blob: 17f102dcb3ecc395b6fd0d808b06f40c677937fb [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/printk.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * Modified to make sys_syslog() more flexible: added commands to
8 * return the last 4k of kernel messages, regardless of whether
9 * they've been read or not. Added option to suppress kernel printk's
10 * to the console. Added hook for sending the console messages
11 * elsewhere, in preparation for a serial line console (someday).
12 * Ted Ts'o, 2/11/93.
13 * Modified for sysctl support, 1/8/97, Chris Horn.
14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15 * manfred@colorfullife.com
16 * Rewrote bits to get rid of console_lock
17 * 01Mar01 Andrew Morton
18 */
19
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/tty.h>
25#include <linux/tty_driver.h>
26#include <linux/console.h>
27#include <linux/init.h>
28#include <linux/jiffies.h>
29#include <linux/nmi.h>
30#include <linux/module.h>
31#include <linux/moduleparam.h>
32#include <linux/delay.h>
33#include <linux/smp.h>
34#include <linux/security.h>
35#include <linux/memblock.h>
36#include <linux/syscalls.h>
37#include <linux/crash_core.h>
38#include <linux/kdb.h>
39#include <linux/ratelimit.h>
40#include <linux/kmsg_dump.h>
41#include <linux/syslog.h>
42#include <linux/cpu.h>
43#include <linux/rculist.h>
44#include <linux/poll.h>
45#include <linux/irq_work.h>
46#include <linux/ctype.h>
47#include <linux/uio.h>
48#include <linux/sched/clock.h>
49#include <linux/sched/debug.h>
50#include <linux/sched/task_stack.h>
51
52#include <linux/uaccess.h>
53#include <asm/sections.h>
54
55#include <trace/events/initcall.h>
56#define CREATE_TRACE_POINTS
57#include <trace/events/printk.h>
58
59#include "console_cmdline.h"
60#include "braille.h"
61#include "internal.h"
62
63#ifdef CONFIG_EARLY_PRINTK_DIRECT
64extern void printascii(char *);
65#endif
66extern void monotonic_to_bootbased(struct timespec64 *ts);
67
68int console_printk[4] = {
69 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
70 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
71 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
72 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
73};
74EXPORT_SYMBOL_GPL(console_printk);
75
76atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
77EXPORT_SYMBOL(ignore_console_lock_warning);
78
79/*
80 * Low level drivers may need that to know if they can schedule in
81 * their unblank() callback or not. So let's export it.
82 */
83int oops_in_progress;
84EXPORT_SYMBOL(oops_in_progress);
85
86int keep_silent;
87EXPORT_SYMBOL(keep_silent);
88
89/*
90 * console_sem protects the console_drivers list, and also
91 * provides serialisation for access to the entire console
92 * driver system.
93 */
94static DEFINE_SEMAPHORE(console_sem);
95struct console *console_drivers;
96EXPORT_SYMBOL_GPL(console_drivers);
97
98/*
99 * System may need to suppress printk message under certain
100 * circumstances, like after kernel panic happens.
