blob: 92e646d597eaa11aac9c15e3b72a52a743127298 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (C) 2011-2012 Red Hat, Inc.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "persistent-data/dm-btree.h"
9#include "persistent-data/dm-space-map.h"
10#include "persistent-data/dm-space-map-disk.h"
11#include "persistent-data/dm-transaction-manager.h"
12
13#include <linux/list.h>
14#include <linux/device-mapper.h>
15#include <linux/workqueue.h>
16
17/*--------------------------------------------------------------------------
18 * As far as the metadata goes, there is:
19 *
20 * - A superblock in block zero, taking up fewer than 512 bytes for
21 * atomic writes.
22 *
23 * - A space map managing the metadata blocks.
24 *
25 * - A space map managing the data blocks.
26 *
27 * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28 *
29 * - A hierarchical btree, with 2 levels which effectively maps (thin
30 * dev id, virtual block) -> block_time. Block time is a 64-bit
31 * field holding the time in the low 24 bits, and block in the top 48
32 * bits.
33 *
34 * BTrees consist solely of btree_nodes, that fill a block. Some are
35 * internal nodes, as such their values are a __le64 pointing to other
36 * nodes. Leaf nodes can store data of any reasonable size (ie. much
37 * smaller than the block size). The nodes consist of the header,
38 * followed by an array of keys, followed by an array of values. We have
39 * to binary search on the keys so they're all held together to help the
40 * cpu cache.
41 *
42 * Space maps have 2 btrees:
43 *
44 * - One maps a uint64_t onto a struct index_entry. Which points to a
45 * bitmap block, and has some details about how many free entries there
46 * are etc.
47 *
48 * - The bitmap blocks have a header (for the checksum). Then the rest
49 * of the block is pairs of bits. With the meaning being:
50 *
51 * 0 - ref count is 0
52 * 1 - ref count is 1
53 * 2 - ref count is 2
54 * 3 - ref count is higher than 2
55 *
56 * - If the count is higher than 2 then the ref count is entered in a
57 * second btree that directly maps the block_address to a uint32_t ref
58 * count.
59 *
60 * The space map metadata variant doesn't have a bitmaps btree. Instead
61 * it has one single blocks worth of index_entries. This avoids
62 * recursive issues with the bitmap btree needing to allocate space in
63 * order to insert. With a small data block size such as 64k the
64 * metadata support data devices that are hundreds of terrabytes.
65 *
66 * The space maps allocate space linearly from front to back. Space that
67 * is freed in a transaction is never recycled within that transaction.
68 * To try and avoid fragmenting _free_ space the allocator always goes
69 * back and fills in gaps.
70 *
71 * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72 * from the block manager.
73 *--------------------------------------------------------------------------*/
74
75#define DM_MSG_PREFIX "thin metadata"
76
77#define THIN_SUPERBLOCK_MAGIC 27022010
78#define THIN_SUPERBLOCK_LOCATION 0
79#define THIN_VERSION 2
80#define SECTOR_TO_BLOCK_SHIFT 3
81
82/*
83 * For btree insert:
84 * 3 for btree insert +
85 * 2 for btree lookup used within space map
86 * For btree remove:
87 * 2 for shadow spine +
88 * 4 for rebalance 3 child node
89 */
90#define THIN_MAX_CONCURRENT_LOCKS 6
91
92/* This should be plenty */
93#define SPACE_MAP_ROOT_SIZE 128
94
95/*
96 * Little endian on-disk superblock and device details.
97 */
98struct thin_disk_superblock {
99 __le32 csum; /* Checksum of superblock except for this field. */
100 __le32 flags;
101 __le64 blocknr; /* This block number, dm_block_t. */
102
103 __u8 uuid[16];
104 __le64 magic;
105 __le32 version;
106 __le32 time;
107
108 __le64 trans_id;
109
110 /*
111 * Root held by userspace transactions.
112 */
113 __le64 held_root;
114
115 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117
118 /*
119 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 */
121 __le64 data_mapping_root;
122
123 /*
124 * Device detail root mapping dev_id -> device_details
125 */
126 __le64 device_details_root;
127
128 __le32 data_block_size; /* In 512-byte sectors. */
129
130 __le32 metadata_block_size; /* In 512-byte sectors. */
131 __le64 metadata_nr_blocks;
132
133 __le32 compat_flags;
134 __le32 compat_ro_flags;
135 __le32 incompat_flags;
136} __packed;
137
138struct disk_device_details {
139 __le64 mapped_blocks;
140 __le64 transaction_id; /* When created. */
141 __le32 creation_time;
142 __le32 snapshotted_time;
143} __packed;
144
145struct dm_pool_metadata {
146 struct hlist_node hash;
147
148 struct block_device *bdev;
149 struct dm_block_manager *bm;
150 struct dm_space_map *metadata_sm;
151 struct dm_space_map *data_sm;
152 struct dm_transaction_manager *tm;
153 struct dm_transaction_manager *nb_tm;
154
155 /*
156 * Two-level btree.
157 * First level holds thin_dev_t.
158 * Second level holds mappings.
159 */
160 struct dm_btree_info info;
161
162 /*
163 * Non-blocking version of the above.
164 */
165 struct dm_btree_info nb_info;
166
167 /*
168 * Just the top level for deleting whole devices.
169 */
170 struct dm_btree_info tl_info;
171
172 /*
173 * Just the bottom level for creating new devices.
174 */
175 struct dm_btree_info bl_info;
176
177 /*
178 * Describes the device details btree.
179 */
180 struct dm_btree_info details_info;
181
182 struct rw_semaphore root_lock;
183 uint32_t time;
184 dm_block_t root;
185 dm_block_t details_root;
186 struct list_head thin_devices;
187 uint64_t trans_id;
188 unsigned long flags;
189 sector_t data_block_size;
190
191 /*
192 * Pre-commit callback.
193 *
194 * This allows the thin provisioning target to run a callback before
195 * the metadata are committed.
196 */
197 dm_pool_pre_commit_fn pre_commit_fn;
198 void *pre_commit_context;
199
200 /*
201 * We reserve a section of the metadata for commit overhead.
202 * All reported space does *not* include this.
203 */
204 dm_block_t metadata_reserve;
205
206 /*
207 * Set if a transaction has to be aborted but the attempt to roll back
208 * to the previous (good) transaction failed. The only pool metadata
209 * operation possible in this state is the closing of the device.
210 */
211 bool fail_io:1;
212
213 /*
214 * Set once a thin-pool has been accessed through one of the interfaces
215 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 * thin-pool message, metadata snapshots, etc).
217 */
218 bool in_service:1;
219
220 /*
221 * Reading the space map roots can fail, so we read it into these
222 * buffers before the superblock is locked and updated.
