsigned int num_periods, num_segments; |
| 575 | |
| 576 | if (direction != chan->direction) |
| 577 | return NULL; |
| 578 | |
| 579 | if (!axi_dmac_check_len(chan, buf_len) || |
| 580 | !axi_dmac_check_addr(chan, buf_addr)) |
| 581 | return NULL; |
| 582 | |
| 583 | if (period_len == 0 || buf_len % period_len) |
| 584 | return NULL; |
| 585 | |
| 586 | num_periods = buf_len / period_len; |
| 587 | num_segments = DIV_ROUND_UP(period_len, chan->max_length); |
| 588 | |
| 589 | desc = axi_dmac_alloc_desc(num_periods * num_segments); |
| 590 | if (!desc) |
| 591 | return NULL; |
| 592 | |
| 593 | axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods, |
| 594 | period_len, desc->sg); |
| 595 | |
| 596 | desc->cyclic = true; |
| 597 | |
| 598 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| 599 | } |
| 600 | |
| 601 | static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved( |
| 602 | struct dma_chan *c, struct dma_interleaved_template *xt, |
| 603 | unsigned long flags) |
| 604 | { |
| 605 | struct axi_dmac_chan *chan = to_axi_dmac_chan(c); |
| 606 | struct axi_dmac_desc *desc; |
| 607 | size_t dst_icg, src_icg; |
| 608 | |
| 609 | if (xt->frame_size != 1) |
| 610 | return NULL; |
| 611 | |
| 612 | if (xt->dir != chan->direction) |
| 613 | return NULL; |
| 614 | |
| 615 | if (axi_dmac_src_is_mem(chan)) { |
| 616 | if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start)) |
| 617 | return NULL; |
| 618 | } |
| 619 | |
| 620 | if (axi_dmac_dest_is_mem(chan)) { |
| 621 | if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start)) |
| 622 | return NULL; |
| 623 | } |
| 624 | |
| 625 | dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); |
| 626 | src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); |
| 627 | |
| 628 | if (chan->hw_2d) { |
| 629 | if (!axi_dmac_check_len(chan, xt->sgl[0].size) || |
| 630 | xt->numf == 0) |
| 631 | return NULL; |
| 632 | if (xt->sgl[0].size + dst_icg > chan->max_length || |
| 633 | xt->sgl[0].size + src_icg > chan->max_length) |
| 634 | return NULL; |
| 635 | } else { |
| 636 | if (dst_icg != 0 || src_icg != 0) |
| 637 | return NULL; |
| 638 | if (chan->max_length / xt->sgl[0].size < xt->numf) |
| 639 | return NULL; |
| 640 | if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf)) |
| 641 | return NULL; |
| 642 | } |
| 643 | |
| 644 | desc = axi_dmac_alloc_desc(1); |
| 645 | if (!desc) |
| 646 | return NULL; |
| 647 | |
| 648 | if (axi_dmac_src_is_mem(chan)) { |
| 649 | desc->sg[0].src_addr = xt->src_start; |
| 650 | desc->sg[0].src_stride = xt->sgl[0].size + src_icg; |
| 651 | } |
| 652 | |
| 653 | if (axi_dmac_dest_is_mem(chan)) { |
| 654 | desc->sg[0].dest_addr = xt->dst_start; |
| 655 | desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg; |
| 656 | } |
| 657 | |
| 658 | if (chan->hw_2d) { |
| 659 | desc->sg[0].x_len = xt->sgl[0].size; |
| 660 | desc->sg[0].y_len = xt->numf; |
| 661 | } else { |
| 662 | desc->sg[0].x_len = xt->sgl[0].size * xt->numf; |
| 663 | desc->sg[0].y_len = 1; |
| 664 | } |
| 665 | |
| 666 | if (flags & DMA_CYCLIC) |
| 667 | desc->cyclic = true; |
| 668 | |
| 669 | return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| 670 | } |
| 671 | |
| 672 | static void axi_dmac_free_chan_resources(struct dma_chan *c) |
| 673 | { |
| 674 | vchan_free_chan_resources(to_virt_chan(c)); |
| 675 | } |
| 676 | |
| 677 | static void axi_dmac_desc_free(struct virt_dma_desc *vdesc) |
| 678 | { |
| 679 | kfree(container_of(vdesc, struct axi_dmac_desc, vdesc)); |
| 680 | } |
| 681 | |
| 682 | static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg) |
