blob: ddb3ed0483d94eea54c086f0a4ab943881a4aaae [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Derived from arch/i386/kernel/irq.c
4 * Copyright (C) 1992 Linus Torvalds
5 * Adapted from arch/i386 by Gary Thomas
6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Updated and modified by Cort Dougan <cort@fsmlabs.com>
8 * Copyright (C) 1996-2001 Cort Dougan
9 * Adapted for Power Macintosh by Paul Mackerras
10 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
11 *
12 * This file contains the code used to make IRQ descriptions in the
13 * device tree to actual irq numbers on an interrupt controller
14 * driver.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/device.h>
20#include <linux/errno.h>
21#include <linux/list.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_irq.h>
25#include <linux/string.h>
26#include <linux/slab.h>
27
28/**
29 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
30 * @dev: Device node of the device whose interrupt is to be mapped
31 * @index: Index of the interrupt to map
32 *
33 * This function is a wrapper that chains of_irq_parse_one() and
34 * irq_create_of_mapping() to make things easier to callers
35 */
36unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
37{
38 struct of_phandle_args oirq;
39
40 if (of_irq_parse_one(dev, index, &oirq))
41 return 0;
42
43 return irq_create_of_mapping(&oirq);
44}
45EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
46
47/**
48 * of_irq_find_parent - Given a device node, find its interrupt parent node
49 * @child: pointer to device node
50 *
51 * Return: A pointer to the interrupt parent node, or NULL if the interrupt
52 * parent could not be determined.
53 */
54struct device_node *of_irq_find_parent(struct device_node *child)
55{
56 struct device_node *p;
57 phandle parent;
58
59 if (!of_node_get(child))
60 return NULL;
61
62 do {
63 if (of_property_read_u32(child, "interrupt-parent", &parent)) {
64 p = of_get_parent(child);
65 } else {
66 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
67 p = of_node_get(of_irq_dflt_pic);
68 else
69 p = of_find_node_by_phandle(parent);
70 }
71 of_node_put(child);
72 child = p;
73 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
74
75 return p;
76}
77EXPORT_SYMBOL_GPL(of_irq_find_parent);
78
79/**
80 * of_irq_parse_raw - Low level interrupt tree parsing
81 * @addr: address specifier (start of "reg" property of the device) in be32 format
82 * @out_irq: structure of_phandle_args updated by this function
83 *
84 * This function is a low-level interrupt tree walking function. It
85 * can be used to do a partial walk with synthetized reg and interrupts
86 * properties, for example when resolving PCI interrupts when no device
87 * node exist for the parent. It takes an interrupt specifier structure as
88 * input, walks the tree looking for any interrupt-map properties, translates
89 * the specifier for each map, and then returns the translated map.
90 *
91 * Return: 0 on success and a negative number on error
92 */
93int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
94{
95 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
96 __be32 initial_match_array[MAX_PHANDLE_ARGS];
97 const __be32 *match_array = initial_match_array;
98 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
99 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
100 int imaplen, match, i, rc = -EINVAL;
101
102#ifdef DEBUG
103 of_print_phandle_args("of_irq_parse_raw: ", out_irq);
104#endif
105
106 ipar = of_node_get(out_irq->np);
107
108 /* First get the #interrupt-cells property of the current cursor
109 * that tells us how to interpret the passed-in intspec. If there
110 * is none, we are nice and just walk up the tree
111 */
112 do {
113 if (!of_property_read_u32(ipar, "#interrupt-cells", &intsize))
114 break;
115 tnode = ipar;
116 ipar = of_irq_find_parent(ipar);
117 of_node_put(tnode);
118 } while (ipar);
119 if (ipar == NULL) {
120 pr_debug(" -> no parent found !\n");
121 goto fail;
122 }
123
124 pr_debug("of_irq_parse_raw: ipar=%pOF, size=%d\n", ipar, intsize);
125
126 if (out_irq->args_count != intsize)
127 goto fail;
128
129 /* Look for this #address-cells. We have to implement the old linux
130 * trick of looking for the parent here as some device-trees rely on it
131 */
132 old = of_node_get(ipar);
133 do {
134 tmp = of_get_property(old, "#address-cells", NULL);
135 tnode = of_get_parent(old);
