| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ | 
|  | 2 | #ifndef __NET_SCHED_RED_H | 
|  | 3 | #define __NET_SCHED_RED_H | 
|  | 4 |  | 
|  | 5 | #include <linux/types.h> | 
|  | 6 | #include <linux/bug.h> | 
|  | 7 | #include <net/pkt_sched.h> | 
|  | 8 | #include <net/inet_ecn.h> | 
|  | 9 | #include <net/dsfield.h> | 
|  | 10 | #include <linux/reciprocal_div.h> | 
|  | 11 |  | 
|  | 12 | /*	Random Early Detection (RED) algorithm. | 
|  | 13 | ======================================= | 
|  | 14 |  | 
|  | 15 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways | 
|  | 16 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. | 
|  | 17 |  | 
|  | 18 | This file codes a "divisionless" version of RED algorithm | 
|  | 19 | as written down in Fig.17 of the paper. | 
|  | 20 |  | 
|  | 21 | Short description. | 
|  | 22 | ------------------ | 
|  | 23 |  | 
|  | 24 | When a new packet arrives we calculate the average queue length: | 
|  | 25 |  | 
|  | 26 | avg = (1-W)*avg + W*current_queue_len, | 
|  | 27 |  | 
|  | 28 | W is the filter time constant (chosen as 2^(-Wlog)), it controls | 
|  | 29 | the inertia of the algorithm. To allow larger bursts, W should be | 
|  | 30 | decreased. | 
|  | 31 |  | 
|  | 32 | if (avg > th_max) -> packet marked (dropped). | 
|  | 33 | if (avg < th_min) -> packet passes. | 
|  | 34 | if (th_min < avg < th_max) we calculate probability: | 
|  | 35 |  | 
|  | 36 | Pb = max_P * (avg - th_min)/(th_max-th_min) | 
|  | 37 |  | 
|  | 38 | and mark (drop) packet with this probability. | 
|  | 39 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). | 
|  | 40 | max_P should be small (not 1), usually 0.01..0.02 is good value. | 
|  | 41 |  | 
|  | 42 | max_P is chosen as a number, so that max_P/(th_max-th_min) | 
|  | 43 | is a negative power of two in order arithmetics to contain | 
|  | 44 | only shifts. | 
|  | 45 |  | 
|  | 46 |  | 
|  | 47 | Parameters, settable by user: | 
|  | 48 | ----------------------------- | 
|  | 49 |  | 
|  | 50 | qth_min		- bytes (should be < qth_max/2) | 
|  | 51 | qth_max		- bytes (should be at least 2*qth_min and less limit) | 
|  | 52 | Wlog	       	- bits (<32) log(1/W). | 
|  | 53 | Plog	       	- bits (<32) | 
|  | 54 |  | 
|  | 55 | Plog is related to max_P by formula: | 
|  | 56 |  | 
|  | 57 | max_P = (qth_max-qth_min)/2^Plog; | 
|  | 58 |  | 
|  | 59 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 | 
|  | 60 | corresponds to max_P=0.02 | 
|  | 61 |  | 
|  | 62 | Scell_log | 
|  | 63 | Stab | 
|  | 64 |  | 
|  | 65 | Lookup table for log((1-W)^(t/t_ave). | 
|  | 66 |  | 
|  | 67 |  | 
|  | 68 | NOTES: | 
|  | 69 |  | 
|  | 70 | Upper bound on W. | 
|  | 71 | ----------------- | 
|  | 72 |  | 
|  | 73 | If you want to allow bursts of L packets of size S, | 
|  | 74 | you should choose W: | 
|  | 75 |  | 
|  | 76 | L + 1 - th_min/S < (1-(1-W)^L)/W | 
|  | 77 |  | 
|  | 78 | th_min/S = 32         th_min/S = 4 | 
|  | 79 |  | 
|  | 80 | log(W)	L | 
|  | 81 | -1	33 | 
|  | 82 | -2	35 | 
|  | 83 | -3	39 | 
|  | 84 | -4	46 | 
|  | 85 | -5	57 | 
|  | 86 | -6	75 | 
|  | 87 | -7	101 | 
|  | 88 | -8	135 | 
|  | 89 | -9	190 | 
|  | 90 | etc. | 
|  | 91 | */ | 