| 683 | { |
| 684 | switch (reg) { |
| 685 | case AXI_DMAC_REG_IRQ_MASK: |
| 686 | case AXI_DMAC_REG_IRQ_SOURCE: |
| 687 | case AXI_DMAC_REG_IRQ_PENDING: |
| 688 | case AXI_DMAC_REG_CTRL: |
| 689 | case AXI_DMAC_REG_TRANSFER_ID: |
| 690 | case AXI_DMAC_REG_START_TRANSFER: |
| 691 | case AXI_DMAC_REG_FLAGS: |
| 692 | case AXI_DMAC_REG_DEST_ADDRESS: |
| 693 | case AXI_DMAC_REG_SRC_ADDRESS: |
| 694 | case AXI_DMAC_REG_X_LENGTH: |
| 695 | case AXI_DMAC_REG_Y_LENGTH: |
| 696 | case AXI_DMAC_REG_DEST_STRIDE: |
| 697 | case AXI_DMAC_REG_SRC_STRIDE: |
| 698 | case AXI_DMAC_REG_TRANSFER_DONE: |
| 699 | case AXI_DMAC_REG_ACTIVE_TRANSFER_ID: |
| 700 | case AXI_DMAC_REG_STATUS: |
| 701 | case AXI_DMAC_REG_CURRENT_SRC_ADDR: |
| 702 | case AXI_DMAC_REG_CURRENT_DEST_ADDR: |
| 703 | case AXI_DMAC_REG_PARTIAL_XFER_LEN: |
| 704 | case AXI_DMAC_REG_PARTIAL_XFER_ID: |
| 705 | return true; |
| 706 | default: |
| 707 | return false; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | static const struct regmap_config axi_dmac_regmap_config = { |
| 712 | .reg_bits = 32, |
| 713 | .val_bits = 32, |
| 714 | .reg_stride = 4, |
| 715 | .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID, |
| 716 | .readable_reg = axi_dmac_regmap_rdwr, |
| 717 | .writeable_reg = axi_dmac_regmap_rdwr, |
| 718 | }; |
| 719 | |
| 720 | /* |
| 721 | * The configuration stored in the devicetree matches the configuration |
| 722 | * parameters of the peripheral instance and allows the driver to know which |
| 723 | * features are implemented and how it should behave. |
| 724 | */ |
| 725 | static int axi_dmac_parse_chan_dt(struct device_node *of_chan, |
| 726 | struct axi_dmac_chan *chan) |
| 727 | { |
| 728 | u32 val; |
| 729 | int ret; |
| 730 | |
| 731 | ret = of_property_read_u32(of_chan, "reg", &val); |
| 732 | if (ret) |
| 733 | return ret; |
| 734 | |
| 735 | /* We only support 1 channel for now */ |
| 736 | if (val != 0) |
| 737 | return -EINVAL; |
| 738 | |
| 739 | ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val); |
| 740 | if (ret) |
| 741 | return ret; |
| 742 | if (val > AXI_DMAC_BUS_TYPE_FIFO) |
| 743 | return -EINVAL; |
| 744 | chan->src_type = val; |
| 745 | |
| 746 | ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val); |
| 747 | if (ret) |
| 748 | return ret; |
| 749 | if (val > AXI_DMAC_BUS_TYPE_FIFO) |
| 750 | return -EINVAL; |
| 751 | chan->dest_type = val; |
| 752 | |
| 753 | ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val); |
| 754 | if (ret) |
| 755 | return ret; |
| 756 | chan->src_width = val / 8; |
| 757 | |
| 758 | ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val); |
| 759 | if (ret) |
| 760 | return ret; |
| 761 | chan->dest_width = val / 8; |
| 762 | |
| 763 | chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1; |
| 764 | |
| 765 | if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) |
| 766 | chan->direction = DMA_MEM_TO_MEM; |
| 767 | else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) |
| 768 | chan->direction = DMA_MEM_TO_DEV; |
| 769 | else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan)) |
| 770 | chan->direction = DMA_DEV_TO_MEM; |
| 771 | else |
| 772 | chan->direction = DMA_DEV_TO_DEV; |
| 773 | |
| 774 | return 0; |
| 775 | } |
| 776 | |
| 777 | static int axi_dmac_detect_caps(struct axi_dmac *dmac) |
| 778 | { |
| 779 | struct axi_dmac_chan *chan = &dmac->chan; |
| 780 | unsigned int version; |
| 781 | |
| 782 | version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION); |
| 783 | |
| 784 | axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC); |