101 */
102int __read_mostly suppress_printk;
103
104#ifdef CONFIG_LOCKDEP
105static struct lockdep_map console_lock_dep_map = {
106 .name = "console_lock"
107};
108#endif
109
110enum devkmsg_log_bits {
111 __DEVKMSG_LOG_BIT_ON = 0,
112 __DEVKMSG_LOG_BIT_OFF,
113 __DEVKMSG_LOG_BIT_LOCK,
114};
115
116enum devkmsg_log_masks {
117 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
118 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
119 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
120};
121
122/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
123#define DEVKMSG_LOG_MASK_DEFAULT 0
124
125static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
126
127static u64 print_clock(void)
128{
129 struct timespec64 ts;
130 u64 ts_nsec;
131
132 ts_nsec = local_clock();
133 ts = ns_to_timespec64(ts_nsec);
134 monotonic_to_bootbased(&ts);
135 ts_nsec = timespec64_to_ns(&ts);
136
137 return ts_nsec;
138}
139
140static int __control_devkmsg(char *str)
141{
142 size_t len;
143
144 if (!str)
145 return -EINVAL;
146
147 len = str_has_prefix(str, "on");
148 if (len) {
149 devkmsg_log = DEVKMSG_LOG_MASK_ON;
150 return len;
151 }
152
153 len = str_has_prefix(str, "off");
154 if (len) {
155 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
156 return len;
157 }
158
159 len = str_has_prefix(str, "ratelimit");
160 if (len) {
161 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
162 return len;
163 }
164
165 return -EINVAL;
166}
167
168static int __init control_devkmsg(char *str)
169{
170 if (__control_devkmsg(str) < 0) {
171 pr_warn("printk.devkmsg: bad option string '%s'\n", str);
172 return 1;
173 }
174
175 /*
176 * Set sysctl string accordingly:
177 */
178 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
179 strcpy(devkmsg_log_str, "on");
180 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
181 strcpy(devkmsg_log_str, "off");
182 /* else "ratelimit" which is set by default. */
183
184 /*
185 * Sysctl cannot change it anymore. The kernel command line setting of
186 * this parameter is to force the setting to be permanent throughout the
187 * runtime of the system. This is a precation measure against userspace
188 * trying to be a smarta** and attempting to change it up on us.
189 */
190 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
191
192 return 1;
193}
194__setup("printk.devkmsg=", control_devkmsg);
195
196char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
197
198int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
199 void __user *buffer, size_t *lenp, loff_t *ppos)
200{
201 char old_str[DEVKMSG_STR_MAX_SIZE];
202 unsigned int old;
203 int err;
204
205 if (write) {
206 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
207 return -EINVAL;
208
209 old = devkmsg_log;
210 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
211 }
212
213 err = proc_dostring(table, write, buffer, lenp, ppos);
214 if (err)
215 return err;
216
217 if (write) {
218 err = __control_devkmsg(devkmsg_log_str);
219
220 /*
221 * Do not accept an unknown string OR a known string with
222 * trailing crap...
223 */
224 if (err < 0 || (err + 1 != *lenp)) {
225
226 /* ... and restore old setting. */
227 devkmsg_log = old;
228 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
229
230 return -EINVAL;
231 }
232 }
233
234 return 0;
235}
236
237/* Number of registered extended console drivers. */
238static int nr_ext_console_drivers;
239
240/*
241 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
242 * macros instead of functions so that _RET_IP_ contains useful information.
243 */
244#define down_console_sem() do { \
245 down(&console_sem);\
246 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
247} while (0)
248
249static int __down_trylock_console_sem(unsigned long ip)
250{
251 int lock_failed;
252 unsigned long flags;
253
254 /*
255 * Here and in __up_console_sem() we need to be in safe mode,
256 * because spindump/WARN/etc from under console ->lock will
257 * deadlock in printk()->down_trylock_console_sem() otherwise.
258 */
259 printk_safe_enter_irqsave(flags);
260 lock_failed = down_trylock(&console_sem);
261 printk_safe_exit_irqrestore(flags);
262
263 if (lock_failed)
264 return 1;
265 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
266 return 0;
267}
268#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
269
270static void __up_console_sem(unsigned long ip)
271{
272 unsigned long flags;
273
274 mutex_release(&console_lock_dep_map, 1, ip);
275
276 printk_safe_enter_irqsave(flags);
277 up(&console_sem);
278 printk_safe_exit_irqrestore(flags);
279}
280#define up_console_sem() __up_console_sem(_RET_IP_)
281
282/*
283 * This is used for debugging the mess that is the VT code by
284 * keeping track if we have the console semaphore held. It's
285 * definitely not the perfect debug tool (we don't know if _WE_
286 * hold it and are racing, but it helps tracking those weird code
287 * paths in the console code where we end up in places I want
288 * locked without the console sempahore held).
289 */
290static int console_locked, console_suspended;
291
292/*
293 * If exclusive_console is non-NULL then only this console is to be printed to.