223 */
224 __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226};
227
228struct dm_thin_device {
229 struct list_head list;
230 struct dm_pool_metadata *pmd;
231 dm_thin_id id;
232
233 int open_count;
234 bool changed:1;
235 bool aborted_with_changes:1;
236 uint64_t mapped_blocks;
237 uint64_t transaction_id;
238 uint32_t creation_time;
239 uint32_t snapshotted_time;
240};
241
242/*----------------------------------------------------------------
243 * superblock validator
244 *--------------------------------------------------------------*/
245
246#define SUPERBLOCK_CSUM_XOR 160774
247
248static void sb_prepare_for_write(struct dm_block_validator *v,
249 struct dm_block *b,
250 size_t block_size)
251{
252 struct thin_disk_superblock *disk_super = dm_block_data(b);
253
254 disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 block_size - sizeof(__le32),
257 SUPERBLOCK_CSUM_XOR));
258}
259
260static int sb_check(struct dm_block_validator *v,
261 struct dm_block *b,
262 size_t block_size)
263{
264 struct thin_disk_superblock *disk_super = dm_block_data(b);
265 __le32 csum_le;
266
267 if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 DMERR("sb_check failed: blocknr %llu: "
269 "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 (unsigned long long)dm_block_location(b));
271 return -ENOTBLK;
272 }
273
274 if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 DMERR("sb_check failed: magic %llu: "
276 "wanted %llu", le64_to_cpu(disk_super->magic),
277 (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 return -EILSEQ;
279 }
280
281 csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 block_size - sizeof(__le32),
283 SUPERBLOCK_CSUM_XOR));
284 if (csum_le != disk_super->csum) {
285 DMERR("sb_check failed: csum %u: wanted %u",
286 le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 return -EILSEQ;
288 }
289
290 return 0;
291}
292
293static struct dm_block_validator sb_validator = {
294 .name = "superblock",
295 .prepare_for_write = sb_prepare_for_write,
296 .check = sb_check
297};
298
299/*----------------------------------------------------------------
300 * Methods for the btree value types
301 *--------------------------------------------------------------*/
302
303static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304{
305 return (b << 24) | t;
306}
307
308static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309{
310 *b = v >> 24;
311 *t = v & ((1 << 24) - 1);
312}
313
314static void data_block_inc(void *context, const void *value_le)
315{
316 struct dm_space_map *sm = context;
317 __le64 v_le;
318 uint64_t b;
319 uint32_t t;
320
321 memcpy(&v_le, value_le, sizeof(v_le));
322 unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 dm_sm_inc_block(sm, b);
324}
325
326static void data_block_dec(void *context, const void *value_le)
327{
328 struct dm_space_map *sm = context;
329 __le64 v_le;
330 uint64_t b;
331 uint32_t t;
332
333 memcpy(&v_le, value_le, sizeof(v_le));
334 unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 dm_sm_dec_block(sm, b);
336}
337
338static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339{
340 __le64 v1_le, v2_le;
341 uint64_t b1, b2;
342 uint32_t t;
343
344 memcpy(&v1_le, value1_le, sizeof(v1_le));
345 memcpy(&v2_le, value2_le, sizeof(v2_le));
346 unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348
349 return b1 == b2;
350}
351
352static void subtree_inc(void *context, const void *value)
353{
354 struct dm_btree_info *info = context;
355 __le64 root_le;
356 uint64_t root;
357
358 memcpy(&root_le, value, sizeof(root_le));
359 root = le64_to_cpu(root_le);
360 dm_tm_inc(info->tm, root);
361}
362
363static void subtree_dec(void *context, const void *value)
364{
365 struct dm_btree_info *info = context;
366 __le64 root_le;
367 uint64_t root;
368
369 memcpy(&root_le, value, sizeof(root_le));
370 root = le64_to_cpu(root_le);
371 if (dm_btree_del(info, root))
372 DMERR("btree delete failed");
373}
374
375static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376{
377 __le64 v1_le, v2_le;
378 memcpy(&v1_le, value1_le, sizeof(v1_le));
379 memcpy(&v2_le, value2_le, sizeof(v2_le));
380
381 return v1_le == v2_le;
382}
383
384/*----------------------------------------------------------------*/
385
386/*
387 * Variant that is used for in-core only changes or code that
388 * shouldn't put the pool in service on its own (e.g. commit).
389 */
390static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 __acquires(pmd->root_lock)
392{
393 down_write(&pmd->root_lock);
394}
395
396static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397{
398 pmd_write_lock_in_core(pmd);
399 if (unlikely(!pmd->in_service))
400 pmd->in_service = true;
401}
402
403static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 __releases(pmd->root_lock)
405{
406 up_write(&pmd->root_lock);
407}
408
409/*----------------------------------------------------------------*/
410
411static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 struct dm_block **sblock)
413{
414 return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 &sb_validator, sblock);
416}
417
418static int superblock_lock(struct dm_pool_metadata *pmd,
419 struct dm_block **sblock)
420{
421 return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 &sb_validator, sblock);
423}
424
425static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426{
427 int r;
428 unsigned i;
429 struct dm_block *b;
430 __le64 *data_le, zero = cpu_to_le64(0);
431 unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432
433 /*
434 * We can't use a validator here - it may be all zeroes.
435 */
436 r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 if (r)
438 return r;
439
440 data_le = dm_block_data(b);
441 *result = 1;
442 for (i = 0; i < block_size; i++) {
443 if (data_le[i] != zero) {
444 *result = 0;
445 break;
446 }
447 }
448
449 dm_bm_unlock(b);
450
451 return 0;
452}
453
454static void __setup_btree_details(struct dm_pool_metadata *pmd)
455{
456 pmd->info.tm = pmd->tm;
457 pmd->info.levels = 2;
458 pmd->info.value_type.context = pmd->data_sm;
459 pmd->info.value_type.size = sizeof(__le64);
460 pmd->info.value_type.inc = data_block_inc;
461 pmd->info.value_type.dec = data_block_dec;
462 pmd->info.value_type.equal = data_block_equal;
463
464 memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 pmd->nb_info.tm = pmd->nb_tm;
466
467 pmd->tl_info.tm = pmd->tm;
468 pmd->tl_info.levels = 1;
469 pmd->tl_info.value_type.context = &pmd->bl_info;
470 pmd->tl_info.value_type.size = sizeof(__le64);
471 pmd->tl_info.value_type.inc = subtree_inc;
472 pmd->tl_info.value_type.dec = subtree_dec;
473 pmd->tl_info.value_type.equal = subtree_equal;
474
475 pmd->bl_info.tm = pmd->tm;
476 pmd->bl_info.levels = 1;
477 pmd->bl_info.value_type.context = pmd->data_sm;
478 pmd->bl_info.value_type.size = sizeof(__le64);
479 pmd->bl_info.value_type.inc = data_block_inc;
480 pmd->bl_info.value_type.dec = data_block_dec;
481 pmd->bl_info.value_type.equal = data_block_equal;
482
483 pmd->details_info.tm = pmd->tm;
484 pmd->details_info.levels = 1;
485 pmd->details_info.value_type.context = NULL;
486 pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 pmd->details_info.value_type.inc = NULL;
488 pmd->details_info.value_type.dec = NULL;
