| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Data verification functions, i.e. hooks for ->readpages() | 
|  | 4 | * | 
|  | 5 | * Copyright 2019 Google LLC | 
|  | 6 | */ | 
|  | 7 |  | 
|  | 8 | #include "fsverity_private.h" | 
|  | 9 |  | 
|  | 10 | #include <crypto/hash.h> | 
|  | 11 | #include <linux/bio.h> | 
|  | 12 | #include <linux/ratelimit.h> | 
|  | 13 |  | 
|  | 14 | static struct workqueue_struct *fsverity_read_workqueue; | 
|  | 15 |  | 
|  | 16 | /** | 
|  | 17 | * hash_at_level() - compute the location of the block's hash at the given level | 
|  | 18 | * | 
|  | 19 | * @params:	(in) the Merkle tree parameters | 
|  | 20 | * @dindex:	(in) the index of the data block being verified | 
|  | 21 | * @level:	(in) the level of hash we want (0 is leaf level) | 
|  | 22 | * @hindex:	(out) the index of the hash block containing the wanted hash | 
|  | 23 | * @hoffset:	(out) the byte offset to the wanted hash within the hash block | 
|  | 24 | */ | 
|  | 25 | static void hash_at_level(const struct merkle_tree_params *params, | 
|  | 26 | pgoff_t dindex, unsigned int level, pgoff_t *hindex, | 
|  | 27 | unsigned int *hoffset) | 
|  | 28 | { | 
|  | 29 | pgoff_t position; | 
|  | 30 |  | 
|  | 31 | /* Offset of the hash within the level's region, in hashes */ | 
|  | 32 | position = dindex >> (level * params->log_arity); | 
|  | 33 |  | 
|  | 34 | /* Index of the hash block in the tree overall */ | 
|  | 35 | *hindex = params->level_start[level] + (position >> params->log_arity); | 
|  | 36 |  | 
|  | 37 | /* Offset of the wanted hash (in bytes) within the hash block */ | 
|  | 38 | *hoffset = (position & ((1 << params->log_arity) - 1)) << | 
|  | 39 | (params->log_blocksize - params->log_arity); | 
|  | 40 | } | 
|  | 41 |  | 
|  | 42 | /* Extract a hash from a hash page */ | 
|  | 43 | static void extract_hash(struct page *hpage, unsigned int hoffset, | 
|  | 44 | unsigned int hsize, u8 *out) | 
|  | 45 | { | 
|  | 46 | void *virt = kmap_atomic(hpage); | 
|  | 47 |  | 
|  | 48 | memcpy(out, virt + hoffset, hsize); | 
|  | 49 | kunmap_atomic(virt); | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | static inline int cmp_hashes(const struct fsverity_info *vi, | 
|  | 53 | const u8 *want_hash, const u8 *real_hash, | 
|  | 54 | pgoff_t index, int level) | 
|  | 55 | { | 
|  | 56 | const unsigned int hsize = vi->tree_params.digest_size; | 
|  | 57 |  | 
|  | 58 | if (memcmp(want_hash, real_hash, hsize) == 0) | 
|  | 59 | return 0; | 
|  | 60 |  | 
|  | 61 | fsverity_err(vi->inode, | 
|  | 62 | "FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN", | 
|  | 63 | index, level, | 
|  | 64 | vi->tree_params.hash_alg->name, hsize, want_hash, | 
|  | 65 | vi->tree_params.hash_alg->name, hsize, real_hash); | 
|  | 66 | return -EBADMSG; | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | /* | 
|  | 70 | * Verify a single data page against the file's Merkle tree. | 
|  | 71 | * | 
|  | 72 | * In principle, we need to verify the entire path to the root node.  However, | 
|  | 73 | * for efficiency the filesystem may cache the hash pages.  Therefore we need | 
|  | 74 | * only ascend the tree until an already-verified page is seen, as indicated by | 
|  | 75 | * the PageChecked bit being set; then verify the path to that page. | 
|  | 76 | * | 
