blob: 8e1c2272470fe234296d8ab5d6ec698a56569277 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * High-level sync()-related operations
4 */
5
6#include <linux/kernel.h>
7#include <linux/file.h>
8#include <linux/fs.h>
9#include <linux/slab.h>
10#include <linux/export.h>
11#include <linux/namei.h>
12#include <linux/sched/xacct.h>
13#include <linux/writeback.h>
14#include <linux/syscalls.h>
15#include <linux/linkage.h>
16#include <linux/pagemap.h>
17#include <linux/quotaops.h>
18#include <linux/backing-dev.h>
19#include "internal.h"
20
21#define VALID_FLAGS (SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE| \
22 SYNC_FILE_RANGE_WAIT_AFTER)
23
24/*
25 * Do the filesystem syncing work. For simple filesystems
26 * writeback_inodes_sb(sb) just dirties buffers with inodes so we have to
27 * submit IO for these buffers via __sync_blockdev(). This also speeds up the
28 * wait == 1 case since in that case write_inode() functions do
29 * sync_dirty_buffer() and thus effectively write one block at a time.
30 */
31static int __sync_filesystem(struct super_block *sb, int wait)
32{
33 if (wait)
34 sync_inodes_sb(sb);
35 else
36 writeback_inodes_sb(sb, WB_REASON_SYNC);
37
38 if (sb->s_op->sync_fs)
39 sb->s_op->sync_fs(sb, wait);
40 return __sync_blockdev(sb->s_bdev, wait);
41}
42
43/*
44 * Write out and wait upon all dirty data associated with this
45 * superblock. Filesystem data as well as the underlying block
46 * device. Takes the superblock lock.
47 */
48int sync_filesystem(struct super_block *sb)
49{
50 int ret;
51
52 /*
53 * We need to be protected against the filesystem going from
54 * r/o to r/w or vice versa.
55 */
56 WARN_ON(!rwsem_is_locked(&sb->s_umount));
57
58 /*
59 * No point in syncing out anything if the filesystem is read-only.
60 */
61 if (sb_rdonly(sb))
62 return 0;
63
64 ret = __sync_filesystem(sb, 0);
65 if (ret < 0)
66 return ret;
67 return __sync_filesystem(sb, 1);
68}
69EXPORT_SYMBOL(sync_filesystem);
70
71static void sync_inodes_one_sb(struct super_block *sb, void *arg)
72{
73 if (!sb_rdonly(sb))
74 sync_inodes_sb(sb);
75}
76
77static void sync_fs_one_sb(struct super_block *sb, void *arg)
78{
79 if (!sb_rdonly(sb) && !(sb->s_iflags & SB_I_SKIP_SYNC) &&
80 sb->s_op->sync_fs)
81 sb->s_op->sync_fs(sb, *(int *)arg);
82}
83
84static void fdatawrite_one_bdev(struct block_device *bdev, void *arg)
85{
86 filemap_fdatawrite(bdev->bd_inode->i_mapping);
87}
88
89static void fdatawait_one_bdev(struct block_device *bdev, void *arg)
90{
91 /*
92 * We keep the error status of individual mapping so that
93 * applications can catch the writeback error using fsync(2).
94 * See filemap_fdatawait_keep_errors() for details.
95 */
96 filemap_fdatawait_keep_errors(bdev->bd_inode->i_mapping);
97}
98
99/*
100 * Sync everything. We start by waking flusher threads so that most of
101 * writeback runs on all devices in parallel. Then we sync all inodes reliably
102 * which effectively also waits for all flusher threads to finish doing
103 * writeback. At this point all data is on disk so metadata should be stable
104 * and we tell filesystems to sync their metadata via ->sync_fs() calls.
105 * Finally, we writeout all block devices because some filesystems (e.g. ext2)
106 * just write metadata (such as inodes or bitmaps) to block device page cache
107 * and do not sync it on their own in ->sync_fs().
