blob: 2af2c66fce93ebb6d00a5412a356a09173a70ab1 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#ifndef _TLS_OFFLOAD_H
35#define _TLS_OFFLOAD_H
36
37#include <linux/types.h>
38#include <asm/byteorder.h>
39#include <linux/crypto.h>
40#include <linux/socket.h>
41#include <linux/tcp.h>
42#include <linux/skmsg.h>
43#include <linux/mutex.h>
44#include <linux/netdevice.h>
45#include <linux/rcupdate.h>
46#include <linux/android_kabi.h>
47
48#include <net/tcp.h>
49#include <net/strparser.h>
50#include <crypto/aead.h>
51#include <uapi/linux/tls.h>
52
53
54/* Maximum data size carried in a TLS record */
55#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57#define TLS_HEADER_SIZE 5
58#define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62#define TLS_RECORD_TYPE_DATA 0x17
63
64#define TLS_AAD_SPACE_SIZE 13
65#define TLS_DEVICE_NAME_MAX 32
66
67#define MAX_IV_SIZE 16
68#define TLS_MAX_REC_SEQ_SIZE 8
69
70/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
71 *
72 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 *
74 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
75 * Hence b0 contains (3 - 1) = 2.
76 */
77#define TLS_AES_CCM_IV_B0_BYTE 2
78
79/*
80 * This structure defines the routines for Inline TLS driver.
81 * The following routines are optional and filled with a
82 * null pointer if not defined.
83 *
84 * @name: Its the name of registered Inline tls device
85 * @dev_list: Inline tls device list
86 * int (*feature)(struct tls_device *device);
87 * Called to return Inline TLS driver capability
88 *
89 * int (*hash)(struct tls_device *device, struct sock *sk);
90 * This function sets Inline driver for listen and program
91 * device specific functioanlity as required
92 *
93 * void (*unhash)(struct tls_device *device, struct sock *sk);
94 * This function cleans listen state set by Inline TLS driver
95 *
96 * void (*release)(struct kref *kref);
97 * Release the registered device and allocated resources
98 * @kref: Number of reference to tls_device
99 */
100struct tls_device {
101 char name[TLS_DEVICE_NAME_MAX];
102 struct list_head dev_list;
103 int (*feature)(struct tls_device *device);
104 int (*hash)(struct tls_device *device, struct sock *sk);
105 void (*unhash)(struct tls_device *device, struct sock *sk);
106 void (*release)(struct kref *kref);
107 struct kref kref;
108
109 ANDROID_KABI_RESERVE(1);
110};
111
112enum {
113 TLS_BASE,
114 TLS_SW,
115 TLS_HW,
116 TLS_HW_RECORD,
117 TLS_NUM_CONFIG,
118};
119
120/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
121 * allocated or mapped for each TLS record. After encryption, the records are
122 * stores in a linked list.