| 785 | if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC) |
| 786 | chan->hw_cyclic = true; |
| 787 | |
| 788 | axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1); |
| 789 | if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1) |
| 790 | chan->hw_2d = true; |
| 791 | |
| 792 | axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff); |
| 793 | chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); |
| 794 | if (chan->max_length != UINT_MAX) |
| 795 | chan->max_length++; |
| 796 | |
| 797 | axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff); |
| 798 | if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 && |
| 799 | chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) { |
| 800 | dev_err(dmac->dma_dev.dev, |
| 801 | "Destination memory-mapped interface not supported."); |
| 802 | return -ENODEV; |
| 803 | } |
| 804 | |
| 805 | axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff); |
| 806 | if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 && |
| 807 | chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) { |
| 808 | dev_err(dmac->dma_dev.dev, |
| 809 | "Source memory-mapped interface not supported."); |
| 810 | return -ENODEV; |
| 811 | } |
| 812 | |
| 813 | if (version >= ADI_AXI_PCORE_VER(4, 2, 'a')) |
| 814 | chan->hw_partial_xfer = true; |
| 815 | |
| 816 | if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) { |
| 817 | axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00); |
| 818 | chan->length_align_mask = |
| 819 | axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH); |
| 820 | } else { |
| 821 | chan->length_align_mask = chan->address_align_mask; |
| 822 | } |
| 823 | |
| 824 | return 0; |
| 825 | } |
| 826 | |
| 827 | static int axi_dmac_probe(struct platform_device *pdev) |
| 828 | { |
| 829 | struct device_node *of_channels, *of_chan; |
| 830 | struct dma_device *dma_dev; |
| 831 | struct axi_dmac *dmac; |
| 832 | struct resource *res; |
| 833 | struct regmap *regmap; |
| 834 | int ret; |
| 835 | |
| 836 | dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); |
| 837 | if (!dmac) |
| 838 | return -ENOMEM; |
| 839 | |
| 840 | dmac->irq = platform_get_irq(pdev, 0); |
| 841 | if (dmac->irq < 0) |
| 842 | return dmac->irq; |
| 843 | if (dmac->irq == 0) |
| 844 | return -EINVAL; |
| 845 | |
| 846 | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 847 | dmac->base = devm_ioremap_resource(&pdev->dev, res); |
| 848 | if (IS_ERR(dmac->base)) |
| 849 | return PTR_ERR(dmac->base); |
| 850 | |
| 851 | dmac->clk = devm_clk_get(&pdev->dev, NULL); |
| 852 | if (IS_ERR(dmac->clk)) |
| 853 | return PTR_ERR(dmac->clk); |
| 854 | |
| 855 | INIT_LIST_HEAD(&dmac->chan.active_descs); |
| 856 | |
| 857 | of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels"); |
| 858 | if (of_channels == NULL) |
| 859 | return -ENODEV; |
| 860 | |
| 861 | for_each_child_of_node(of_channels, of_chan) { |
| 862 | ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan); |
| 863 | if (ret) { |
| 864 | of_node_put(of_chan); |
| 865 | of_node_put(of_channels); |
| 866 | return -EINVAL; |
| 867 | } |
| 868 | } |
| 869 | of_node_put(of_channels); |
| 870 | |
| 871 | pdev->dev.dma_parms = &dmac->dma_parms; |
| 872 | dma_set_max_seg_size(&pdev->dev, UINT_MAX); |
| 873 | |
| 874 | dma_dev = &dmac->dma_dev; |
| 875 | dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); |
| 876 | dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); |
| 877 | dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask); |
| 878 | dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources; |