108 */
109void ksys_sync(void)
110{
111 int nowait = 0, wait = 1;
112
113 wakeup_flusher_threads(WB_REASON_SYNC);
114 iterate_supers(sync_inodes_one_sb, NULL);
115 iterate_supers(sync_fs_one_sb, &nowait);
116 iterate_supers(sync_fs_one_sb, &wait);
117 iterate_bdevs(fdatawrite_one_bdev, NULL);
118 iterate_bdevs(fdatawait_one_bdev, NULL);
119 if (unlikely(laptop_mode))
120 laptop_sync_completion();
121}
122
123SYSCALL_DEFINE0(sync)
124{
125 ksys_sync();
126 return 0;
127}
128
129static void do_sync_work(struct work_struct *work)
130{
131 int nowait = 0;
132
133 /*
134 * Sync twice to reduce the possibility we skipped some inodes / pages
135 * because they were temporarily locked
136 */
137 iterate_supers(sync_inodes_one_sb, &nowait);
138 iterate_supers(sync_fs_one_sb, &nowait);
139 iterate_bdevs(fdatawrite_one_bdev, NULL);
140 iterate_supers(sync_inodes_one_sb, &nowait);
141 iterate_supers(sync_fs_one_sb, &nowait);
142 iterate_bdevs(fdatawrite_one_bdev, NULL);
143 printk("Emergency Sync complete\n");
144 kfree(work);
145}
146
147void emergency_sync(void)
148{
149 struct work_struct *work;
150
151 work = kmalloc(sizeof(*work), GFP_ATOMIC);
152 if (work) {
153 INIT_WORK(work, do_sync_work);
154 schedule_work(work);
155 }
156}
157
158/*
159 * sync a single super
160 */
161SYSCALL_DEFINE1(syncfs, int, fd)
162{
163 struct fd f = fdget(fd);
164 struct super_block *sb;
165 int ret, ret2;
166
167 if (!f.file)
168 return -EBADF;
169 sb = f.file->f_path.dentry->d_sb;
170
171 down_read(&sb->s_umount);
172 ret = sync_filesystem(sb);
173 up_read(&sb->s_umount);
174
175 ret2 = errseq_check_and_advance(&sb->s_wb_err, &f.file->f_sb_err);
176
177 fdput(f);
178 return ret ? ret : ret2;
179}
180
181/**
182 * vfs_fsync_range - helper to sync a range of data & metadata to disk
183 * @file: file to sync
184 * @start: offset in bytes of the beginning of data range to sync
185 * @end: offset in bytes of the end of data range (inclusive)
186 * @datasync: perform only datasync
187 *
188 * Write back data in range @start..@end and metadata for @file to disk. If
189 * @datasync is set only metadata needed to access modified file data is
190 * written.
191 */
192int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync)
193{
194 struct inode *inode = file->f_mapping->host;
195
196 if (!file->f_op->fsync)
197 return -EINVAL;
198 if (!datasync && (inode->i_state & I_DIRTY_TIME))
199 mark_inode_dirty_sync(inode);
200 return file->f_op->fsync(file, start, end, datasync);
201}
202EXPORT_SYMBOL(vfs_fsync_range);
203
204/**
205 * vfs_fsync - perform a fsync or fdatasync on a file
206 * @file: file to sync
207 * @datasync: only perform a fdatasync operation
208 *
209 * Write back data and metadata for @file to disk. If @datasync is
210 * set only metadata needed to access modified file data is written.
211 */
212int vfs_fsync(struct file *file, int datasync)
213{
214 return vfs_fsync_range(file, 0, LLONG_MAX, datasync);
215}
216EXPORT_SYMBOL(vfs_fsync);
217
218static int do_fsync(unsigned int fd, int datasync)
219{
220 struct fd f = fdget(fd);
221 int ret = -EBADF;
222
223 if (f.file) {
224 ret = vfs_fsync(f.file, datasync);
225 fdput(f);
226 inc_syscfs(current);
227 }
228 return ret;
229}
230
231SYSCALL_DEFINE1(fsync, unsigned int, fd)
232{
233 return do_fsync(fd, 0);
234}
235
236SYSCALL_DEFINE1(fdatasync, unsigned int, fd)
237{
238 return do_fsync(fd, 1);
239}
240
241int sync_file_range(struct file *file, loff_t offset, loff_t nbytes,
242 unsigned int flags)
243{
244 int ret;
245 struct address_space *mapping;
246 loff_t endbyte; /* inclusive */
247 umode_t i_mode;
248
249 ret = -EINVAL;
250 if (flags & ~VALID_FLAGS)
251 goto out;
252
253 endbyte = offset + nbytes;
254
255 if ((s64)offset < 0)
256 goto out;
257 if ((s64)endbyte < 0)
258 goto out;
259 if (endbyte < offset)
260 goto out;
261
262 if (sizeof(pgoff_t) == 4) {
263 if (offset >= (0x100000000ULL << PAGE_SHIFT)) {
264 /*
265 * The range starts outside a 32 bit machine's
266 * pagecache addressing capabilities. Let it "succeed"
267 */
268 ret = 0;
269 goto out;
270 }
271 if (endbyte >= (0x100000000ULL << PAGE_SHIFT)) {
272 /*
273 * Out to EOF
274 */
275 nbytes = 0;
276 }
277 }
278
279 if (nbytes == 0)
280 endbyte = LLONG_MAX;
281 else