136 of_node_put(old);
137 old = tnode;
138 } while (old && tmp == NULL);
139 of_node_put(old);
140 old = NULL;
141 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
142
143 pr_debug(" -> addrsize=%d\n", addrsize);
144
145 /* Range check so that the temporary buffer doesn't overflow */
146 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS)) {
147 rc = -EFAULT;
148 goto fail;
149 }
150
151 /* Precalculate the match array - this simplifies match loop */
152 for (i = 0; i < addrsize; i++)
153 initial_match_array[i] = addr ? addr[i] : 0;
154 for (i = 0; i < intsize; i++)
155 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
156
157 /* Now start the actual "proper" walk of the interrupt tree */
158 while (ipar != NULL) {
159 /* Now check if cursor is an interrupt-controller and if it is
160 * then we are done
161 */
162 if (of_property_read_bool(ipar, "interrupt-controller")) {
163 pr_debug(" -> got it !\n");
164 return 0;
165 }
166
167 /*
168 * interrupt-map parsing does not work without a reg
169 * property when #address-cells != 0
170 */
171 if (addrsize && !addr) {
172 pr_debug(" -> no reg passed in when needed !\n");
173 goto fail;
174 }
175
176 /* Now look for an interrupt-map */
177 imap = of_get_property(ipar, "interrupt-map", &imaplen);
178 /* No interrupt map, check for an interrupt parent */
179 if (imap == NULL) {
180 pr_debug(" -> no map, getting parent\n");
181 newpar = of_irq_find_parent(ipar);
182 goto skiplevel;
183 }
184 imaplen /= sizeof(u32);
185
186 /* Look for a mask */
187 imask = of_get_property(ipar, "interrupt-map-mask", NULL);
188 if (!imask)
189 imask = dummy_imask;
190
191 /* Parse interrupt-map */
192 match = 0;
193 while (imaplen > (addrsize + intsize + 1) && !match) {
194 /* Compare specifiers */
195 match = 1;
196 for (i = 0; i < (addrsize + intsize); i++, imaplen--)
197 match &= !((match_array[i] ^ *imap++) & imask[i]);
198
199 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
200
201 /* Get the interrupt parent */
202 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
203 newpar = of_node_get(of_irq_dflt_pic);
204 else
205 newpar = of_find_node_by_phandle(be32_to_cpup(imap));
206 imap++;
207 --imaplen;
208
209 /* Check if not found */
210 if (newpar == NULL) {
211 pr_debug(" -> imap parent not found !\n");
212 goto fail;
213 }
214
215 if (!of_device_is_available(newpar))
216 match = 0;
217
218 /* Get #interrupt-cells and #address-cells of new
219 * parent
220 */
221 if (of_property_read_u32(newpar, "#interrupt-cells",
222 &newintsize)) {
223 pr_debug(" -> parent lacks #interrupt-cells!\n");
224 goto fail;
225 }
226 if (of_property_read_u32(newpar, "#address-cells",
227 &newaddrsize))
228 newaddrsize = 0;
229
230 pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
231 newintsize, newaddrsize);
232
233 /* Check for malformed properties */
234 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS)
235 || (imaplen < (newaddrsize + newintsize))) {
236 rc = -EFAULT;
237 goto fail;
238 }
239
240 imap += newaddrsize + newintsize;
241 imaplen -= newaddrsize + newintsize;
242
243 pr_debug(" -> imaplen=%d\n", imaplen);
244 }
245 if (!match)
246 goto fail;
247
248 /*
249 * Successfully parsed an interrrupt-map translation; copy new
250 * interrupt specifier into the out_irq structure
251 */
252 match_array = imap - newaddrsize - newintsize;
253 for (i = 0; i < newintsize; i++)
254 out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
255 out_irq->args_count = intsize = newintsize;
256 addrsize = newaddrsize;
257
258 skiplevel:
259 /* Iterate again with new parent */
260 out_irq->np = newpar;
261 pr_debug(" -> new parent: %pOF\n", newpar);
262 of_node_put(ipar);
263 ipar = newpar;
264 newpar = NULL;
265 }
266 rc = -ENOENT; /* No interrupt-map found */
267
268 fail:
269 of_node_put(ipar);
270 of_node_put(newpar);
271
272 return rc;
273}
274EXPORT_SYMBOL_GPL(of_irq_parse_raw);
275
276/**
277 * of_irq_parse_one - Resolve an interrupt for a device
278 * @device: the device whose interrupt is to be resolved
279 * @index: index of the interrupt to resolve
280 * @out_irq: structure of_phandle_args filled by this function
281 *
282 * This function resolves an interrupt for a node by walking the interrupt tree,
283 * finding which interrupt controller node it is attached to, and returning the
284 * interrupt specifier that can be used to retrieve a Linux IRQ number.