294 */
295static struct console *exclusive_console;
296
297/*
298 * Array of consoles built from command line options (console=)
299 */
300
301#define MAX_CMDLINECONSOLES 8
302
303static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
304
305static int preferred_console = -1;
306int console_set_on_cmdline;
307EXPORT_SYMBOL(console_set_on_cmdline);
308
309/* Flag: console code may call schedule() */
310static int console_may_schedule;
311
312enum con_msg_format_flags {
313 MSG_FORMAT_DEFAULT = 0,
314 MSG_FORMAT_SYSLOG = (1 << 0),
315};
316
317static int console_msg_format = MSG_FORMAT_DEFAULT;
318
319/*
320 * The printk log buffer consists of a chain of concatenated variable
321 * length records. Every record starts with a record header, containing
322 * the overall length of the record.
323 *
324 * The heads to the first and last entry in the buffer, as well as the
325 * sequence numbers of these entries are maintained when messages are
326 * stored.
327 *
328 * If the heads indicate available messages, the length in the header
329 * tells the start next message. A length == 0 for the next message
330 * indicates a wrap-around to the beginning of the buffer.
331 *
332 * Every record carries the monotonic timestamp in microseconds, as well as
333 * the standard userspace syslog level and syslog facility. The usual
334 * kernel messages use LOG_KERN; userspace-injected messages always carry
335 * a matching syslog facility, by default LOG_USER. The origin of every
336 * message can be reliably determined that way.
337 *
338 * The human readable log message directly follows the message header. The
339 * length of the message text is stored in the header, the stored message
340 * is not terminated.
341 *
342 * Optionally, a message can carry a dictionary of properties (key/value pairs),
343 * to provide userspace with a machine-readable message context.
344 *
345 * Examples for well-defined, commonly used property names are:
346 * DEVICE=b12:8 device identifier
347 * b12:8 block dev_t
348 * c127:3 char dev_t
349 * n8 netdev ifindex
350 * +sound:card0 subsystem:devname
351 * SUBSYSTEM=pci driver-core subsystem name
352 *
353 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
354 * follows directly after a '=' character. Every property is terminated by
355 * a '\0' character. The last property is not terminated.
356 *
357 * Example of a message structure:
358 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
359 * 0008 34 00 record is 52 bytes long
360 * 000a 0b 00 text is 11 bytes long
361 * 000c 1f 00 dictionary is 23 bytes long
362 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
363 * 0010 69 74 27 73 20 61 20 6c "it's a l"
364 * 69 6e 65 "ine"
365 * 001b 44 45 56 49 43 "DEVIC"
366 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
367 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
368 * 67 "g"
369 * 0032 00 00 00 padding to next message header
370 *
371 * The 'struct printk_log' buffer header must never be directly exported to
372 * userspace, it is a kernel-private implementation detail that might
373 * need to be changed in the future, when the requirements change.
374 *
375 * /dev/kmsg exports the structured data in the following line format:
376 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
377 *
378 * Users of the export format should ignore possible additional values
379 * separated by ',', and find the message after the ';' character.
380 *
381 * The optional key/value pairs are attached as continuation lines starting
382 * with a space character and terminated by a newline. All possible
383 * non-prinatable characters are escaped in the "\xff" notation.
384 */
385
386enum log_flags {
387 LOG_NEWLINE = 2, /* text ended with a newline */
388 LOG_CONT = 8, /* text is a fragment of a continuation line */
389};
390
391struct printk_log {
392 u64 ts_nsec; /* timestamp in nanoseconds */
393 u16 len; /* length of entire record */
394 u16 text_len; /* length of text buffer */
395 u16 dict_len; /* length of dictionary buffer */
396 u8 facility; /* syslog facility */
397 u8 flags:5; /* internal record flags */
398 u8 level:3; /* syslog level */
399#ifdef CONFIG_PRINTK_CALLER
400 u32 caller_id; /* thread id or processor id */
401#endif
402}
403#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
404__packed __aligned(4)
405#endif
406;
407
408/*
409 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
410 * within the scheduler's rq lock. It must be released before calling
411 * console_unlock() or anything else that might wake up a process.
412 */
413DEFINE_RAW_SPINLOCK(logbuf_lock);
414
415/*
416 * Helper macros to lock/unlock logbuf_lock and switch between
417 * printk-safe/unsafe modes.