|  | 92 |  | 
|  | 93 | /* | 
|  | 94 | * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM | 
|  | 95 | * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001 | 
|  | 96 | * | 
|  | 97 | * Every 500 ms: | 
|  | 98 | *  if (avg > target and max_p <= 0.5) | 
|  | 99 | *   increase max_p : max_p += alpha; | 
|  | 100 | *  else if (avg < target and max_p >= 0.01) | 
|  | 101 | *   decrease max_p : max_p *= beta; | 
|  | 102 | * | 
|  | 103 | * target :[qth_min + 0.4*(qth_min - qth_max), | 
|  | 104 | *          qth_min + 0.6*(qth_min - qth_max)]. | 
|  | 105 | * alpha : min(0.01, max_p / 4) | 
|  | 106 | * beta : 0.9 | 
|  | 107 | * max_P is a Q0.32 fixed point number (with 32 bits mantissa) | 
|  | 108 | * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ] | 
|  | 109 | */ | 
|  | 110 | #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100)) | 
|  | 111 |  | 
|  | 112 | #define MAX_P_MIN (1 * RED_ONE_PERCENT) | 
|  | 113 | #define MAX_P_MAX (50 * RED_ONE_PERCENT) | 
|  | 114 | #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4) | 
|  | 115 |  | 
|  | 116 | #define RED_STAB_SIZE	256 | 
|  | 117 | #define RED_STAB_MASK	(RED_STAB_SIZE - 1) | 
|  | 118 |  | 
|  | 119 | struct red_stats { | 
|  | 120 | u32		prob_drop;	/* Early probability drops */ | 
|  | 121 | u32		prob_mark;	/* Early probability marks */ | 
|  | 122 | u32		forced_drop;	/* Forced drops, qavg > max_thresh */ | 
|  | 123 | u32		forced_mark;	/* Forced marks, qavg > max_thresh */ | 
|  | 124 | u32		pdrop;          /* Drops due to queue limits */ | 
|  | 125 | u32		other;          /* Drops due to drop() calls */ | 
|  | 126 | }; | 
|  | 127 |  | 
|  | 128 | struct red_parms { | 
|  | 129 | /* Parameters */ | 
|  | 130 | u32		qth_min;	/* Min avg length threshold: Wlog scaled */ | 
|  | 131 | u32		qth_max;	/* Max avg length threshold: Wlog scaled */ | 
|  | 132 | u32		Scell_max; | 
|  | 133 | u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */ | 
|  | 134 | /* reciprocal_value(max_P / qth_delta) */ | 
|  | 135 | struct reciprocal_value	max_P_reciprocal; | 
|  | 136 | u32		qth_delta;	/* max_th - min_th */ | 
|  | 137 | u32		target_min;	/* min_th + 0.4*(max_th - min_th) */ | 
|  | 138 | u32		target_max;	/* min_th + 0.6*(max_th - min_th) */ | 
|  | 139 | u8		Scell_log; | 
|  | 140 | u8		Wlog;		/* log(W)		*/ | 
|  | 141 | u8		Plog;		/* random number bits	*/ | 
|  | 142 | u8		Stab[RED_STAB_SIZE]; | 
|  | 143 | }; | 
|  | 144 |  | 
|  | 145 | struct red_vars { | 
|  | 146 | /* Variables */ | 
|  | 147 | int		qcount;		/* Number of packets since last random | 
|  | 148 | number generation */ | 
|  | 149 | u32		qR;		/* Cached random number */ | 
|  | 150 |  | 
|  | 151 | unsigned long	qavg;		/* Average queue length: Wlog scaled */ | 
|  | 152 | ktime_t		qidlestart;	/* Start of current idle period */ | 
|  | 153 | }; | 
|  | 154 |  | 
|  | 155 | static inline u32 red_maxp(u8 Plog) | 
|  | 156 | { | 
|  | 157 | return Plog < 32 ? (~0U >> Plog) : ~0U; | 
|  | 158 | } | 
|  | 159 |  | 
|  | 160 | static inline void red_set_vars(struct red_vars *v) | 
|  | 161 | { | 
|  | 162 | /* Reset average queue length, the value is strictly bound | 