285 */
286int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
287{
288 struct device_node *p;
289 const __be32 *addr;
290 u32 intsize;
291 int i, res, addr_len;
292 __be32 addr_buf[3] = { 0 };
293
294 pr_debug("of_irq_parse_one: dev=%pOF, index=%d\n", device, index);
295
296 /* OldWorld mac stuff is "special", handle out of line */
297 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
298 return of_irq_parse_oldworld(device, index, out_irq);
299
300 /* Get the reg property (if any) */
301 addr_len = 0;
302 addr = of_get_property(device, "reg", &addr_len);
303
304 /* Prevent out-of-bounds read in case of longer interrupt parent address size */
305 if (addr_len > sizeof(addr_buf))
306 addr_len = sizeof(addr_buf);
307 if (addr)
308 memcpy(addr_buf, addr, addr_len);
309
310 /* Try the new-style interrupts-extended first */
311 res = of_parse_phandle_with_args(device, "interrupts-extended",
312 "#interrupt-cells", index, out_irq);
313 if (!res)
314 return of_irq_parse_raw(addr_buf, out_irq);
315
316 /* Look for the interrupt parent. */
317 p = of_irq_find_parent(device);
318 if (p == NULL)
319 return -EINVAL;
320
321 /* Get size of interrupt specifier */
322 if (of_property_read_u32(p, "#interrupt-cells", &intsize)) {
323 res = -EINVAL;
324 goto out;
325 }
326
327 pr_debug(" parent=%pOF, intsize=%d\n", p, intsize);
328
329 /* Copy intspec into irq structure */
330 out_irq->np = p;
331 out_irq->args_count = intsize;
332 for (i = 0; i < intsize; i++) {
333 res = of_property_read_u32_index(device, "interrupts",
334 (index * intsize) + i,
335 out_irq->args + i);
336 if (res)
337 goto out;
338 }
339
340 pr_debug(" intspec=%d\n", *out_irq->args);
341
342
343 /* Check if there are any interrupt-map translations to process */
344 res = of_irq_parse_raw(addr_buf, out_irq);
345 out:
346 of_node_put(p);
347 return res;
348}
349EXPORT_SYMBOL_GPL(of_irq_parse_one);
350
351/**
352 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
353 * @dev: pointer to device tree node
354 * @index: zero-based index of the irq
355 * @r: pointer to resource structure to return result into.
356 */
357int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
358{
359 int irq = of_irq_get(dev, index);
360
361 if (irq < 0)
362 return irq;
363
364 /* Only dereference the resource if both the
365 * resource and the irq are valid. */
366 if (r && irq) {
367 const char *name = NULL;
368
369 memset(r, 0, sizeof(*r));
370 /*
371 * Get optional "interrupt-names" property to add a name
372 * to the resource.
373 */
374 of_property_read_string_index(dev, "interrupt-names", index,
375 &name);
376
377 r->start = r->end = irq;
378 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
379 r->name = name ? name : of_node_full_name(dev);
380 }
381
382 return irq;
383}
384EXPORT_SYMBOL_GPL(of_irq_to_resource);
385
386/**
387 * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
388 * @dev: pointer to device tree node
389 * @index: zero-based index of the IRQ
390 *
391 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
392 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
393 * of any other failure.