418 */
419#define logbuf_lock_irq() \
420 do { \
421 printk_safe_enter_irq(); \
422 raw_spin_lock(&logbuf_lock); \
423 } while (0)
424
425#define logbuf_unlock_irq() \
426 do { \
427 raw_spin_unlock(&logbuf_lock); \
428 printk_safe_exit_irq(); \
429 } while (0)
430
431#define logbuf_lock_irqsave(flags) \
432 do { \
433 printk_safe_enter_irqsave(flags); \
434 raw_spin_lock(&logbuf_lock); \
435 } while (0)
436
437#define logbuf_unlock_irqrestore(flags) \
438 do { \
439 raw_spin_unlock(&logbuf_lock); \
440 printk_safe_exit_irqrestore(flags); \
441 } while (0)
442
443#ifdef CONFIG_PRINTK
444DECLARE_WAIT_QUEUE_HEAD(log_wait);
445/* the next printk record to read by syslog(READ) or /proc/kmsg */
446static u64 syslog_seq;
447static u32 syslog_idx;
448static size_t syslog_partial;
449static bool syslog_time;
450
451/* index and sequence number of the first record stored in the buffer */
452static u64 log_first_seq;
453static u32 log_first_idx;
454
455/* index and sequence number of the next record to store in the buffer */
456static u64 log_next_seq;
457static u32 log_next_idx;
458
459/* the next printk record to write to the console */
460static u64 console_seq;
461static u32 console_idx;
462static u64 exclusive_console_stop_seq;
463
464/* the next printk record to read after the last 'clear' command */
465static u64 clear_seq;
466static u32 clear_idx;
467
468#ifdef CONFIG_PRINTK_CALLER
469#define PREFIX_MAX 48
470#else
471#define PREFIX_MAX 32
472#endif
473#define LOG_LINE_MAX (1024 - PREFIX_MAX)
474
475#define LOG_LEVEL(v) ((v) & 0x07)
476#define LOG_FACILITY(v) ((v) >> 3 & 0xff)
477
478/* record buffer */
479#define LOG_ALIGN __alignof__(struct printk_log)
480#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
481#define LOG_BUF_LEN_MAX (u32)(1 << 31)
482static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
483static char *log_buf = __log_buf;
484static u32 log_buf_len = __LOG_BUF_LEN;
485
486/*
487 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
488 * per_cpu_areas are initialised. This variable is set to true when
489 * it's safe to access per-CPU data.
490 */
491static bool __printk_percpu_data_ready __read_mostly;
492
493bool printk_percpu_data_ready(void)
494{
495 return __printk_percpu_data_ready;
496}
497
498/* Return log buffer address */
499char *log_buf_addr_get(void)
500{
501 return log_buf;
502}
503
504/* Return log buffer size */
505u32 log_buf_len_get(void)
506{
507 return log_buf_len;
508}
509
510/* human readable text of the record */
511static char *log_text(const struct printk_log *msg)
512{
513 return (char *)msg + sizeof(struct printk_log);
514}
515
516/* optional key/value pair dictionary attached to the record */
517static char *log_dict(const struct printk_log *msg)
518{
519 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
520}
521
522/* get record by index; idx must point to valid msg */
523static struct printk_log *log_from_idx(u32 idx)
524{
525 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
526
527 /*
528 * A length == 0 record is the end of buffer marker. Wrap around and
529 * read the message at the start of the buffer.
530 */
531 if (!msg->len)
532 return (struct printk_log *)log_buf;
533 return msg;
534}
535
536/* get next record; idx must point to valid msg */
537static u32 log_next(u32 idx)
538{
539 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
540
541 /* length == 0 indicates the end of the buffer; wrap */
542 /*
543 * A length == 0 record is the end of buffer marker. Wrap around and
544 * read the message at the start of the buffer as *this* one, and
545 * return the one after that.
546 */
547 if (!msg->len) {
548 msg = (struct printk_log *)log_buf;
549 return msg->len;
550 }
551 return idx + msg->len;
552}
553
554/*
555 * Check whether there is enough free space for the given message.
556 *
557 * The same values of first_idx and next_idx mean that the buffer
558 * is either empty or full.
559 *
560 * If the buffer is empty, we must respect the position of the indexes.
561 * They cannot be reset to the beginning of the buffer.