489 pmd->details_info.value_type.equal = NULL;
490}
491
492static int save_sm_roots(struct dm_pool_metadata *pmd)
493{
494 int r;
495 size_t len;
496
497 r = dm_sm_root_size(pmd->metadata_sm, &len);
498 if (r < 0)
499 return r;
500
501 r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 if (r < 0)
503 return r;
504
505 r = dm_sm_root_size(pmd->data_sm, &len);
506 if (r < 0)
507 return r;
508
509 return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510}
511
512static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 struct thin_disk_superblock *disk)
514{
515 memcpy(&disk->metadata_space_map_root,
516 &pmd->metadata_space_map_root,
517 sizeof(pmd->metadata_space_map_root));
518
519 memcpy(&disk->data_space_map_root,
520 &pmd->data_space_map_root,
521 sizeof(pmd->data_space_map_root));
522}
523
524static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525{
526 int r;
527 struct dm_block *sblock;
528 struct thin_disk_superblock *disk_super;
529 sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530
531 if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 bdev_size = THIN_METADATA_MAX_SECTORS;
533
534 r = dm_sm_commit(pmd->data_sm);
535 if (r < 0)
536 return r;
537
538 r = dm_tm_pre_commit(pmd->tm);
539 if (r < 0)
540 return r;
541
542 r = save_sm_roots(pmd);
543 if (r < 0)
544 return r;
545
546 r = superblock_lock_zero(pmd, &sblock);
547 if (r)
548 return r;
549
550 disk_super = dm_block_data(sblock);
551 disk_super->flags = 0;
552 memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 disk_super->version = cpu_to_le32(THIN_VERSION);
555 disk_super->time = 0;
556 disk_super->trans_id = 0;
557 disk_super->held_root = 0;
558
559 copy_sm_roots(pmd, disk_super);
560
561 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566
567 return dm_tm_commit(pmd->tm, sblock);
568}
569
570static int __format_metadata(struct dm_pool_metadata *pmd)
571{
572 int r;
573
574 r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 &pmd->tm, &pmd->metadata_sm);
576 if (r < 0) {
577 DMERR("tm_create_with_sm failed");
578 return r;
579 }
580
581 pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 if (IS_ERR(pmd->data_sm)) {
583 DMERR("sm_disk_create failed");
584 r = PTR_ERR(pmd->data_sm);
585 goto bad_cleanup_tm;
586 }
587
588 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 if (!pmd->nb_tm) {
590 DMERR("could not create non-blocking clone tm");
591 r = -ENOMEM;
592 goto bad_cleanup_data_sm;
593 }
594
595 __setup_btree_details(pmd);
596
597 r = dm_btree_empty(&pmd->info, &pmd->root);
598 if (r < 0)
599 goto bad_cleanup_nb_tm;
600
601 r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 if (r < 0) {
603 DMERR("couldn't create devices root");
604 goto bad_cleanup_nb_tm;
605 }
606
607 r = __write_initial_superblock(pmd);
608 if (r)
609 goto bad_cleanup_nb_tm;
610
611 return 0;
612
613bad_cleanup_nb_tm:
614 dm_tm_destroy(pmd->nb_tm);
615bad_cleanup_data_sm:
616 dm_sm_destroy(pmd->data_sm);
617bad_cleanup_tm:
618 dm_tm_destroy(pmd->tm);
619 dm_sm_destroy(pmd->metadata_sm);
620
621 return r;
622}
623
624static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 struct dm_pool_metadata *pmd)
626{
627 uint32_t features;
628
629 features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 if (features) {
631 DMERR("could not access metadata due to unsupported optional features (%lx).",
632 (unsigned long)features);
633 return -EINVAL;
634 }
635
636 /*
637 * Check for read-only metadata to skip the following RDWR checks.
638 */
639 if (get_disk_ro(pmd->bdev->bd_disk))
640 return 0;
641
642 features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 if (features) {
644 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 (unsigned long)features);
646 return -EINVAL;
647 }
648
649 return 0;
650}
651
652static int __open_metadata(struct dm_pool_metadata *pmd)
653{
654 int r;
655 struct dm_block *sblock;
656 struct thin_disk_superblock *disk_super;
657
658 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 &sb_validator, &sblock);
660 if (r < 0) {
661 DMERR("couldn't read superblock");
662 return r;
663 }
664
665 disk_super = dm_block_data(sblock);
666
667 /* Verify the data block size hasn't changed */
668 if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 DMERR("changing the data block size (from %u to %llu) is not supported",
670 le32_to_cpu(disk_super->data_block_size),
671 (unsigned long long)pmd->data_block_size);
672 r = -EINVAL;
673 goto bad_unlock_sblock;
674 }
675
676 r = __check_incompat_features(disk_super, pmd);
677 if (r < 0)
678 goto bad_unlock_sblock;
679
680 r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 disk_super->metadata_space_map_root,
682 sizeof(disk_super->metadata_space_map_root),
683 &pmd->tm, &pmd->metadata_sm);
684 if (r < 0) {
685 DMERR("tm_open_with_sm failed");
686 goto bad_unlock_sblock;
687 }
688
689 pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 sizeof(disk_super->data_space_map_root));
691 if (IS_ERR(pmd->data_sm)) {
692 DMERR("sm_disk_open failed");
693 r = PTR_ERR(pmd->data_sm);
694 goto bad_cleanup_tm;
695 }
696
697 pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 if (!pmd->nb_tm) {
699 DMERR("could not create non-blocking clone tm");
700 r = -ENOMEM;
701 goto bad_cleanup_data_sm;
702 }
703
704 /*
705 * For pool metadata opening process, root setting is redundant
706 * because it will be set again in __begin_transaction(). But dm
707 * pool aborting process really needs to get last transaction's
708 * root to avoid accessing broken btree.
709 */
710 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
711 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
712
713 __setup_btree_details(pmd);
714 dm_bm_unlock(sblock);
715
716 return 0;
717
718bad_cleanup_data_sm:
719 dm_sm_destroy(pmd->data_sm);
720bad_cleanup_tm:
721 dm_tm_destroy(pmd->tm);
722 dm_sm_destroy(pmd->metadata_sm);
723bad_unlock_sblock:
724 dm_bm_unlock(sblock);
725
726 return r;
727}
728
729static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
730{
731 int r, unformatted;
732
733 r = __superblock_all_zeroes(pmd->bm, &unformatted);
734 if (r)
735 return r;
736
737 if (unformatted)
738 return format_device ? __format_metadata(pmd) : -EPERM;
739
740 return __open_metadata(pmd);
741}
742
743static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
744{
745 int r;
746
747 pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
748 THIN_MAX_CONCURRENT_LOCKS);
749 if (IS_ERR(pmd->bm)) {
750 DMERR("could not create block manager");
751 r = PTR_ERR(pmd->bm);
752 pmd->bm = NULL;
753 return r;
754 }
755
756 r = __open_or_format_metadata(pmd, format_device);
757 if (r) {
758 dm_block_manager_destroy(pmd->bm);
759 pmd->bm = NULL;
760 }
761
762 return r;
763}
764
765static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd,
766 bool destroy_bm)
767{
768 dm_sm_destroy(pmd->data_sm);
769 dm_sm_destroy(pmd->metadata_sm);
770 dm_tm_destroy(pmd->nb_tm);
771 dm_tm_destroy(pmd->tm);
772 if (destroy_bm)
773 dm_block_manager_destroy(pmd->bm);
774}
775
776static int __begin_transaction(struct dm_pool_metadata *pmd)
777{
778 int r;
779 struct thin_disk_superblock *disk_super;
780 struct dm_block *sblock;
781
782 /*
783 * We re-read the superblock every time. Shouldn't need to do this
784 * really.