123 */
124struct tls_rec {
125 struct list_head list;
126 int tx_ready;
127 int tx_flags;
128
129 struct sk_msg msg_plaintext;
130 struct sk_msg msg_encrypted;
131
132 /* AAD | msg_plaintext.sg.data | sg_tag */
133 struct scatterlist sg_aead_in[2];
134 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
135 struct scatterlist sg_aead_out[2];
136
137 char content_type;
138 struct scatterlist sg_content_type;
139
140 char aad_space[TLS_AAD_SPACE_SIZE];
141 u8 iv_data[MAX_IV_SIZE];
142 struct aead_request aead_req;
143
144 ANDROID_KABI_RESERVE(1);
145
146 u8 aead_req_ctx[];
147};
148
149struct tls_msg {
150 struct strp_msg rxm;
151 u8 control;
152};
153
154struct tx_work {
155 struct delayed_work work;
156 struct sock *sk;
157};
158
159struct tls_sw_context_tx {
160 struct crypto_aead *aead_send;
161 struct crypto_wait async_wait;
162 struct tx_work tx_work;
163 struct tls_rec *open_rec;
164 struct list_head tx_list;
165 atomic_t encrypt_pending;
166 /* protect crypto_wait with encrypt_pending */
167 spinlock_t encrypt_compl_lock;
168 int async_notify;
169 int async_capable;
170
171#define BIT_TX_SCHEDULED 0
172#define BIT_TX_CLOSING 1
173 unsigned long tx_bitmask;
174
175 ANDROID_KABI_RESERVE(1);
176};
177
178struct tls_sw_context_rx {
179 struct crypto_aead *aead_recv;
180 struct crypto_wait async_wait;
181 struct strparser strp;
182 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
183 void (*saved_data_ready)(struct sock *sk);
184
185 struct sk_buff *recv_pkt;
186 u8 control;
187 int async_capable;
188 bool decrypted;
189 atomic_t decrypt_pending;
190 /* protect crypto_wait with decrypt_pending*/
191 spinlock_t decrypt_compl_lock;
192 bool async_notify;
193
194 ANDROID_KABI_RESERVE(1);
195};
196
197struct tls_record_info {
198 struct list_head list;
199 u32 end_seq;
200 int len;
201 int num_frags;
202 skb_frag_t frags[MAX_SKB_FRAGS];
203};
204
205struct tls_offload_context_tx {
206 struct crypto_aead *aead_send;
207 spinlock_t lock; /* protects records list */
208 struct list_head records_list;
209 struct tls_record_info *open_record;
210 struct tls_record_info *retransmit_hint;
211 u64 hint_record_sn;
212 u64 unacked_record_sn;
213
214 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
215 void (*sk_destruct)(struct sock *sk);
216 u8 driver_state[] __aligned(8);
217 /* The TLS layer reserves room for driver specific state
218 * Currently the belief is that there is not enough
219 * driver specific state to justify another layer of indirection
220 */
221#define TLS_DRIVER_STATE_SIZE_TX 16
222};
223
224#define TLS_OFFLOAD_CONTEXT_SIZE_TX \
225 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
226
227enum tls_context_flags {
228 TLS_RX_SYNC_RUNNING = 0,
229 /* Unlike RX where resync is driven entirely by the core in TX only
230 * the driver knows when things went out of sync, so we need the flag
231 * to be atomic.
232 */
233 TLS_TX_SYNC_SCHED = 1,
234 /* tls_dev_del was called for the RX side, device state was released,
235 * but tls_ctx->netdev might still be kept, because TX-side driver
236 * resources might not be released yet. Used to prevent the second
237 * tls_dev_del call in tls_device_down if it happens simultaneously.
238 */
239 TLS_RX_DEV_CLOSED = 2,
240};
241
242struct cipher_context {
243 char *iv;
244 char *rec_seq;
245};
246
247union tls_crypto_context {
248 struct tls_crypto_info info;
249 union {
250 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
251 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
252 };
253};
254
255struct tls_prot_info {
256 u16 version;
257 u16 cipher_type;
258 u16 prepend_size;
259 u16 tag_size;
260 u16 overhead_size;
261 u16 iv_size;
262 u16 salt_size;
263 u16 rec_seq_size;
264 u16 aad_size;
265 u16 tail_size;
266};
267
268struct tls_context {
269 /* read-only cache line */
270 struct tls_prot_info prot_info;
271
272 u8 tx_conf:3;
273 u8 rx_conf:3;
274
275 int (*push_pending_record)(struct sock *sk, int flags);
276 void (*sk_write_space)(struct sock *sk);
277
278 void *priv_ctx_tx;
279 void *priv_ctx_rx;
280
281 struct net_device *netdev;
282
283 /* rw cache line */
284 struct cipher_context tx;
285 struct cipher_context rx;