| 879 | dma_dev->device_tx_status = dma_cookie_status; |
| 880 | dma_dev->device_issue_pending = axi_dmac_issue_pending; |
| 881 | dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg; |
| 882 | dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic; |
| 883 | dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved; |
| 884 | dma_dev->device_terminate_all = axi_dmac_terminate_all; |
| 885 | dma_dev->device_synchronize = axi_dmac_synchronize; |
| 886 | dma_dev->dev = &pdev->dev; |
| 887 | dma_dev->chancnt = 1; |
| 888 | dma_dev->src_addr_widths = BIT(dmac->chan.src_width); |
| 889 | dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width); |
| 890 | dma_dev->directions = BIT(dmac->chan.direction); |
| 891 | dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; |
| 892 | INIT_LIST_HEAD(&dma_dev->channels); |
| 893 | |
| 894 | dmac->chan.vchan.desc_free = axi_dmac_desc_free; |
| 895 | vchan_init(&dmac->chan.vchan, dma_dev); |
| 896 | |
| 897 | ret = clk_prepare_enable(dmac->clk); |
| 898 | if (ret < 0) |
| 899 | return ret; |
| 900 | |
| 901 | ret = axi_dmac_detect_caps(dmac); |
| 902 | if (ret) |
| 903 | goto err_clk_disable; |
| 904 | |
| 905 | dma_dev->copy_align = (dmac->chan.address_align_mask + 1); |
| 906 | |
| 907 | axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00); |
| 908 | |
| 909 | ret = dma_async_device_register(dma_dev); |
| 910 | if (ret) |
| 911 | goto err_clk_disable; |
| 912 | |
| 913 | ret = of_dma_controller_register(pdev->dev.of_node, |
| 914 | of_dma_xlate_by_chan_id, dma_dev); |
| 915 | if (ret) |
| 916 | goto err_unregister_device; |
| 917 | |
| 918 | ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED, |
| 919 | dev_name(&pdev->dev), dmac); |
| 920 | if (ret) |
| 921 | goto err_unregister_of; |
| 922 | |
| 923 | platform_set_drvdata(pdev, dmac); |
| 924 | |
| 925 | regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base, |
| 926 | &axi_dmac_regmap_config); |
| 927 | if (IS_ERR(regmap)) { |
| 928 | ret = PTR_ERR(regmap); |
| 929 | goto err_free_irq; |
| 930 | } |
| 931 | |
| 932 | return 0; |
| 933 | |
| 934 | err_free_irq: |
| 935 | free_irq(dmac->irq, dmac); |
| 936 | err_unregister_of: |
| 937 | of_dma_controller_free(pdev->dev.of_node); |
| 938 | err_unregister_device: |
| 939 | dma_async_device_unregister(&dmac->dma_dev); |
| 940 | err_clk_disable: |
| 941 | clk_disable_unprepare(dmac->clk); |
| 942 | |
| 943 | return ret; |
| 944 | } |
| 945 | |
| 946 | static int axi_dmac_remove(struct platform_device *pdev) |
| 947 | { |
| 948 | struct axi_dmac *dmac = platform_get_drvdata(pdev); |
| 949 | |
| 950 | free_irq(dmac->irq, dmac); |
| 951 | of_dma_controller_free(pdev->dev.of_node); |
| 952 | tasklet_kill(&dmac->chan.vchan.task); |
| 953 | dma_async_device_unregister(&dmac->dma_dev); |
| 954 | clk_disable_unprepare(dmac->clk); |
| 955 | |
| 956 | return 0; |
| 957 | } |
| 958 | |
| 959 | static const struct of_device_id axi_dmac_of_match_table[] = { |
| 960 | { .compatible = "adi,axi-dmac-1.00.a" }, |
| 961 | { }, |
| 962 | }; |
| 963 | MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table); |
| 964 | |
| 965 | static struct platform_driver axi_dmac_driver = { |
| 966 | .driver = { |
| 967 | .name = "dma-axi-dmac", |
| 968 | .of_match_table = axi_dmac_of_match_table, |
| 969 | }, |
| 970 | .probe = axi_dmac_probe, |
| 971 | .remove = axi_dmac_remove, |
| 972 | }; |
| 973 | module_platform_driver(axi_dmac_driver); |
| 974 | |
| 975 | MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); |
| 976 | MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller"); |
| 977 | MODULE_LICENSE("GPL v2"); |