785 */
786 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
787 &sb_validator, &sblock);
788 if (r)
789 return r;
790
791 disk_super = dm_block_data(sblock);
792 pmd->time = le32_to_cpu(disk_super->time);
793 pmd->root = le64_to_cpu(disk_super->data_mapping_root);
794 pmd->details_root = le64_to_cpu(disk_super->device_details_root);
795 pmd->trans_id = le64_to_cpu(disk_super->trans_id);
796 pmd->flags = le32_to_cpu(disk_super->flags);
797 pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
798
799 dm_bm_unlock(sblock);
800 return 0;
801}
802
803static int __write_changed_details(struct dm_pool_metadata *pmd)
804{
805 int r;
806 struct dm_thin_device *td, *tmp;
807 struct disk_device_details details;
808 uint64_t key;
809
810 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
811 if (!td->changed)
812 continue;
813
814 key = td->id;
815
816 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
817 details.transaction_id = cpu_to_le64(td->transaction_id);
818 details.creation_time = cpu_to_le32(td->creation_time);
819 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
820 __dm_bless_for_disk(&details);
821
822 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
823 &key, &details, &pmd->details_root);
824 if (r)
825 return r;
826
827 if (td->open_count)
828 td->changed = 0;
829 else {
830 list_del(&td->list);
831 kfree(td);
832 }
833 }
834
835 return 0;
836}
837
838static int __commit_transaction(struct dm_pool_metadata *pmd)
839{
840 int r;
841 struct thin_disk_superblock *disk_super;
842 struct dm_block *sblock;
843
844 /*
845 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
846 */
847 BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
848 BUG_ON(!rwsem_is_locked(&pmd->root_lock));
849
850 if (unlikely(!pmd->in_service))
851 return 0;
852
853 if (pmd->pre_commit_fn) {
854 r = pmd->pre_commit_fn(pmd->pre_commit_context);
855 if (r < 0) {
856 DMERR("pre-commit callback failed");
857 return r;
858 }
859 }
860
861 r = __write_changed_details(pmd);
862 if (r < 0)
863 return r;
864
865 r = dm_sm_commit(pmd->data_sm);
866 if (r < 0)
867 return r;
868
869 r = dm_tm_pre_commit(pmd->tm);
870 if (r < 0)
871 return r;
872
873 r = save_sm_roots(pmd);
874 if (r < 0)
875 return r;
876
877 r = superblock_lock(pmd, &sblock);
878 if (r)
879 return r;
880
881 disk_super = dm_block_data(sblock);
882 disk_super->time = cpu_to_le32(pmd->time);
883 disk_super->data_mapping_root = cpu_to_le64(pmd->root);
884 disk_super->device_details_root = cpu_to_le64(pmd->details_root);
885 disk_super->trans_id = cpu_to_le64(pmd->trans_id);
886 disk_super->flags = cpu_to_le32(pmd->flags);
887
888 copy_sm_roots(pmd, disk_super);
889
890 return dm_tm_commit(pmd->tm, sblock);
891}
892
893static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
894{
895 int r;
896 dm_block_t total;
897 dm_block_t max_blocks = 4096; /* 16M */
898
899 r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
900 if (r) {
901 DMERR("could not get size of metadata device");
902 pmd->metadata_reserve = max_blocks;
903 } else
904 pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
905}
906
907struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
908 sector_t data_block_size,
909 bool format_device)
910{
911 int r;
912 struct dm_pool_metadata *pmd;
913
914 pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
915 if (!pmd) {
916 DMERR("could not allocate metadata struct");
917 return ERR_PTR(-ENOMEM);
918 }
919
920 init_rwsem(&pmd->root_lock);
921 pmd->time = 0;
922 INIT_LIST_HEAD(&pmd->thin_devices);
923 pmd->fail_io = false;
924 pmd->in_service = false;
925 pmd->bdev = bdev;
926 pmd->data_block_size = data_block_size;
927 pmd->pre_commit_fn = NULL;
928 pmd->pre_commit_context = NULL;
929
930 r = __create_persistent_data_objects(pmd, format_device);
931 if (r) {
932 kfree(pmd);
933 return ERR_PTR(r);
934 }
935
936 r = __begin_transaction(pmd);
937 if (r < 0) {
938 if (dm_pool_metadata_close(pmd) < 0)
939 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
940 return ERR_PTR(r);
941 }
942
943 __set_metadata_reserve(pmd);
944
945 return pmd;
946}
947
948int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
949{
950 int r;
951 unsigned open_devices = 0;
952 struct dm_thin_device *td, *tmp;
953
954 down_read(&pmd->root_lock);
955 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
956 if (td->open_count)
957 open_devices++;
958 else {
959 list_del(&td->list);
960 kfree(td);
961 }
962 }
963 up_read(&pmd->root_lock);
964
965 if (open_devices) {
966 DMERR("attempt to close pmd when %u device(s) are still open",
967 open_devices);
968 return -EBUSY;
969 }
970
971 pmd_write_lock_in_core(pmd);
972 if (!pmd->fail_io && !dm_bm_is_read_only(pmd->bm)) {
973 r = __commit_transaction(pmd);
974 if (r < 0)
975 DMWARN("%s: __commit_transaction() failed, error = %d",
976 __func__, r);
977 }
978 pmd_write_unlock(pmd);
979 if (!pmd->fail_io)
980 __destroy_persistent_data_objects(pmd, true);
981
982 kfree(pmd);
983 return 0;
984}
985
986/*
987 * __open_device: Returns @td corresponding to device with id @dev,
988 * creating it if @create is set and incrementing @td->open_count.
989 * On failure, @td is undefined.
990 */
991static int __open_device(struct dm_pool_metadata *pmd,
992 dm_thin_id dev, int create,
993 struct dm_thin_device **td)
994{
995 int r, changed = 0;
996 struct dm_thin_device *td2;
997 uint64_t key = dev;
998 struct disk_device_details details_le;
999
1000 /*
1001 * If the device is already open, return it.
1002 */
1003 list_for_each_entry(td2, &pmd->thin_devices, list)
1004 if (td2->id == dev) {
1005 /*
1006 * May not create an already-open device.
1007 */
1008 if (create)
1009 return -EEXIST;
1010
1011 td2->open_count++;
1012 *td = td2;
1013 return 0;
1014 }
1015
1016 /*
1017 * Check the device exists.
1018 */
1019 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1020 &key, &details_le);
1021 if (r) {
1022 if (r != -ENODATA || !create)
1023 return r;
1024
1025 /*
1026 * Create new device.
1027 */
1028 changed = 1;
1029 details_le.mapped_blocks = 0;
1030 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1031 details_le.creation_time = cpu_to_le32(pmd->time);
1032 details_le.snapshotted_time = cpu_to_le32(pmd->time);
1033 }
1034
1035 *td = kmalloc(sizeof(**td), GFP_NOIO);
1036 if (!*td)
1037 return -ENOMEM;
1038
1039 (*td)->pmd = pmd;
1040 (*td)->id = dev;
1041 (*td)->open_count = 1;
1042 (*td)->changed = changed;
1043 (*td)->aborted_with_changes = false;
1044 (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1045 (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1046 (*td)->creation_time = le32_to_cpu(details_le.creation_time);
1047 (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1048
1049 list_add(&(*td)->list, &pmd->thin_devices);
1050
1051 return 0;
1052}
1053
1054static void __close_device(struct dm_thin_device *td)
1055{
1056 --td->open_count;
1057}
1058
1059static int __create_thin(struct dm_pool_metadata *pmd,
1060 dm_thin_id dev)
1061{
1062 int r;
1063 dm_block_t dev_root;
1064 uint64_t key = dev;
1065 struct disk_device_details details_le;
1066 struct dm_thin_device *td;
1067 __le64 value;
1068
1069 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1070 &key, &details_le);
1071 if (!r)
1072 return -EEXIST;
1073
1074 /*
1075 * Create an empty btree for the mappings.