562 */
563static int logbuf_has_space(u32 msg_size, bool empty)
564{
565 u32 free;
566
567 if (log_next_idx > log_first_idx || empty)
568 free = max(log_buf_len - log_next_idx, log_first_idx);
569 else
570 free = log_first_idx - log_next_idx;
571
572 /*
573 * We need space also for an empty header that signalizes wrapping
574 * of the buffer.
575 */
576 return free >= msg_size + sizeof(struct printk_log);
577}
578
579static int log_make_free_space(u32 msg_size)
580{
581 while (log_first_seq < log_next_seq &&
582 !logbuf_has_space(msg_size, false)) {
583 /* drop old messages until we have enough contiguous space */
584 log_first_idx = log_next(log_first_idx);
585 log_first_seq++;
586 }
587
588 if (clear_seq < log_first_seq) {
589 clear_seq = log_first_seq;
590 clear_idx = log_first_idx;
591 }
592
593 /* sequence numbers are equal, so the log buffer is empty */
594 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
595 return 0;
596
597 return -ENOMEM;
598}
599
600/* compute the message size including the padding bytes */
601static u32 msg_used_size(u16 prefix_len, u16 text_len, u16 dict_len, u32 *pad_len)
602{
603 u32 size;
604
605 size = sizeof(struct printk_log) + text_len + dict_len + prefix_len;
606 *pad_len = (-size) & (LOG_ALIGN - 1);
607 size += *pad_len;
608
609 return size;
610}
611
612/*
613 * Define how much of the log buffer we could take at maximum. The value
614 * must be greater than two. Note that only half of the buffer is available
615 * when the index points to the middle.
616 */
617#define MAX_LOG_TAKE_PART 4
618static const char trunc_msg[] = "<truncated>";
619
620static u32 truncate_msg(u16 prefix_len, u16 *text_len, u16 *trunc_msg_len,
621 u16 *dict_len, u32 *pad_len)
622{
623 /*
624 * The message should not take the whole buffer. Otherwise, it might
625 * get removed too soon.
626 */
627 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
628 if (*text_len > max_text_len)
629 *text_len = max_text_len;
630 /* enable the warning message */
631 *trunc_msg_len = strlen(trunc_msg);
632 /* disable the "dict" completely */
633 *dict_len = 0;
634 /* compute the size again, count also the warning message */
635 return msg_used_size(prefix_len, *text_len + *trunc_msg_len, 0, pad_len);
636}
637
638#ifdef CONFIG_MRVL_LOG
639static void (*log_text_hook)(char *text, unsigned int size);
640static char mmp_text[1024 + 64]; /* buffer size: LOG_LINE_MAX + PREFIX_MAX */
641void register_log_text_hook(void (*f)(char *text, unsigned int size),
642 char *buf, unsigned int bufsize)
643{
644 if (buf && bufsize)
645 log_text_hook = f;
646}
647EXPORT_SYMBOL(register_log_text_hook);
648static size_t msg_print_text(const struct printk_log *msg, bool syslog,
649 bool time, char *buf, size_t size);
650#endif
651
652#if defined(CONFIG_SMP)
653static bool printk_cpu_id = true;
654#else
655static bool printk_cpu_id;
656#endif
657
658/* insert record into the buffer, discard old ones, update heads */
659static int log_store(u32 caller_id, int facility, int level,
660 enum log_flags flags, u64 ts_nsec,
661 const char *dict, u16 dict_len,
662 const char *text, u16 text_len)
663{
664 struct printk_log *msg;
665 u32 size, pad_len, prefix_len = 0;
666 u16 trunc_msg_len = 0;
667 char prefix[TASK_COMM_LEN + 20];
668
669 if (printk_cpu_id)
670 prefix_len += sprintf(prefix, "c%u ", smp_processor_id());
671
672 /* number of '\0' padding bytes to next message */
673 size = msg_used_size(prefix_len, text_len, dict_len, &pad_len);
674
675 if (log_make_free_space(size)) {
676 /* truncate the message if it is too long for empty buffer */
677 size = truncate_msg(prefix_len, &text_len, &trunc_msg_len,
678 &dict_len, &pad_len);
679 /* survive when the log buffer is too small for trunc_msg */
680 if (log_make_free_space(size))
681 return 0;
682 }
683
684 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
685 /*
686 * This message + an additional empty header does not fit
687 * at the end of the buffer. Add an empty header with len == 0
688 * to signify a wrap around.