282 endbyte--; /* inclusive */
283
284 i_mode = file_inode(file)->i_mode;
285 ret = -ESPIPE;
286 if (!S_ISREG(i_mode) && !S_ISBLK(i_mode) && !S_ISDIR(i_mode) &&
287 !S_ISLNK(i_mode))
288 goto out;
289
290 mapping = file->f_mapping;
291 ret = 0;
292 if (flags & SYNC_FILE_RANGE_WAIT_BEFORE) {
293 ret = file_fdatawait_range(file, offset, endbyte);
294 if (ret < 0)
295 goto out;
296 }
297
298 if (flags & SYNC_FILE_RANGE_WRITE) {
299 int sync_mode = WB_SYNC_NONE;
300
301 if ((flags & SYNC_FILE_RANGE_WRITE_AND_WAIT) ==
302 SYNC_FILE_RANGE_WRITE_AND_WAIT)
303 sync_mode = WB_SYNC_ALL;
304
305 ret = __filemap_fdatawrite_range(mapping, offset, endbyte,
306 sync_mode);
307 if (ret < 0)
308 goto out;
309 }
310
311 if (flags & SYNC_FILE_RANGE_WAIT_AFTER)
312 ret = file_fdatawait_range(file, offset, endbyte);
313
314out:
315 return ret;
316}
317
318/*
319 * ksys_sync_file_range() permits finely controlled syncing over a segment of
320 * a file in the range offset .. (offset+nbytes-1) inclusive. If nbytes is
321 * zero then ksys_sync_file_range() will operate from offset out to EOF.
322 *
323 * The flag bits are:
324 *
325 * SYNC_FILE_RANGE_WAIT_BEFORE: wait upon writeout of all pages in the range
326 * before performing the write.
327 *
328 * SYNC_FILE_RANGE_WRITE: initiate writeout of all those dirty pages in the
329 * range which are not presently under writeback. Note that this may block for
330 * significant periods due to exhaustion of disk request structures.
331 *
332 * SYNC_FILE_RANGE_WAIT_AFTER: wait upon writeout of all pages in the range
333 * after performing the write.
334 *
335 * Useful combinations of the flag bits are:
336 *
337 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE: ensures that all pages
338 * in the range which were dirty on entry to ksys_sync_file_range() are placed
339 * under writeout. This is a start-write-for-data-integrity operation.
340 *
341 * SYNC_FILE_RANGE_WRITE: start writeout of all dirty pages in the range which
342 * are not presently under writeout. This is an asynchronous flush-to-disk
343 * operation. Not suitable for data integrity operations.
344 *
345 * SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AFTER): wait for
346 * completion of writeout of all pages in the range. This will be used after an
347 * earlier SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE operation to wait
348 * for that operation to complete and to return the result.
349 *
350 * SYNC_FILE_RANGE_WAIT_BEFORE|SYNC_FILE_RANGE_WRITE|SYNC_FILE_RANGE_WAIT_AFTER
351 * (a.k.a. SYNC_FILE_RANGE_WRITE_AND_WAIT):
352 * a traditional sync() operation. This is a write-for-data-integrity operation
353 * which will ensure that all pages in the range which were dirty on entry to
354 * ksys_sync_file_range() are written to disk. It should be noted that disk
355 * caches are not flushed by this call, so there are no guarantees here that the
356 * data will be available on disk after a crash.
357 *
358 *
359 * SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AFTER will detect any
360 * I/O errors or ENOSPC conditions and will return those to the caller, after
361 * clearing the EIO and ENOSPC flags in the address_space.
362 *
363 * It should be noted that none of these operations write out the file's
364 * metadata. So unless the application is strictly performing overwrites of
365 * already-instantiated disk blocks, there are no guarantees here that the data
366 * will be available after a crash.
367 */
368int ksys_sync_file_range(int fd, loff_t offset, loff_t nbytes,
369 unsigned int flags)
370{
371 int ret;
372 struct fd f;
373
374 ret = -EBADF;
375 f = fdget(fd);
376 if (f.file)
377 ret = sync_file_range(f.file, offset, nbytes, flags);
378
379 fdput(f);
380 return ret;
381}
382
383SYSCALL_DEFINE4(sync_file_range, int, fd, loff_t, offset, loff_t, nbytes,
384 unsigned int, flags)
385{
386 return ksys_sync_file_range(fd, offset, nbytes, flags);
387}
388
389/* It would be nice if people remember that not all the world's an i386
390 when they introduce new system calls */
391SYSCALL_DEFINE4(sync_file_range2, int, fd, unsigned int, flags,
392 loff_t, offset, loff_t, nbytes)
393{
394 return ksys_sync_file_range(fd, offset, nbytes, flags);
395}