|  | 77 | * This code currently only supports the case where the verity block size is | 
|  | 78 | * equal to PAGE_SIZE.  Doing otherwise would be possible but tricky, since we | 
|  | 79 | * wouldn't be able to use the PageChecked bit. | 
|  | 80 | * | 
|  | 81 | * Note that multiple processes may race to verify a hash page and mark it | 
|  | 82 | * Checked, but it doesn't matter; the result will be the same either way. | 
|  | 83 | * | 
|  | 84 | * Return: true if the page is valid, else false. | 
|  | 85 | */ | 
|  | 86 | static bool verify_page(struct inode *inode, const struct fsverity_info *vi, | 
|  | 87 | struct ahash_request *req, struct page *data_page, | 
|  | 88 | unsigned long level0_ra_pages) | 
|  | 89 | { | 
|  | 90 | const struct merkle_tree_params *params = &vi->tree_params; | 
|  | 91 | const unsigned int hsize = params->digest_size; | 
|  | 92 | const pgoff_t index = data_page->index; | 
|  | 93 | int level; | 
|  | 94 | u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE]; | 
|  | 95 | const u8 *want_hash; | 
|  | 96 | u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE]; | 
|  | 97 | struct page *hpages[FS_VERITY_MAX_LEVELS]; | 
|  | 98 | unsigned int hoffsets[FS_VERITY_MAX_LEVELS]; | 
|  | 99 | int err; | 
|  | 100 |  | 
|  | 101 | if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page))) | 
|  | 102 | return false; | 
|  | 103 |  | 
|  | 104 | pr_debug_ratelimited("Verifying data page %lu...\n", index); | 
|  | 105 |  | 
|  | 106 | /* | 
|  | 107 | * Starting at the leaf level, ascend the tree saving hash pages along | 
|  | 108 | * the way until we find a verified hash page, indicated by PageChecked; | 
|  | 109 | * or until we reach the root. | 
|  | 110 | */ | 
|  | 111 | for (level = 0; level < params->num_levels; level++) { | 
|  | 112 | pgoff_t hindex; | 
|  | 113 | unsigned int hoffset; | 
|  | 114 | struct page *hpage; | 
|  | 115 |  | 
|  | 116 | hash_at_level(params, index, level, &hindex, &hoffset); | 
|  | 117 |  | 
|  | 118 | pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n", | 
|  | 119 | level, hindex, hoffset); | 
|  | 120 |  | 
|  | 121 | hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex, | 
|  | 122 | level == 0 ? level0_ra_pages : 0); | 
|  | 123 | if (IS_ERR(hpage)) { | 
|  | 124 | err = PTR_ERR(hpage); | 
|  | 125 | fsverity_err(inode, | 
|  | 126 | "Error %d reading Merkle tree page %lu", | 
|  | 127 | err, hindex); | 
|  | 128 | goto out; | 
|  | 129 | } | 
|  | 130 |  | 
|  | 131 | if (PageChecked(hpage)) { | 
|  | 132 | extract_hash(hpage, hoffset, hsize, _want_hash); | 
|  | 133 | want_hash = _want_hash; | 
|  | 134 | put_page(hpage); | 
|  | 135 | pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n", | 
|  | 136 | params->hash_alg->name, | 
|  | 137 | hsize, want_hash); | 
|  | 138 | goto descend; | 
|  | 139 | } | 
|  | 140 | pr_debug_ratelimited("Hash page not yet checked\n"); | 
|  | 141 | hpages[level] = hpage; | 
|  | 142 | hoffsets[level] = hoffset; | 
|  | 143 | } | 
|  | 144 |  | 
|  | 145 | want_hash = vi->root_hash; | 
|  | 146 | pr_debug("Want root hash: %s:%*phN\n", | 
|  | 147 | params->hash_alg->name, hsize, want_hash); | 
|  | 148 | descend: | 
|  | 149 | /* Descend the tree verifying hash pages */ | 
|  | 150 | for (; level > 0; level--) { | 
|  | 151 | struct page *hpage = hpages[level - 1]; | 