|  | 163 | * to the parameters below, reseting hurts a bit but leaving | 
|  | 164 | * it might result in an unreasonable qavg for a while. --TGR | 
|  | 165 | */ | 
|  | 166 | v->qavg		= 0; | 
|  | 167 |  | 
|  | 168 | v->qcount	= -1; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | static inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog, | 
|  | 172 | u8 Scell_log, u8 *stab) | 
|  | 173 | { | 
|  | 174 | if (fls(qth_min) + Wlog >= 32) | 
|  | 175 | return false; | 
|  | 176 | if (fls(qth_max) + Wlog >= 32) | 
|  | 177 | return false; | 
|  | 178 | if (Scell_log >= 32) | 
|  | 179 | return false; | 
|  | 180 | if (qth_max < qth_min) | 
|  | 181 | return false; | 
|  | 182 | if (stab) { | 
|  | 183 | int i; | 
|  | 184 |  | 
|  | 185 | for (i = 0; i < RED_STAB_SIZE; i++) | 
|  | 186 | if (stab[i] >= 32) | 
|  | 187 | return false; | 
|  | 188 | } | 
|  | 189 | return true; | 
|  | 190 | } | 
|  | 191 |  | 
|  | 192 | static inline void red_set_parms(struct red_parms *p, | 
|  | 193 | u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, | 
|  | 194 | u8 Scell_log, u8 *stab, u32 max_P) | 
|  | 195 | { | 
|  | 196 | int delta = qth_max - qth_min; | 
|  | 197 | u32 max_p_delta; | 
|  | 198 |  | 
|  | 199 | p->qth_min	= qth_min << Wlog; | 
|  | 200 | p->qth_max	= qth_max << Wlog; | 
|  | 201 | p->Wlog		= Wlog; | 
|  | 202 | p->Plog		= Plog; | 
|  | 203 | if (delta <= 0) | 
|  | 204 | delta = 1; | 
|  | 205 | p->qth_delta	= delta; | 
|  | 206 | if (!max_P) { | 
|  | 207 | max_P = red_maxp(Plog); | 
|  | 208 | max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */ | 
|  | 209 | } | 
|  | 210 | p->max_P = max_P; | 
|  | 211 | max_p_delta = max_P / delta; | 
|  | 212 | max_p_delta = max(max_p_delta, 1U); | 
|  | 213 | p->max_P_reciprocal  = reciprocal_value(max_p_delta); | 
|  | 214 |  | 
|  | 215 | /* RED Adaptative target : | 
|  | 216 | * [min_th + 0.4*(min_th - max_th), | 
|  | 217 | *  min_th + 0.6*(min_th - max_th)]. | 
|  | 218 | */ | 
|  | 219 | delta /= 5; | 
|  | 220 | p->target_min = qth_min + 2*delta; | 
|  | 221 | p->target_max = qth_min + 3*delta; | 
|  | 222 |  | 
|  | 223 | p->Scell_log	= Scell_log; | 
|  | 224 | p->Scell_max	= (255 << Scell_log); | 
|  | 225 |  | 
|  | 226 | if (stab) | 
|  | 227 | memcpy(p->Stab, stab, sizeof(p->Stab)); | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | static inline int red_is_idling(const struct red_vars *v) | 
|  | 231 | { | 
|  | 232 | return v->qidlestart != 0; | 
|  | 233 | } | 
|  | 234 |  | 
|  | 235 | static inline void red_start_of_idle_period(struct red_vars *v) | 
|  | 236 | { | 
|  | 237 | v->qidlestart = ktime_get(); | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | static inline void red_end_of_idle_period(struct red_vars *v) | 
|  | 241 | { | 
|  | 242 | v->qidlestart = 0; | 
|  | 243 | } | 
|  | 244 |  | 
|  | 245 | static inline void red_restart(struct red_vars *v) | 
|  | 246 | { | 
|  | 247 | red_end_of_idle_period(v); | 
|  | 248 | v->qavg = 0; | 
|  | 249 | v->qcount = -1; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p, | 
|  | 253 | const struct red_vars *v) | 
|  | 254 | { | 
|  | 255 | s64 delta = ktime_us_delta(ktime_get(), v->qidlestart); | 