689 */
690 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
691 log_next_idx = 0;
692 }
693
694 /* fill message */
695 msg = (struct printk_log *)(log_buf + log_next_idx);
696 if (prefix_len)
697 memcpy(log_text(msg), prefix, prefix_len);
698 memcpy(log_text(msg) + prefix_len, text, text_len);
699 msg->text_len = text_len + prefix_len;
700
701 if (trunc_msg_len) {
702 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
703 msg->text_len += trunc_msg_len;
704 }
705 memcpy(log_dict(msg), dict, dict_len);
706 msg->dict_len = dict_len;
707 msg->facility = facility;
708 msg->level = level & 7;
709 msg->flags = flags & 0x1f;
710 if (ts_nsec > 0)
711 msg->ts_nsec = ts_nsec;
712 else
713 msg->ts_nsec = print_clock();
714#ifdef CONFIG_PRINTK_CALLER
715 msg->caller_id = caller_id;
716#endif
717 memset(log_dict(msg) + dict_len, 0, pad_len);
718 msg->len = size;
719
720
721#ifdef CONFIG_MRVL_LOG
722 if (log_text_hook) {
723 size = msg_print_text(msg, msg->flags, true,
724 mmp_text, 1024);
725
726 log_text_hook(mmp_text, size);
727 }
728#endif
729 /* insert message */
730 log_next_idx += msg->len;
731 log_next_seq++;
732
733 return msg->text_len;
734}
735
736int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
737
738static int syslog_action_restricted(int type)
739{
740 if (dmesg_restrict)
741 return 1;
742 /*
743 * Unless restricted, we allow "read all" and "get buffer size"
744 * for everybody.
745 */
746 return type != SYSLOG_ACTION_READ_ALL &&
747 type != SYSLOG_ACTION_SIZE_BUFFER;
748}
749
750static int check_syslog_permissions(int type, int source)
751{
752 /*
753 * If this is from /proc/kmsg and we've already opened it, then we've
754 * already done the capabilities checks at open time.
755 */
756 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
757 goto ok;
758
759 if (syslog_action_restricted(type)) {
760 if (capable(CAP_SYSLOG))
761 goto ok;
762 /*
763 * For historical reasons, accept CAP_SYS_ADMIN too, with
764 * a warning.
765 */
766 if (capable(CAP_SYS_ADMIN)) {
767 pr_warn_once("%s (%d): Attempt to access syslog with "
768 "CAP_SYS_ADMIN but no CAP_SYSLOG "
769 "(deprecated).\n",
770 current->comm, task_pid_nr(current));
771 goto ok;
772 }
773 return -EPERM;
774 }
775ok:
776 return security_syslog(type);
777}
778
779static void append_char(char **pp, char *e, char c)
780{
781 if (*pp < e)
782 *(*pp)++ = c;
783}
784
785static ssize_t msg_print_ext_header(char *buf, size_t size,
786 struct printk_log *msg, u64 seq)
787{
788 u64 ts_usec = msg->ts_nsec;
789 char caller[20];
790#ifdef CONFIG_PRINTK_CALLER
791 u32 id = msg->caller_id;
792
793 snprintf(caller, sizeof(caller), ",caller=%c%u",
794 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
795#else
796 caller[0] = '\0';
797#endif
798
799 do_div(ts_usec, 1000);
800
801 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
802 (msg->facility << 3) | msg->level, seq, ts_usec,
803 msg->flags & LOG_CONT ? 'c' : '-', caller);
804}
805
806static ssize_t msg_print_ext_body(char *buf, size_t size,
807 char *dict, size_t dict_len,
808 char *text, size_t text_len)
809{
810 char *p = buf, *e = buf + size;
811 size_t i;
812
813 /* escape non-printable characters */
814 for (i = 0; i < text_len; i++) {
815 unsigned char c = text[i];
816
817 if (c < ' ' || c >= 127 || c == '\\')
818 p += scnprintf(p, e - p, "\\x%02x", c);
819 else
820 append_char(&p, e, c);
821 }
822 append_char(&p, e, '\n');
823
824 if (dict_len) {
825 bool line = true;
826
827 for (i = 0; i < dict_len; i++) {
828 unsigned char c = dict[i];
829
830 if (line) {
831 append_char(&p, e, ' ');
832 line = false;
833 }
834
835 if (c == '\0') {
836 append_char(&p, e, '\n');
837 line = true;
838 continue;
839 }
840
841 if (c < ' ' || c >= 127 || c == '\\') {
842 p += scnprintf(p, e - p, "\\x%02x", c);
843 continue;
844 }
845
846 append_char(&p, e, c);
847 }
848 append_char(&p, e, '\n');
849 }
850
851 return p - buf;
852}
853
854/* /dev/kmsg - userspace message inject/listen interface */
855struct devkmsg_user {
856 u64 seq;
857 u32 idx;
858 struct ratelimit_state rs;
859 struct mutex lock;
860 char buf[CONSOLE_EXT_LOG_MAX];
861};
862
863static __printf(3, 4) __cold
864int devkmsg_emit(int facility, int level, const char *fmt, ...)