286
287 struct scatterlist *partially_sent_record;
288 u16 partially_sent_offset;
289
290 bool in_tcp_sendpages;
291 bool pending_open_record_frags;
292
293 struct mutex tx_lock; /* protects partially_sent_* fields and
294 * per-type TX fields
295 */
296 unsigned long flags;
297
298 /* cache cold stuff */
299 struct proto *sk_proto;
300
301 void (*sk_destruct)(struct sock *sk);
302
303 union tls_crypto_context crypto_send;
304 union tls_crypto_context crypto_recv;
305
306 struct list_head list;
307 refcount_t refcount;
308 struct rcu_head rcu;
309};
310
311enum tls_offload_ctx_dir {
312 TLS_OFFLOAD_CTX_DIR_RX,
313 TLS_OFFLOAD_CTX_DIR_TX,
314};
315
316struct tlsdev_ops {
317 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
318 enum tls_offload_ctx_dir direction,
319 struct tls_crypto_info *crypto_info,
320 u32 start_offload_tcp_sn);
321 void (*tls_dev_del)(struct net_device *netdev,
322 struct tls_context *ctx,
323 enum tls_offload_ctx_dir direction);
324 int (*tls_dev_resync)(struct net_device *netdev,
325 struct sock *sk, u32 seq, u8 *rcd_sn,
326 enum tls_offload_ctx_dir direction);
327
328 ANDROID_KABI_RESERVE(1);
329 ANDROID_KABI_RESERVE(2);
330 ANDROID_KABI_RESERVE(3);
331 ANDROID_KABI_RESERVE(4);
332
333};
334
335enum tls_offload_sync_type {
336 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
337 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
338};
339
340#define TLS_DEVICE_RESYNC_NH_START_IVAL 2
341#define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
342
343struct tls_offload_context_rx {
344 /* sw must be the first member of tls_offload_context_rx */
345 struct tls_sw_context_rx sw;
346 enum tls_offload_sync_type resync_type;
347 /* this member is set regardless of resync_type, to avoid branches */
348 u8 resync_nh_reset:1;
349 /* CORE_NEXT_HINT-only member, but use the hole here */
350 u8 resync_nh_do_now:1;
351 union {
352 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
353 struct {
354 atomic64_t resync_req;
355 };
356 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
357 struct {
358 u32 decrypted_failed;
359 u32 decrypted_tgt;
360 } resync_nh;
361 };
362 u8 driver_state[] __aligned(8);
363 /* The TLS layer reserves room for driver specific state
364 * Currently the belief is that there is not enough
365 * driver specific state to justify another layer of indirection
366 */
367#define TLS_DRIVER_STATE_SIZE_RX 8
368};
369
370#define TLS_OFFLOAD_CONTEXT_SIZE_RX \
371 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
372
373void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
374int wait_on_pending_writer(struct sock *sk, long *timeo);
375int tls_sk_query(struct sock *sk, int optname, char __user *optval,
376 int __user *optlen);
377int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
378 unsigned int optlen);
379void tls_err_abort(struct sock *sk, int err);
380
381int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
382void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
383void tls_sw_strparser_done(struct tls_context *tls_ctx);
384int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
385int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
386 int offset, size_t size, int flags);
387int tls_sw_sendpage(struct sock *sk, struct page *page,
388 int offset, size_t size, int flags);
389void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
390void tls_sw_release_resources_tx(struct sock *sk);
391void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
392void tls_sw_free_resources_rx(struct sock *sk);
393void tls_sw_release_resources_rx(struct sock *sk);
394void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
395int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
396 int nonblock, int flags, int *addr_len);
397bool tls_sw_stream_read(const struct sock *sk);
398ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
399 struct pipe_inode_info *pipe,
400 size_t len, unsigned int flags);
401
402int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
403int tls_device_sendpage(struct sock *sk, struct page *page,
404 int offset, size_t size, int flags);
405int tls_tx_records(struct sock *sk, int flags);