|  | 256 | long us_idle = min_t(s64, delta, p->Scell_max); | 
|  | 257 | int  shift; | 
|  | 258 |  | 
|  | 259 | /* | 
|  | 260 | * The problem: ideally, average length queue recalcultion should | 
|  | 261 | * be done over constant clock intervals. This is too expensive, so | 
|  | 262 | * that the calculation is driven by outgoing packets. | 
|  | 263 | * When the queue is idle we have to model this clock by hand. | 
|  | 264 | * | 
|  | 265 | * SF+VJ proposed to "generate": | 
|  | 266 | * | 
|  | 267 | *	m = idletime / (average_pkt_size / bandwidth) | 
|  | 268 | * | 
|  | 269 | * dummy packets as a burst after idle time, i.e. | 
|  | 270 | * | 
|  | 271 | * 	v->qavg *= (1-W)^m | 
|  | 272 | * | 
|  | 273 | * This is an apparently overcomplicated solution (f.e. we have to | 
|  | 274 | * precompute a table to make this calculation in reasonable time) | 
|  | 275 | * I believe that a simpler model may be used here, | 
|  | 276 | * but it is field for experiments. | 
|  | 277 | */ | 
|  | 278 |  | 
|  | 279 | shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; | 
|  | 280 |  | 
|  | 281 | if (shift) | 
|  | 282 | return v->qavg >> shift; | 
|  | 283 | else { | 
|  | 284 | /* Approximate initial part of exponent with linear function: | 
|  | 285 | * | 
|  | 286 | * 	(1-W)^m ~= 1-mW + ... | 
|  | 287 | * | 
|  | 288 | * Seems, it is the best solution to | 
|  | 289 | * problem of too coarse exponent tabulation. | 
|  | 290 | */ | 
|  | 291 | us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log; | 
|  | 292 |  | 
|  | 293 | if (us_idle < (v->qavg >> 1)) | 
|  | 294 | return v->qavg - us_idle; | 
|  | 295 | else | 
|  | 296 | return v->qavg >> 1; | 
|  | 297 | } | 
|  | 298 | } | 
|  | 299 |  | 
|  | 300 | static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p, | 
|  | 301 | const struct red_vars *v, | 
|  | 302 | unsigned int backlog) | 
|  | 303 | { | 
|  | 304 | /* | 
|  | 305 | * NOTE: v->qavg is fixed point number with point at Wlog. | 
|  | 306 | * The formula below is equvalent to floating point | 
|  | 307 | * version: | 
|  | 308 | * | 
|  | 309 | * 	qavg = qavg*(1-W) + backlog*W; | 
|  | 310 | * | 
|  | 311 | * --ANK (980924) | 
|  | 312 | */ | 
|  | 313 | return v->qavg + (backlog - (v->qavg >> p->Wlog)); | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static inline unsigned long red_calc_qavg(const struct red_parms *p, | 
|  | 317 | const struct red_vars *v, | 
|  | 318 | unsigned int backlog) | 
|  | 319 | { | 
|  | 320 | if (!red_is_idling(v)) | 
|  | 321 | return red_calc_qavg_no_idle_time(p, v, backlog); | 
|  | 322 | else | 
|  | 323 | return red_calc_qavg_from_idle_time(p, v); | 
|  | 324 | } | 
|  | 325 |  | 
|  | 326 |  | 
|  | 327 | static inline u32 red_random(const struct red_parms *p) | 
|  | 328 | { | 
|  | 329 | return reciprocal_divide(prandom_u32(), p->max_P_reciprocal); | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | static inline int red_mark_probability(const struct red_parms *p, | 
|  | 333 | const struct red_vars *v, | 
|  | 334 | unsigned long qavg) | 
|  | 335 | { | 
|  | 336 | /* The formula used below causes questions. | 
|  | 337 |  | 