394 */
395int of_irq_get(struct device_node *dev, int index)
396{
397 int rc;
398 struct of_phandle_args oirq;
399 struct irq_domain *domain;
400
401 rc = of_irq_parse_one(dev, index, &oirq);
402 if (rc)
403 return rc;
404
405 domain = irq_find_host(oirq.np);
406 if (!domain)
407 return -EPROBE_DEFER;
408
409 return irq_create_of_mapping(&oirq);
410}
411EXPORT_SYMBOL_GPL(of_irq_get);
412
413/**
414 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
415 * @dev: pointer to device tree node
416 * @name: IRQ name
417 *
418 * Return: Linux IRQ number on success, or 0 on the IRQ mapping failure, or
419 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
420 * of any other failure.
421 */
422int of_irq_get_byname(struct device_node *dev, const char *name)
423{
424 int index;
425
426 if (unlikely(!name))
427 return -EINVAL;
428
429 index = of_property_match_string(dev, "interrupt-names", name);
430 if (index < 0)
431 return index;
432
433 return of_irq_get(dev, index);
434}
435EXPORT_SYMBOL_GPL(of_irq_get_byname);
436
437/**
438 * of_irq_count - Count the number of IRQs a node uses
439 * @dev: pointer to device tree node
440 */
441int of_irq_count(struct device_node *dev)
442{
443 struct of_phandle_args irq;
444 int nr = 0;
445
446 while (of_irq_parse_one(dev, nr, &irq) == 0)
447 nr++;
448
449 return nr;
450}
451
452/**
453 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
454 * @dev: pointer to device tree node
455 * @res: array of resources to fill in
456 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
457 *
458 * Return: The size of the filled in table (up to @nr_irqs).
459 */
460int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
461 int nr_irqs)
462{
463 int i;
464
465 for (i = 0; i < nr_irqs; i++, res++)
466 if (of_irq_to_resource(dev, i, res) <= 0)
467 break;
468
469 return i;
470}
471EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
472
473struct of_intc_desc {
474 struct list_head list;
475 of_irq_init_cb_t irq_init_cb;
476 struct device_node *dev;
477 struct device_node *interrupt_parent;
478};
479
480/**
481 * of_irq_init - Scan and init matching interrupt controllers in DT
482 * @matches: 0 terminated array of nodes to match and init function to call
483 *
484 * This function scans the device tree for matching interrupt controller nodes,
485 * and calls their initialization functions in order with parents first.
486 */
487void __init of_irq_init(const struct of_device_id *matches)
488{
489 const struct of_device_id *match;
490 struct device_node *np, *parent = NULL;
491 struct of_intc_desc *desc, *temp_desc;
492 struct list_head intc_desc_list, intc_parent_list;
493
494 INIT_LIST_HEAD(&intc_desc_list);
495 INIT_LIST_HEAD(&intc_parent_list);
496
497 for_each_matching_node_and_match(np, matches, &match) {
498 if (!of_property_read_bool(np, "interrupt-controller") ||
499 !of_device_is_available(np))
500 continue;
501
502 if (WARN(!match->data, "of_irq_init: no init function for %s\n",
503 match->compatible))
504 continue;
505
506 /*
507 * Here, we allocate and populate an of_intc_desc with the node
508 * pointer, interrupt-parent device_node etc.
509 */
510 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
511 if (!desc) {
512 of_node_put(np);
513 goto err;
514 }
515
516 desc->irq_init_cb = match->data;
517 desc->dev = of_node_get(np);
518 desc->interrupt_parent = of_irq_find_parent(np);
519 if (desc->interrupt_parent == np)
520 desc->interrupt_parent = NULL;
521 list_add_tail(&desc->list, &intc_desc_list);
522 }
523
524 /*
525 * The root irq controller is the one without an interrupt-parent.
526 * That one goes first, followed by the controllers that reference it,
527 * followed by the ones that reference the 2nd level controllers, etc.
528 */
529 while (!list_empty(&intc_desc_list)) {
530 /*
531 * Process all controllers with the current 'parent'.
532 * First pass will be looking for NULL as the parent.
533 * The assumption is that NULL parent means a root controller.