|  | 152 | unsigned int hoffset = hoffsets[level - 1]; | 
|  | 153 |  | 
|  | 154 | err = fsverity_hash_page(params, inode, req, hpage, real_hash); | 
|  | 155 | if (err) | 
|  | 156 | goto out; | 
|  | 157 | err = cmp_hashes(vi, want_hash, real_hash, index, level - 1); | 
|  | 158 | if (err) | 
|  | 159 | goto out; | 
|  | 160 | SetPageChecked(hpage); | 
|  | 161 | extract_hash(hpage, hoffset, hsize, _want_hash); | 
|  | 162 | want_hash = _want_hash; | 
|  | 163 | put_page(hpage); | 
|  | 164 | pr_debug("Verified hash page at level %d, now want %s:%*phN\n", | 
|  | 165 | level - 1, params->hash_alg->name, hsize, want_hash); | 
|  | 166 | } | 
|  | 167 |  | 
|  | 168 | /* Finally, verify the data page */ | 
|  | 169 | err = fsverity_hash_page(params, inode, req, data_page, real_hash); | 
|  | 170 | if (err) | 
|  | 171 | goto out; | 
|  | 172 | err = cmp_hashes(vi, want_hash, real_hash, index, -1); | 
|  | 173 | out: | 
|  | 174 | for (; level > 0; level--) | 
|  | 175 | put_page(hpages[level - 1]); | 
|  | 176 |  | 
|  | 177 | return err == 0; | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | /** | 
|  | 181 | * fsverity_verify_page() - verify a data page | 
|  | 182 | * @page: the page to verity | 
|  | 183 | * | 
|  | 184 | * Verify a page that has just been read from a verity file.  The page must be a | 
|  | 185 | * pagecache page that is still locked and not yet uptodate. | 
|  | 186 | * | 
|  | 187 | * Return: true if the page is valid, else false. | 
|  | 188 | */ | 
|  | 189 | bool fsverity_verify_page(struct page *page) | 
|  | 190 | { | 
|  | 191 | struct inode *inode = page->mapping->host; | 
|  | 192 | const struct fsverity_info *vi = inode->i_verity_info; | 
|  | 193 | struct ahash_request *req; | 
|  | 194 | bool valid; | 
|  | 195 |  | 
|  | 196 | /* This allocation never fails, since it's mempool-backed. */ | 
|  | 197 | req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS); | 
|  | 198 |  | 
|  | 199 | valid = verify_page(inode, vi, req, page, 0); | 
|  | 200 |  | 
|  | 201 | fsverity_free_hash_request(vi->tree_params.hash_alg, req); | 
|  | 202 |  | 
|  | 203 | return valid; | 
|  | 204 | } | 
|  | 205 | EXPORT_SYMBOL_GPL(fsverity_verify_page); | 
|  | 206 |  | 
|  | 207 | #ifdef CONFIG_BLOCK | 
|  | 208 | /** | 
|  | 209 | * fsverity_verify_bio() - verify a 'read' bio that has just completed | 
|  | 210 | * @bio: the bio to verify | 
|  | 211 | * | 
|  | 212 | * Verify a set of pages that have just been read from a verity file.  The pages | 
|  | 213 | * must be pagecache pages that are still locked and not yet uptodate.  Pages | 
|  | 214 | * that fail verification are set to the Error state.  Verification is skipped | 
|  | 215 | * for pages already in the Error state, e.g. due to fscrypt decryption failure. | 
|  | 216 | * | 
|  | 217 | * This is a helper function for use by the ->readpages() method of filesystems | 
|  | 218 | * that issue bios to read data directly into the page cache.  Filesystems that | 
|  | 219 | * populate the page cache without issuing bios (e.g. non block-based | 
|  | 220 | * filesystems) must instead call fsverity_verify_page() directly on each page. | 
|  | 221 | * All filesystems must also call fsverity_verify_page() on holes. | 
|  | 222 | */ | 
|  | 223 | void fsverity_verify_bio(struct bio *bio) | 
|  | 224 | { | 