1076 */
1077 r = dm_btree_empty(&pmd->bl_info, &dev_root);
1078 if (r)
1079 return r;
1080
1081 /*
1082 * Insert it into the main mapping tree.
1083 */
1084 value = cpu_to_le64(dev_root);
1085 __dm_bless_for_disk(&value);
1086 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1087 if (r) {
1088 dm_btree_del(&pmd->bl_info, dev_root);
1089 return r;
1090 }
1091
1092 r = __open_device(pmd, dev, 1, &td);
1093 if (r) {
1094 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1095 dm_btree_del(&pmd->bl_info, dev_root);
1096 return r;
1097 }
1098 __close_device(td);
1099
1100 return r;
1101}
1102
1103int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1104{
1105 int r = -EINVAL;
1106
1107 pmd_write_lock(pmd);
1108 if (!pmd->fail_io)
1109 r = __create_thin(pmd, dev);
1110 pmd_write_unlock(pmd);
1111
1112 return r;
1113}
1114
1115static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1116 struct dm_thin_device *snap,
1117 dm_thin_id origin, uint32_t time)
1118{
1119 int r;
1120 struct dm_thin_device *td;
1121
1122 r = __open_device(pmd, origin, 0, &td);
1123 if (r)
1124 return r;
1125
1126 td->changed = 1;
1127 td->snapshotted_time = time;
1128
1129 snap->mapped_blocks = td->mapped_blocks;
1130 snap->snapshotted_time = time;
1131 __close_device(td);
1132
1133 return 0;
1134}
1135
1136static int __create_snap(struct dm_pool_metadata *pmd,
1137 dm_thin_id dev, dm_thin_id origin)
1138{
1139 int r;
1140 dm_block_t origin_root;
1141 uint64_t key = origin, dev_key = dev;
1142 struct dm_thin_device *td;
1143 struct disk_device_details details_le;
1144 __le64 value;
1145
1146 /* check this device is unused */
1147 r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1148 &dev_key, &details_le);
1149 if (!r)
1150 return -EEXIST;
1151
1152 /* find the mapping tree for the origin */
1153 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1154 if (r)
1155 return r;
1156 origin_root = le64_to_cpu(value);
1157
1158 /* clone the origin, an inc will do */
1159 dm_tm_inc(pmd->tm, origin_root);
1160
1161 /* insert into the main mapping tree */
1162 value = cpu_to_le64(origin_root);
1163 __dm_bless_for_disk(&value);
1164 key = dev;
1165 r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1166 if (r) {
1167 dm_tm_dec(pmd->tm, origin_root);
1168 return r;
1169 }
1170
1171 pmd->time++;
1172
1173 r = __open_device(pmd, dev, 1, &td);
1174 if (r)
1175 goto bad;
1176
1177 r = __set_snapshot_details(pmd, td, origin, pmd->time);
1178 __close_device(td);
1179
1180 if (r)
1181 goto bad;
1182
1183 return 0;
1184
1185bad:
1186 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1187 dm_btree_remove(&pmd->details_info, pmd->details_root,
1188 &key, &pmd->details_root);
1189 return r;
1190}
1191
1192int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1193 dm_thin_id dev,
1194 dm_thin_id origin)
1195{
1196 int r = -EINVAL;
1197
1198 pmd_write_lock(pmd);
1199 if (!pmd->fail_io)
1200 r = __create_snap(pmd, dev, origin);
1201 pmd_write_unlock(pmd);
1202
1203 return r;
1204}
1205
1206static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1207{
1208 int r;
1209 uint64_t key = dev;
1210 struct dm_thin_device *td;
1211
1212 /* TODO: failure should mark the transaction invalid */
1213 r = __open_device(pmd, dev, 0, &td);
1214 if (r)
1215 return r;
1216
1217 if (td->open_count > 1) {
1218 __close_device(td);
1219 return -EBUSY;
1220 }
1221
1222 list_del(&td->list);
1223 kfree(td);
1224 r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1225 &key, &pmd->details_root);
1226 if (r)
1227 return r;
1228
1229 r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1230 if (r)
1231 return r;
1232
1233 return 0;
1234}
1235
1236int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1237 dm_thin_id dev)
1238{
1239 int r = -EINVAL;
1240
1241 pmd_write_lock(pmd);
1242 if (!pmd->fail_io)
1243 r = __delete_device(pmd, dev);
1244 pmd_write_unlock(pmd);
1245
1246 return r;
1247}
1248
1249int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1250 uint64_t current_id,
1251 uint64_t new_id)
1252{
1253 int r = -EINVAL;
1254
1255 pmd_write_lock(pmd);
1256
1257 if (pmd->fail_io)
1258 goto out;
1259
1260 if (pmd->trans_id != current_id) {
1261 DMERR("mismatched transaction id");
1262 goto out;
1263 }
1264
1265 pmd->trans_id = new_id;
1266 r = 0;
1267
1268out:
1269 pmd_write_unlock(pmd);
1270
1271 return r;
1272}
1273
1274int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1275 uint64_t *result)
1276{
1277 int r = -EINVAL;
1278
1279 down_read(&pmd->root_lock);
1280 if (!pmd->fail_io) {
1281 *result = pmd->trans_id;
1282 r = 0;
1283 }
1284 up_read(&pmd->root_lock);
1285
1286 return r;
1287}
1288
1289static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1290{
1291 int r, inc;
1292 struct thin_disk_superblock *disk_super;
1293 struct dm_block *copy, *sblock;
1294 dm_block_t held_root;
1295
1296 /*
1297 * We commit to ensure the btree roots which we increment in a
1298 * moment are up to date.
1299 */
1300 r = __commit_transaction(pmd);
1301 if (r < 0) {
1302 DMWARN("%s: __commit_transaction() failed, error = %d",
1303 __func__, r);
1304 return r;
1305 }
1306
1307 /*
1308 * Copy the superblock.
1309 */
1310 dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1311 r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1312 &sb_validator, &copy, &inc);
1313 if (r)
1314 return r;
1315
1316 BUG_ON(!inc);
1317
1318 held_root = dm_block_location(copy);
1319 disk_super = dm_block_data(copy);
1320
1321 if (le64_to_cpu(disk_super->held_root)) {
1322 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1323
1324 dm_tm_dec(pmd->tm, held_root);
1325 dm_tm_unlock(pmd->tm, copy);
1326 return -EBUSY;
1327 }
1328
1329 /*
1330 * Wipe the spacemap since we're not publishing this.
1331 */
1332 memset(&disk_super->data_space_map_root, 0,
1333 sizeof(disk_super->data_space_map_root));
1334 memset(&disk_super->metadata_space_map_root, 0,
1335 sizeof(disk_super->metadata_space_map_root));
1336
1337 /*
1338 * Increment the data structures that need to be preserved.