534 */
535 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
536 int ret;
537
538 if (desc->interrupt_parent != parent)
539 continue;
540
541 list_del(&desc->list);
542
543 of_node_set_flag(desc->dev, OF_POPULATED);
544
545 pr_debug("of_irq_init: init %pOF (%p), parent %p\n",
546 desc->dev,
547 desc->dev, desc->interrupt_parent);
548 ret = desc->irq_init_cb(desc->dev,
549 desc->interrupt_parent);
550 if (ret) {
551 of_node_clear_flag(desc->dev, OF_POPULATED);
552 kfree(desc);
553 continue;
554 }
555
556 /*
557 * This one is now set up; add it to the parent list so
558 * its children can get processed in a subsequent pass.
559 */
560 list_add_tail(&desc->list, &intc_parent_list);
561 }
562
563 /* Get the next pending parent that might have children */
564 desc = list_first_entry_or_null(&intc_parent_list,
565 typeof(*desc), list);
566 if (!desc) {
567 pr_err("of_irq_init: children remain, but no parents\n");
568 break;
569 }
570 list_del(&desc->list);
571 parent = desc->dev;
572 kfree(desc);
573 }
574
575 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
576 list_del(&desc->list);
577 kfree(desc);
578 }
579err:
580 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
581 list_del(&desc->list);
582 of_node_put(desc->dev);
583 kfree(desc);
584 }
585}
586
587static u32 __of_msi_map_id(struct device *dev, struct device_node **np,
588 u32 id_in)
589{
590 struct device *parent_dev;
591 u32 id_out = id_in;
592
593 /*
594 * Walk up the device parent links looking for one with a
595 * "msi-map" property.
596 */
597 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent)
598 if (!of_map_id(parent_dev->of_node, id_in, "msi-map",
599 "msi-map-mask", np, &id_out))
600 break;
601 return id_out;
602}
603
604/**
605 * of_msi_map_id - Map a MSI ID for a device.
606 * @dev: device for which the mapping is to be done.
607 * @msi_np: device node of the expected msi controller.
608 * @id_in: unmapped MSI ID for the device.
609 *
610 * Walk up the device hierarchy looking for devices with a "msi-map"
611 * property. If found, apply the mapping to @id_in.
612 *
613 * Return: The mapped MSI ID.
614 */
615u32 of_msi_map_id(struct device *dev, struct device_node *msi_np, u32 id_in)
616{
617 return __of_msi_map_id(dev, &msi_np, id_in);
618}
619
620/**
621 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
622 * @dev: device for which the mapping is to be done.
623 * @id: Device ID.
624 * @bus_token: Bus token
625 *
626 * Walk up the device hierarchy looking for devices with a "msi-map"
627 * property.
628 *
629 * Returns: the MSI domain for this device (or NULL on failure)
630 */
631struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 id,
632 u32 bus_token)
633{
634 struct device_node *np = NULL;
635
636 __of_msi_map_id(dev, &np, id);
637 return irq_find_matching_host(np, bus_token);
638}
639
640/**
641 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
642 * @dev: device for which the domain is requested
643 * @np: device node for @dev
644 * @token: bus type for this domain
645 *
646 * Parse the msi-parent property and returns the corresponding MSI domain.
647 *
648 * Returns: the MSI domain for this device (or NULL on failure).
649 */
650struct irq_domain *of_msi_get_domain(struct device *dev,
651 struct device_node *np,
652 enum irq_domain_bus_token token)
653{
654 struct of_phandle_iterator it;
655 struct irq_domain *d;
656 int err;
657
658 of_for_each_phandle(&it, err, np, "msi-parent", "#msi-cells", 0) {
659 d = irq_find_matching_host(it.node, token);
660 if (d)
661 return d;
662 }
663
664 return NULL;
665}
666
667/**
668 * of_msi_configure - Set the msi_domain field of a device
669 * @dev: device structure to associate with an MSI irq domain
670 * @np: device node for that device
671 */
672void of_msi_configure(struct device *dev, struct device_node *np)
673{
674 dev_set_msi_domain(dev,
675 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
676}
677EXPORT_SYMBOL_GPL(of_msi_configure);