|  | 225 | struct inode *inode = bio_first_page_all(bio)->mapping->host; | 
|  | 226 | const struct fsverity_info *vi = inode->i_verity_info; | 
|  | 227 | const struct merkle_tree_params *params = &vi->tree_params; | 
|  | 228 | struct ahash_request *req; | 
|  | 229 | struct bio_vec *bv; | 
|  | 230 | struct bvec_iter_all iter_all; | 
|  | 231 | unsigned long max_ra_pages = 0; | 
|  | 232 |  | 
|  | 233 | /* This allocation never fails, since it's mempool-backed. */ | 
|  | 234 | req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS); | 
|  | 235 |  | 
|  | 236 | if (bio->bi_opf & REQ_RAHEAD) { | 
|  | 237 | /* | 
|  | 238 | * If this bio is for data readahead, then we also do readahead | 
|  | 239 | * of the first (largest) level of the Merkle tree.  Namely, | 
|  | 240 | * when a Merkle tree page is read, we also try to piggy-back on | 
|  | 241 | * some additional pages -- up to 1/4 the number of data pages. | 
|  | 242 | * | 
|  | 243 | * This improves sequential read performance, as it greatly | 
|  | 244 | * reduces the number of I/O requests made to the Merkle tree. | 
|  | 245 | */ | 
|  | 246 | bio_for_each_segment_all(bv, bio, iter_all) | 
|  | 247 | max_ra_pages++; | 
|  | 248 | max_ra_pages /= 4; | 
|  | 249 | } | 
|  | 250 |  | 
|  | 251 | bio_for_each_segment_all(bv, bio, iter_all) { | 
|  | 252 | struct page *page = bv->bv_page; | 
|  | 253 | unsigned long level0_index = page->index >> params->log_arity; | 
|  | 254 | unsigned long level0_ra_pages = | 
|  | 255 | min(max_ra_pages, params->level0_blocks - level0_index); | 
|  | 256 |  | 
|  | 257 | if (!PageError(page) && | 
|  | 258 | !verify_page(inode, vi, req, page, level0_ra_pages)) | 
|  | 259 | SetPageError(page); | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | fsverity_free_hash_request(params->hash_alg, req); | 
|  | 263 | } | 
|  | 264 | EXPORT_SYMBOL_GPL(fsverity_verify_bio); | 
|  | 265 | #endif /* CONFIG_BLOCK */ | 
|  | 266 |  | 
|  | 267 | /** | 
|  | 268 | * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue | 
|  | 269 | * @work: the work to enqueue | 
|  | 270 | * | 
|  | 271 | * Enqueue verification work for asynchronous processing. | 
|  | 272 | */ | 
|  | 273 | void fsverity_enqueue_verify_work(struct work_struct *work) | 
|  | 274 | { | 
|  | 275 | queue_work(fsverity_read_workqueue, work); | 
|  | 276 | } | 
|  | 277 | EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work); | 
|  | 278 |  | 
|  | 279 | int __init fsverity_init_workqueue(void) | 
|  | 280 | { | 
|  | 281 | /* | 
|  | 282 | * Use a high-priority workqueue to prioritize verification work, which | 
|  | 283 | * blocks reads from completing, over regular application tasks. | 
|  | 284 | * | 
|  | 285 | * For performance reasons, don't use an unbound workqueue.  Using an | 
|  | 286 | * unbound workqueue for crypto operations causes excessive scheduler | 
|  | 287 | * latency on ARM64. | 
|  | 288 | */ | 
|  | 289 | fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue", | 
|  | 290 | WQ_HIGHPRI, | 
|  | 291 | num_online_cpus()); | 
|  | 292 | if (!fsverity_read_workqueue) | 
|  | 293 | return -ENOMEM; | 
|  | 294 | return 0; | 
|  | 295 | } | 
|  | 296 |  | 
|  | 297 | void __init fsverity_exit_workqueue(void) | 
|  | 298 | { | 
|  | 299 | destroy_workqueue(fsverity_read_workqueue); | 
|  | 300 | fsverity_read_workqueue = NULL; | 
|  | 301 | } |