1339 */
1340 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1341 dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1342 dm_tm_unlock(pmd->tm, copy);
1343
1344 /*
1345 * Write the held root into the superblock.
1346 */
1347 r = superblock_lock(pmd, &sblock);
1348 if (r) {
1349 dm_tm_dec(pmd->tm, held_root);
1350 return r;
1351 }
1352
1353 disk_super = dm_block_data(sblock);
1354 disk_super->held_root = cpu_to_le64(held_root);
1355 dm_bm_unlock(sblock);
1356 return 0;
1357}
1358
1359int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1360{
1361 int r = -EINVAL;
1362
1363 pmd_write_lock(pmd);
1364 if (!pmd->fail_io)
1365 r = __reserve_metadata_snap(pmd);
1366 pmd_write_unlock(pmd);
1367
1368 return r;
1369}
1370
1371static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1372{
1373 int r;
1374 struct thin_disk_superblock *disk_super;
1375 struct dm_block *sblock, *copy;
1376 dm_block_t held_root;
1377
1378 r = superblock_lock(pmd, &sblock);
1379 if (r)
1380 return r;
1381
1382 disk_super = dm_block_data(sblock);
1383 held_root = le64_to_cpu(disk_super->held_root);
1384 disk_super->held_root = cpu_to_le64(0);
1385
1386 dm_bm_unlock(sblock);
1387
1388 if (!held_root) {
1389 DMWARN("No pool metadata snapshot found: nothing to release.");
1390 return -EINVAL;
1391 }
1392
1393 r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1394 if (r)
1395 return r;
1396
1397 disk_super = dm_block_data(copy);
1398 dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1399 dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1400 dm_sm_dec_block(pmd->metadata_sm, held_root);
1401
1402 dm_tm_unlock(pmd->tm, copy);
1403
1404 return 0;
1405}
1406
1407int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1408{
1409 int r = -EINVAL;
1410
1411 pmd_write_lock(pmd);
1412 if (!pmd->fail_io)
1413 r = __release_metadata_snap(pmd);
1414 pmd_write_unlock(pmd);
1415
1416 return r;
1417}
1418
1419static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1420 dm_block_t *result)
1421{
1422 int r;
1423 struct thin_disk_superblock *disk_super;
1424 struct dm_block *sblock;
1425
1426 r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1427 &sb_validator, &sblock);
1428 if (r)
1429 return r;
1430
1431 disk_super = dm_block_data(sblock);
1432 *result = le64_to_cpu(disk_super->held_root);
1433
1434 dm_bm_unlock(sblock);
1435
1436 return 0;
1437}
1438
1439int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1440 dm_block_t *result)
1441{
1442 int r = -EINVAL;
1443
1444 down_read(&pmd->root_lock);
1445 if (!pmd->fail_io)
1446 r = __get_metadata_snap(pmd, result);
1447 up_read(&pmd->root_lock);
1448
1449 return r;
1450}
1451
1452int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1453 struct dm_thin_device **td)
1454{
1455 int r = -EINVAL;
1456
1457 pmd_write_lock_in_core(pmd);
1458 if (!pmd->fail_io)
1459 r = __open_device(pmd, dev, 0, td);
1460 pmd_write_unlock(pmd);
1461
1462 return r;
1463}
1464
1465int dm_pool_close_thin_device(struct dm_thin_device *td)
1466{
1467 pmd_write_lock_in_core(td->pmd);
1468 __close_device(td);
1469 pmd_write_unlock(td->pmd);
1470
1471 return 0;
1472}
1473
1474dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1475{
1476 return td->id;
1477}
1478
1479/*
1480 * Check whether @time (of block creation) is older than @td's last snapshot.
1481 * If so then the associated block is shared with the last snapshot device.
1482 * Any block on a device created *after* the device last got snapshotted is
1483 * necessarily not shared.
1484 */
1485static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1486{
1487 return td->snapshotted_time > time;
1488}
1489
1490static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1491 struct dm_thin_lookup_result *result)
1492{
1493 uint64_t block_time = 0;
1494 dm_block_t exception_block;
1495 uint32_t exception_time;
1496
1497 block_time = le64_to_cpu(value);
1498 unpack_block_time(block_time, &exception_block, &exception_time);
1499 result->block = exception_block;
1500 result->shared = __snapshotted_since(td, exception_time);
1501}
1502
1503static int __find_block(struct dm_thin_device *td, dm_block_t block,
1504 int can_issue_io, struct dm_thin_lookup_result *result)
1505{
1506 int r;
1507 __le64 value;
1508 struct dm_pool_metadata *pmd = td->pmd;
1509 dm_block_t keys[2] = { td->id, block };
1510 struct dm_btree_info *info;
1511
1512 if (can_issue_io) {
1513 info = &pmd->info;
1514 } else
1515 info = &pmd->nb_info;
1516
1517 r = dm_btree_lookup(info, pmd->root, keys, &value);
1518 if (!r)
1519 unpack_lookup_result(td, value, result);
1520
1521 return r;
1522}
1523
1524int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1525 int can_issue_io, struct dm_thin_lookup_result *result)
1526{
1527 int r;
1528 struct dm_pool_metadata *pmd = td->pmd;
1529
1530 down_read(&pmd->root_lock);
1531 if (pmd->fail_io) {
1532 up_read(&pmd->root_lock);
1533 return -EINVAL;
1534 }
1535
1536 r = __find_block(td, block, can_issue_io, result);
1537
1538 up_read(&pmd->root_lock);
1539 return r;
1540}
1541
1542static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1543 dm_block_t *vblock,
1544 struct dm_thin_lookup_result *result)
1545{
1546 int r;
1547 __le64 value;
1548 struct dm_pool_metadata *pmd = td->pmd;
1549 dm_block_t keys[2] = { td->id, block };
1550
1551 r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1552 if (!r)
1553 unpack_lookup_result(td, value, result);
1554
1555 return r;
1556}
1557
1558static int __find_mapped_range(struct dm_thin_device *td,
1559 dm_block_t begin, dm_block_t end,
1560 dm_block_t *thin_begin, dm_block_t *thin_end,
1561 dm_block_t *pool_begin, bool *maybe_shared)
1562{
1563 int r;
1564 dm_block_t pool_end;
1565 struct dm_thin_lookup_result lookup;
1566
1567 if (end < begin)
1568 return -ENODATA;
1569
1570 r = __find_next_mapped_block(td, begin, &begin, &lookup);
1571 if (r)
1572 return r;
1573
1574 if (begin >= end)
1575 return -ENODATA;
1576
1577 *thin_begin = begin;
1578 *pool_begin = lookup.block;
1579 *maybe_shared = lookup.shared;
1580
1581 begin++;
1582 pool_end = *pool_begin + 1;
1583 while (begin != end) {
1584 r = __find_block(td, begin, true, &lookup);
1585 if (r) {
1586 if (r == -ENODATA)
1587 break;
1588 else
1589 return r;
1590 }
1591
1592 if ((lookup.block != pool_end) ||
1593 (lookup.shared != *maybe_shared))
1594 break;
1595
1596 pool_end++;
1597 begin++;
1598 }
1599
1600 *thin_end = begin;
1601 return 0;
1602}
1603
1604int dm_thin_find_mapped_range(struct dm_thin_device *td,
1605 dm_block_t begin, dm_block_t end,
1606 dm_block_t *thin_begin, dm_block_t *thin_end,