|  | 338 | OK. qR is random number in the interval | 
|  | 339 | (0..1/max_P)*(qth_max-qth_min) | 
|  | 340 | i.e. 0..(2^Plog). If we used floating point | 
|  | 341 | arithmetics, it would be: (2^Plog)*rnd_num, | 
|  | 342 | where rnd_num is less 1. | 
|  | 343 |  | 
|  | 344 | Taking into account, that qavg have fixed | 
|  | 345 | point at Wlog, two lines | 
|  | 346 | below have the following floating point equivalent: | 
|  | 347 |  | 
|  | 348 | max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount | 
|  | 349 |  | 
|  | 350 | Any questions? --ANK (980924) | 
|  | 351 | */ | 
|  | 352 | return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR); | 
|  | 353 | } | 
|  | 354 |  | 
|  | 355 | enum { | 
|  | 356 | RED_BELOW_MIN_THRESH, | 
|  | 357 | RED_BETWEEN_TRESH, | 
|  | 358 | RED_ABOVE_MAX_TRESH, | 
|  | 359 | }; | 
|  | 360 |  | 
|  | 361 | static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg) | 
|  | 362 | { | 
|  | 363 | if (qavg < p->qth_min) | 
|  | 364 | return RED_BELOW_MIN_THRESH; | 
|  | 365 | else if (qavg >= p->qth_max) | 
|  | 366 | return RED_ABOVE_MAX_TRESH; | 
|  | 367 | else | 
|  | 368 | return RED_BETWEEN_TRESH; | 
|  | 369 | } | 
|  | 370 |  | 
|  | 371 | enum { | 
|  | 372 | RED_DONT_MARK, | 
|  | 373 | RED_PROB_MARK, | 
|  | 374 | RED_HARD_MARK, | 
|  | 375 | }; | 
|  | 376 |  | 
|  | 377 | static inline int red_action(const struct red_parms *p, | 
|  | 378 | struct red_vars *v, | 
|  | 379 | unsigned long qavg) | 
|  | 380 | { | 
|  | 381 | switch (red_cmp_thresh(p, qavg)) { | 
|  | 382 | case RED_BELOW_MIN_THRESH: | 
|  | 383 | v->qcount = -1; | 
|  | 384 | return RED_DONT_MARK; | 
|  | 385 |  | 
|  | 386 | case RED_BETWEEN_TRESH: | 
|  | 387 | if (++v->qcount) { | 
|  | 388 | if (red_mark_probability(p, v, qavg)) { | 
|  | 389 | v->qcount = 0; | 
|  | 390 | v->qR = red_random(p); | 
|  | 391 | return RED_PROB_MARK; | 
|  | 392 | } | 
|  | 393 | } else | 
|  | 394 | v->qR = red_random(p); | 
|  | 395 |  | 
|  | 396 | return RED_DONT_MARK; | 
|  | 397 |  | 
|  | 398 | case RED_ABOVE_MAX_TRESH: | 
|  | 399 | v->qcount = -1; | 
|  | 400 | return RED_HARD_MARK; | 
|  | 401 | } | 
|  | 402 |  | 
|  | 403 | BUG(); | 
|  | 404 | return RED_DONT_MARK; | 
|  | 405 | } | 
|  | 406 |  | 
|  | 407 | static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v) | 
|  | 408 | { | 
|  | 409 | unsigned long qavg; | 
|  | 410 | u32 max_p_delta; | 
|  | 411 |  | 
|  | 412 | qavg = v->qavg; | 
|  | 413 | if (red_is_idling(v)) | 
|  | 414 | qavg = red_calc_qavg_from_idle_time(p, v); | 
|  | 415 |  | 
|  | 416 | /* v->qavg is fixed point number with point at Wlog */ | 
|  | 417 | qavg >>= p->Wlog; | 
|  | 418 |  | 
|  | 419 | if (qavg > p->target_max && p->max_P <= MAX_P_MAX) | 
|  | 420 | p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */ | 
|  | 421 | else if (qavg < p->target_min && p->max_P >= MAX_P_MIN) | 
|  | 422 | p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */ | 
|  | 423 |  | 
|  | 424 | max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta); | 
|  | 425 | max_p_delta = max(max_p_delta, 1U); | 
|  | 426 | p->max_P_reciprocal = reciprocal_value(max_p_delta); | 
|  | 427 | } | 
|  | 428 | #endif |