865{
866 va_list args;
867 int r;
868
869 va_start(args, fmt);
870 r = vprintk_emit(facility, level, NULL, 0, fmt, args);
871 va_end(args);
872
873 return r;
874}
875
876static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
877{
878 char *buf, *line;
879 int level = default_message_loglevel;
880 int facility = 1; /* LOG_USER */
881 struct file *file = iocb->ki_filp;
882 struct devkmsg_user *user = file->private_data;
883 size_t len = iov_iter_count(from);
884 ssize_t ret = len;
885
886 if (!user || len > LOG_LINE_MAX)
887 return -EINVAL;
888
889 /* Ignore when user logging is disabled. */
890 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
891 return len;
892
893 /* Ratelimit when not explicitly enabled. */
894 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
895 if (!___ratelimit(&user->rs, current->comm))
896 return ret;
897 }
898
899 buf = kmalloc(len+1, GFP_KERNEL);
900 if (buf == NULL)
901 return -ENOMEM;
902
903 buf[len] = '\0';
904 if (!copy_from_iter_full(buf, len, from)) {
905 kfree(buf);
906 return -EFAULT;
907 }
908
909 /*
910 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
911 * the decimal value represents 32bit, the lower 3 bit are the log
912 * level, the rest are the log facility.
913 *
914 * If no prefix or no userspace facility is specified, we
915 * enforce LOG_USER, to be able to reliably distinguish
916 * kernel-generated messages from userspace-injected ones.
917 */
918 line = buf;
919 if (line[0] == '<') {
920 char *endp = NULL;
921 unsigned int u;
922
923 u = simple_strtoul(line + 1, &endp, 10);
924 if (endp && endp[0] == '>') {
925 level = LOG_LEVEL(u);
926 if (LOG_FACILITY(u) != 0)
927 facility = LOG_FACILITY(u);
928 endp++;
929 len -= endp - line;
930 line = endp;
931 }
932 }
933
934 devkmsg_emit(facility, level, "%s", line);
935 kfree(buf);
936 return ret;
937}
938
939static ssize_t devkmsg_read(struct file *file, char __user *buf,
940 size_t count, loff_t *ppos)
941{
942 struct devkmsg_user *user = file->private_data;
943 struct printk_log *msg;
944 size_t len;
945 ssize_t ret;
946
947 if (!user)
948 return -EBADF;
949
950 ret = mutex_lock_interruptible(&user->lock);
951 if (ret)
952 return ret;
953
954 logbuf_lock_irq();
955 while (user->seq == log_next_seq) {
956 if (file->f_flags & O_NONBLOCK) {
957 ret = -EAGAIN;
958 logbuf_unlock_irq();
959 goto out;
960 }
961
962 logbuf_unlock_irq();
963 ret = wait_event_interruptible(log_wait,
964 user->seq != log_next_seq);
965 if (ret)
966 goto out;
967 logbuf_lock_irq();
968 }
969
970 if (user->seq < log_first_seq) {
971 /* our last seen message is gone, return error and reset */
972 user->idx = log_first_idx;
973 user->seq = log_first_seq;
974 ret = -EPIPE;
975 logbuf_unlock_irq();
976 goto out;
977 }
978
979 msg = log_from_idx(user->idx);
980 len = msg_print_ext_header(user->buf, sizeof(user->buf),
981 msg, user->seq);
982 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
983 log_dict(msg), msg->dict_len,
984 log_text(msg), msg->text_len);
985
986 user->idx = log_next(user->idx);
987 user->seq++;
988 logbuf_unlock_irq();
989
990 if (len > count) {