1607 dm_block_t *pool_begin, bool *maybe_shared)
1608{
1609 int r = -EINVAL;
1610 struct dm_pool_metadata *pmd = td->pmd;
1611
1612 down_read(&pmd->root_lock);
1613 if (!pmd->fail_io) {
1614 r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1615 pool_begin, maybe_shared);
1616 }
1617 up_read(&pmd->root_lock);
1618
1619 return r;
1620}
1621
1622static int __insert(struct dm_thin_device *td, dm_block_t block,
1623 dm_block_t data_block)
1624{
1625 int r, inserted;
1626 __le64 value;
1627 struct dm_pool_metadata *pmd = td->pmd;
1628 dm_block_t keys[2] = { td->id, block };
1629
1630 value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1631 __dm_bless_for_disk(&value);
1632
1633 r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1634 &pmd->root, &inserted);
1635 if (r)
1636 return r;
1637
1638 td->changed = 1;
1639 if (inserted)
1640 td->mapped_blocks++;
1641
1642 return 0;
1643}
1644
1645int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1646 dm_block_t data_block)
1647{
1648 int r = -EINVAL;
1649
1650 pmd_write_lock(td->pmd);
1651 if (!td->pmd->fail_io)
1652 r = __insert(td, block, data_block);
1653 pmd_write_unlock(td->pmd);
1654
1655 return r;
1656}
1657
1658static int __remove(struct dm_thin_device *td, dm_block_t block)
1659{
1660 int r;
1661 struct dm_pool_metadata *pmd = td->pmd;
1662 dm_block_t keys[2] = { td->id, block };
1663
1664 r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1665 if (r)
1666 return r;
1667
1668 td->mapped_blocks--;
1669 td->changed = 1;
1670
1671 return 0;
1672}
1673
1674static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1675{
1676 int r;
1677 unsigned count, total_count = 0;
1678 struct dm_pool_metadata *pmd = td->pmd;
1679 dm_block_t keys[1] = { td->id };
1680 __le64 value;
1681 dm_block_t mapping_root;
1682
1683 /*
1684 * Find the mapping tree
1685 */
1686 r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1687 if (r)
1688 return r;
1689
1690 /*
1691 * Remove from the mapping tree, taking care to inc the
1692 * ref count so it doesn't get deleted.
1693 */
1694 mapping_root = le64_to_cpu(value);
1695 dm_tm_inc(pmd->tm, mapping_root);
1696 r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1697 if (r)
1698 return r;
1699
1700 /*
1701 * Remove leaves stops at the first unmapped entry, so we have to
1702 * loop round finding mapped ranges.
1703 */
1704 while (begin < end) {
1705 r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1706 if (r == -ENODATA)
1707 break;
1708
1709 if (r)
1710 return r;
1711
1712 if (begin >= end)
1713 break;
1714
1715 r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1716 if (r)
1717 return r;
1718
1719 total_count += count;
1720 }
1721
1722 td->mapped_blocks -= total_count;
1723 td->changed = 1;
1724
1725 /*
1726 * Reinsert the mapping tree.
1727 */
1728 value = cpu_to_le64(mapping_root);
1729 __dm_bless_for_disk(&value);
1730 return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1731}
1732
1733int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1734{
1735 int r = -EINVAL;
1736
1737 pmd_write_lock(td->pmd);
1738 if (!td->pmd->fail_io)
1739 r = __remove(td, block);
1740 pmd_write_unlock(td->pmd);
1741
1742 return r;
1743}
1744
1745int dm_thin_remove_range(struct dm_thin_device *td,
1746 dm_block_t begin, dm_block_t end)
1747{
1748 int r = -EINVAL;
1749
1750 pmd_write_lock(td->pmd);
1751 if (!td->pmd->fail_io)
1752 r = __remove_range(td, begin, end);
1753 pmd_write_unlock(td->pmd);
1754
1755 return r;
1756}
1757
1758int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1759{
1760 int r;
1761 uint32_t ref_count;
1762
1763 down_read(&pmd->root_lock);
1764 r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1765 if (!r)
1766 *result = (ref_count > 1);
1767 up_read(&pmd->root_lock);
1768
1769 return r;
1770}
1771
1772int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1773{
1774 int r = 0;
1775
1776 pmd_write_lock(pmd);
1777 for (; b != e; b++) {
1778 r = dm_sm_inc_block(pmd->data_sm, b);
1779 if (r)
1780 break;
1781 }
1782 pmd_write_unlock(pmd);
1783
1784 return r;
1785}
1786
1787int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1788{
1789 int r = 0;
1790
1791 pmd_write_lock(pmd);
1792 for (; b != e; b++) {
1793 r = dm_sm_dec_block(pmd->data_sm, b);
1794 if (r)
1795 break;
1796 }
1797 pmd_write_unlock(pmd);
1798
1799 return r;
1800}
1801
1802bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1803{
1804 int r;
1805
1806 down_read(&td->pmd->root_lock);
1807 r = td->changed;
1808 up_read(&td->pmd->root_lock);
1809
1810 return r;
1811}
1812
1813bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1814{
1815 bool r = false;
1816 struct dm_thin_device *td, *tmp;
1817
1818 down_read(&pmd->root_lock);
1819 list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1820 if (td->changed) {
1821 r = td->changed;
1822 break;
1823 }
1824 }
1825 up_read(&pmd->root_lock);
1826
1827 return r;
1828}
1829
1830bool dm_thin_aborted_changes(struct dm_thin_device *td)
1831{
1832 bool r;
1833
1834 down_read(&td->pmd->root_lock);
1835 r = td->aborted_with_changes;
1836 up_read(&td->pmd->root_lock);
1837
1838 return r;
1839}
1840
1841int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1842{
1843 int r = -EINVAL;
1844
1845 pmd_write_lock(pmd);
1846 if (!pmd->fail_io)
1847 r = dm_sm_new_block(pmd->data_sm, result);
1848 pmd_write_unlock(pmd);
1849
1850 return r;
1851}
1852
1853int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1854{
1855 int r = -EINVAL;
1856
1857 /*
1858 * Care is taken to not have commit be what
1859 * triggers putting the thin-pool in-service.
1860 */
1861 pmd_write_lock_in_core(pmd);
1862 if (pmd->fail_io)
1863 goto out;
1864
1865 r = __commit_transaction(pmd);
1866 if (r < 0)
1867 goto out;
1868
1869 /*
1870 * Open the next transaction.
1871 */
1872 r = __begin_transaction(pmd);
1873out:
1874 pmd_write_unlock(pmd);
1875 return r;
1876}
1877
1878static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1879{
1880 struct dm_thin_device *td;
1881
1882 list_for_each_entry(td, &pmd->thin_devices, list)
1883 td->aborted_with_changes = td->changed;
1884}
1885
1886int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1887{
1888 int r = -EINVAL;
1889 struct dm_block_manager *old_bm = NULL, *new_bm = NULL;
1890
1891 /* fail_io is double-checked with pmd->root_lock held below */
1892 if (unlikely(pmd->fail_io))
1893 return r;
1894
1895 /*
1896 * Replacement block manager (new_bm) is created and old_bm destroyed outside of
1897 * pmd root_lock to avoid ABBA deadlock that would result (due to life-cycle of
1898 * shrinker associated with the block manager's bufio client vs pmd root_lock).