406
407struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
408 u32 seq, u64 *p_record_sn);
409
410static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
411{
412 return rec->len == 0;
413}
414
415static inline u32 tls_record_start_seq(struct tls_record_info *rec)
416{
417 return rec->end_seq - rec->len;
418}
419
420int tls_push_sg(struct sock *sk, struct tls_context *ctx,
421 struct scatterlist *sg, u16 first_offset,
422 int flags);
423int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
424 int flags);
425void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
426
427static inline struct tls_msg *tls_msg(struct sk_buff *skb)
428{
429 return (struct tls_msg *)strp_msg(skb);
430}
431
432static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
433{
434 return !!ctx->partially_sent_record;
435}
436
437static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
438{
439 return tls_ctx->pending_open_record_frags;
440}
441
442static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
443{
444 struct tls_rec *rec;
445
446 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
447 if (!rec)
448 return false;
449
450 return READ_ONCE(rec->tx_ready);
451}
452
453static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
454{
455 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
456
457 switch (config) {
458 case TLS_BASE:
459 return TLS_CONF_BASE;
460 case TLS_SW:
461 return TLS_CONF_SW;
462 case TLS_HW:
463 return TLS_CONF_HW;
464 case TLS_HW_RECORD:
465 return TLS_CONF_HW_RECORD;
466 }
467 return 0;
468}
469
470struct sk_buff *
471tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
472 struct sk_buff *skb);
473
474static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
475{
476#ifdef CONFIG_SOCK_VALIDATE_XMIT
477 return sk_fullsock(sk) &&
478 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
479 &tls_validate_xmit_skb);
480#else
481 return false;
482#endif
483}
484
485static inline bool tls_bigint_increment(unsigned char *seq, int len)
486{
487 int i;
488
489 for (i = len - 1; i >= 0; i--) {
490 ++seq[i];
491 if (seq[i] != 0)
492 break;
493 }
494
495 return (i == -1);
496}
497
498static inline struct tls_context *tls_get_ctx(const struct sock *sk)
499{
500 struct inet_connection_sock *icsk = inet_csk(sk);
501
502 /* Use RCU on icsk_ulp_data only for sock diag code,
503 * TLS data path doesn't need rcu_dereference().
504 */
505 return (__force void *)icsk->icsk_ulp_data;
506}
507
508static inline void tls_advance_record_sn(struct sock *sk,
509 struct tls_prot_info *prot,
510 struct cipher_context *ctx)
511{
512 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
513 tls_err_abort(sk, -EBADMSG);
514
515 if (prot->version != TLS_1_3_VERSION)
516 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
517 prot->iv_size);
518}
519
520static inline void tls_fill_prepend(struct tls_context *ctx,
521 char *buf,
522 size_t plaintext_len,
523 unsigned char record_type,
524 int version)
525{
526 struct tls_prot_info *prot = &ctx->prot_info;
527 size_t pkt_len, iv_size = prot->iv_size;
528
529 pkt_len = plaintext_len + prot->tag_size;
530 if (version != TLS_1_3_VERSION) {
531 pkt_len += iv_size;
532
533 memcpy(buf + TLS_NONCE_OFFSET,
534 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
535 }
536
537 /* we cover nonce explicit here as well, so buf should be of
538 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
539 */
540 buf[0] = version == TLS_1_3_VERSION ?
541 TLS_RECORD_TYPE_DATA : record_type;
542 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
543 buf[1] = TLS_1_2_VERSION_MINOR;
544 buf[2] = TLS_1_2_VERSION_MAJOR;
545 /* we can use IV for nonce explicit according to spec */
546 buf[3] = pkt_len >> 8;
547 buf[4] = pkt_len & 0xFF;
548}
549
550static inline void tls_make_aad(char *buf,
551 size_t size,
552 char *record_sequence,
553 int record_sequence_size,
554 unsigned char record_type,
555 int version)
556{
557 if (version != TLS_1_3_VERSION) {
558 memcpy(buf, record_sequence, record_sequence_size);
559 buf += 8;
560 } else {
561 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
562 }
563
564 buf[0] = version == TLS_1_3_VERSION ?