1899 * - must take shrinker_rwsem without holding pmd->root_lock
1900 */
1901 new_bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
1902 THIN_MAX_CONCURRENT_LOCKS);
1903
1904 pmd_write_lock(pmd);
1905 if (pmd->fail_io) {
1906 pmd_write_unlock(pmd);
1907 goto out;
1908 }
1909
1910 __set_abort_with_changes_flags(pmd);
1911 __destroy_persistent_data_objects(pmd, false);
1912 old_bm = pmd->bm;
1913 if (IS_ERR(new_bm)) {
1914 DMERR("could not create block manager during abort");
1915 pmd->bm = NULL;
1916 r = PTR_ERR(new_bm);
1917 goto out_unlock;
1918 }
1919
1920 pmd->bm = new_bm;
1921 r = __open_or_format_metadata(pmd, false);
1922 if (r) {
1923 pmd->bm = NULL;
1924 goto out_unlock;
1925 }
1926 new_bm = NULL;
1927out_unlock:
1928 if (r)
1929 pmd->fail_io = true;
1930 pmd_write_unlock(pmd);
1931 dm_block_manager_destroy(old_bm);
1932out:
1933 if (new_bm && !IS_ERR(new_bm))
1934 dm_block_manager_destroy(new_bm);
1935
1936 return r;
1937}
1938
1939int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1940{
1941 int r = -EINVAL;
1942
1943 down_read(&pmd->root_lock);
1944 if (!pmd->fail_io)
1945 r = dm_sm_get_nr_free(pmd->data_sm, result);
1946 up_read(&pmd->root_lock);
1947
1948 return r;
1949}
1950
1951int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1952 dm_block_t *result)
1953{
1954 int r = -EINVAL;
1955
1956 down_read(&pmd->root_lock);
1957 if (!pmd->fail_io)
1958 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1959
1960 if (!r) {
1961 if (*result < pmd->metadata_reserve)
1962 *result = 0;
1963 else
1964 *result -= pmd->metadata_reserve;
1965 }
1966 up_read(&pmd->root_lock);
1967
1968 return r;
1969}
1970
1971int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1972 dm_block_t *result)
1973{
1974 int r = -EINVAL;
1975
1976 down_read(&pmd->root_lock);
1977 if (!pmd->fail_io)
1978 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1979 up_read(&pmd->root_lock);
1980
1981 return r;
1982}
1983
1984int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1985{
1986 int r = -EINVAL;
1987
1988 down_read(&pmd->root_lock);
1989 if (!pmd->fail_io)
1990 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1991 up_read(&pmd->root_lock);
1992
1993 return r;
1994}
1995
1996int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1997{
1998 int r = -EINVAL;
1999 struct dm_pool_metadata *pmd = td->pmd;
2000
2001 down_read(&pmd->root_lock);
2002 if (!pmd->fail_io) {
2003 *result = td->mapped_blocks;
2004 r = 0;
2005 }
2006 up_read(&pmd->root_lock);
2007
2008 return r;
2009}
2010
2011static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
2012{
2013 int r;
2014 __le64 value_le;
2015 dm_block_t thin_root;
2016 struct dm_pool_metadata *pmd = td->pmd;
2017
2018 r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
2019 if (r)
2020 return r;
2021
2022 thin_root = le64_to_cpu(value_le);
2023
2024 return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
2025}
2026
2027int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
2028 dm_block_t *result)
2029{
2030 int r = -EINVAL;
2031 struct dm_pool_metadata *pmd = td->pmd;
2032
2033 down_read(&pmd->root_lock);
2034 if (!pmd->fail_io)
2035 r = __highest_block(td, result);
2036 up_read(&pmd->root_lock);
2037
2038 return r;
2039}
2040
2041static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
2042{
2043 int r;
2044 dm_block_t old_count;
2045
2046 r = dm_sm_get_nr_blocks(sm, &old_count);
2047 if (r)
2048 return r;
2049
2050 if (new_count == old_count)
2051 return 0;
2052
2053 if (new_count < old_count) {
2054 DMERR("cannot reduce size of space map");
2055 return -EINVAL;
2056 }
2057
2058 return dm_sm_extend(sm, new_count - old_count);
2059}
2060
2061int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2062{
2063 int r = -EINVAL;
2064
2065 pmd_write_lock(pmd);
2066 if (!pmd->fail_io)
2067 r = __resize_space_map(pmd->data_sm, new_count);
2068 pmd_write_unlock(pmd);
2069
2070 return r;
2071}
2072
2073int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2074{
2075 int r = -EINVAL;
2076
2077 pmd_write_lock(pmd);
2078 if (!pmd->fail_io) {
2079 r = __resize_space_map(pmd->metadata_sm, new_count);
2080 if (!r)
2081 __set_metadata_reserve(pmd);
2082 }
2083 pmd_write_unlock(pmd);
2084
2085 return r;
2086}
2087
2088void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2089{
2090 pmd_write_lock_in_core(pmd);
2091 dm_bm_set_read_only(pmd->bm);
2092 pmd_write_unlock(pmd);
2093}
2094
2095void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2096{
2097 pmd_write_lock_in_core(pmd);
2098 dm_bm_set_read_write(pmd->bm);
2099 pmd_write_unlock(pmd);
2100}
2101
2102int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2103 dm_block_t threshold,
2104 dm_sm_threshold_fn fn,
2105 void *context)
2106{
2107 int r = -EINVAL;
2108
2109 pmd_write_lock_in_core(pmd);
2110 if (!pmd->fail_io) {
2111 r = dm_sm_register_threshold_callback(pmd->metadata_sm,
2112 threshold, fn, context);
2113 }
2114 pmd_write_unlock(pmd);
2115
2116 return r;
2117}
2118
2119void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2120 dm_pool_pre_commit_fn fn,
2121 void *context)
2122{
2123 pmd_write_lock_in_core(pmd);
2124 pmd->pre_commit_fn = fn;
2125 pmd->pre_commit_context = context;
2126 pmd_write_unlock(pmd);
2127}
2128
2129int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2130{
2131 int r = -EINVAL;
2132 struct dm_block *sblock;
2133 struct thin_disk_superblock *disk_super;
2134
2135 pmd_write_lock(pmd);
2136 if (pmd->fail_io)
2137 goto out;
2138
2139 pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2140
2141 r = superblock_lock(pmd, &sblock);
2142 if (r) {
2143 DMERR("couldn't lock superblock");
2144 goto out;
2145 }
2146
2147 disk_super = dm_block_data(sblock);
2148 disk_super->flags = cpu_to_le32(pmd->flags);
2149
2150 dm_bm_unlock(sblock);
2151out:
2152 pmd_write_unlock(pmd);
2153 return r;
2154}
2155
2156bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2157{
2158 bool needs_check;
2159
2160 down_read(&pmd->root_lock);
2161 needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2162 up_read(&pmd->root_lock);
2163
2164 return needs_check;
2165}
2166
2167void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2168{
2169 down_read(&pmd->root_lock);
2170 if (!pmd->fail_io)
2171 dm_tm_issue_prefetches(pmd->tm);
2172 up_read(&pmd->root_lock);
2173}