565 TLS_RECORD_TYPE_DATA : record_type;
566 buf[1] = TLS_1_2_VERSION_MAJOR;
567 buf[2] = TLS_1_2_VERSION_MINOR;
568 buf[3] = size >> 8;
569 buf[4] = size & 0xFF;
570}
571
572static inline void xor_iv_with_seq(int version, char *iv, char *seq)
573{
574 int i;
575
576 if (version == TLS_1_3_VERSION) {
577 for (i = 0; i < 8; i++)
578 iv[i + 4] ^= seq[i];
579 }
580}
581
582
583static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
584 const struct tls_context *tls_ctx)
585{
586 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
587}
588
589static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
590 const struct tls_context *tls_ctx)
591{
592 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
593}
594
595static inline struct tls_offload_context_tx *
596tls_offload_ctx_tx(const struct tls_context *tls_ctx)
597{
598 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
599}
600
601static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
602{
603 struct tls_context *ctx = tls_get_ctx(sk);
604
605 if (!ctx)
606 return false;
607 return !!tls_sw_ctx_tx(ctx);
608}
609
610static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
611{
612 struct tls_context *ctx = tls_get_ctx(sk);
613
614 if (!ctx)
615 return false;
616 return !!tls_sw_ctx_rx(ctx);
617}
618
619void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
620void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
621
622static inline struct tls_offload_context_rx *
623tls_offload_ctx_rx(const struct tls_context *tls_ctx)
624{
625 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
626}
627
628#if IS_ENABLED(CONFIG_TLS_DEVICE)
629static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
630 enum tls_offload_ctx_dir direction)
631{
632 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
633 return tls_offload_ctx_tx(tls_ctx)->driver_state;
634 else
635 return tls_offload_ctx_rx(tls_ctx)->driver_state;
636}
637
638static inline void *
639tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
640{
641 return __tls_driver_ctx(tls_get_ctx(sk), direction);
642}
643#endif
644
645/* The TLS context is valid until sk_destruct is called */
646static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
647{
648 struct tls_context *tls_ctx = tls_get_ctx(sk);
649 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
650
651 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | 1);
652}
653
654static inline void
655tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
656{
657 struct tls_context *tls_ctx = tls_get_ctx(sk);
658
659 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
660}
661
662static inline void tls_offload_tx_resync_request(struct sock *sk)
663{
664 struct tls_context *tls_ctx = tls_get_ctx(sk);
665
666 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
667}
668
669/* Driver's seq tracking has to be disabled until resync succeeded */
670static inline bool tls_offload_tx_resync_pending(struct sock *sk)
671{
672 struct tls_context *tls_ctx = tls_get_ctx(sk);
673 bool ret;
674
675 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
676 smp_mb__after_atomic();
677 return ret;
678}
679
680int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
681 unsigned char *record_type);
682void tls_register_device(struct tls_device *device);
683void tls_unregister_device(struct tls_device *device);
684int decrypt_skb(struct sock *sk, struct sk_buff *skb,
685 struct scatterlist *sgout);
686struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
687
688struct sk_buff *tls_validate_xmit_skb(struct sock *sk,
689 struct net_device *dev,
690 struct sk_buff *skb);
691
692int tls_sw_fallback_init(struct sock *sk,
693 struct tls_offload_context_tx *offload_ctx,
694 struct tls_crypto_info *crypto_info);
695
696#ifdef CONFIG_TLS_DEVICE
697void tls_device_init(void);
698void tls_device_cleanup(void);
699int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
700void tls_device_free_resources_tx(struct sock *sk);
701int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
702void tls_device_offload_cleanup_rx(struct sock *sk);
703void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
704int tls_device_decrypted(struct sock *sk, struct sk_buff *skb);
705#else
706static inline void tls_device_init(void) {}
707static inline void tls_device_cleanup(void) {}
708
709static inline int
710tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
711{
712 return -EOPNOTSUPP;
713}
714
715static inline void tls_device_free_resources_tx(struct sock *sk) {}
716
717static inline int
718tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
719{
720 return -EOPNOTSUPP;
721}
722
723static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
724static inline void
725tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
726
727static inline int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
728{
729 return 0;
730}
731#endif
732#endif /* _TLS_OFFLOAD_H */