991 ret = -EINVAL;
992 goto out;
993 }
994
995 if (copy_to_user(buf, user->buf, len)) {
996 ret = -EFAULT;
997 goto out;
998 }
999 ret = len;
1000out:
1001 mutex_unlock(&user->lock);
1002 return ret;
1003}
1004
1005static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
1006{
1007 struct devkmsg_user *user = file->private_data;
1008 loff_t ret = 0;
1009
1010 if (!user)
1011 return -EBADF;
1012 if (offset)
1013 return -ESPIPE;
1014
1015 logbuf_lock_irq();
1016 switch (whence) {
1017 case SEEK_SET:
1018 /* the first record */
1019 user->idx = log_first_idx;
1020 user->seq = log_first_seq;
1021 break;
1022 case SEEK_DATA:
1023 /*
1024 * The first record after the last SYSLOG_ACTION_CLEAR,
1025 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
1026 * changes no global state, and does not clear anything.
1027 */
1028 user->idx = clear_idx;
1029 user->seq = clear_seq;
1030 break;
1031 case SEEK_END:
1032 /* after the last record */
1033 user->idx = log_next_idx;
1034 user->seq = log_next_seq;
1035 break;
1036 default:
1037 ret = -EINVAL;
1038 }
1039 logbuf_unlock_irq();
1040 return ret;
1041}
1042
1043static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
1044{
1045 struct devkmsg_user *user = file->private_data;
1046 __poll_t ret = 0;
1047
1048 if (!user)
1049 return EPOLLERR|EPOLLNVAL;
1050
1051 poll_wait(file, &log_wait, wait);
1052
1053 logbuf_lock_irq();
1054 if (user->seq < log_next_seq) {
1055 /* return error when data has vanished underneath us */
1056 if (user->seq < log_first_seq)
1057 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
1058 else
1059 ret = EPOLLIN|EPOLLRDNORM;
1060 }
1061 logbuf_unlock_irq();
1062
1063 return ret;
1064}
1065
1066static int devkmsg_open(struct inode *inode, struct file *file)
1067{
1068 struct devkmsg_user *user;
1069 int err;
1070
1071 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1072 return -EPERM;
1073
1074 /* write-only does not need any file context */
1075 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1076 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1077 SYSLOG_FROM_READER);
1078 if (err)
1079 return err;
1080 }
1081
1082 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1083 if (!user)
1084 return -ENOMEM;
1085
1086 ratelimit_default_init(&user->rs);
1087 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1088
1089 mutex_init(&user->lock);
1090
1091 logbuf_lock_irq();
1092 user->idx = log_first_idx;
1093 user->seq = log_first_seq;
1094 logbuf_unlock_irq();
1095
1096 file->private_data = user;
1097 return 0;
1098}
1099
1100static int devkmsg_release(struct inode *inode, struct file *file)
1101{
1102 struct devkmsg_user *user = file->private_data;
1103
1104 if (!user)
1105 return 0;
1106
1107 ratelimit_state_exit(&user->rs);
1108
1109 mutex_destroy(&user->lock);
1110 kfree(user);
1111 return 0;
1112}
1113
1114const struct file_operations kmsg_fops = {
1115 .open = devkmsg_open,
1116 .read = devkmsg_read,
1117 .write_iter = devkmsg_write,
1118 .llseek = devkmsg_llseek,
1119 .poll = devkmsg_poll,
1120 .release = devkmsg_release,
1121};
1122
1123#ifdef CONFIG_CRASH_CORE
1124/*
1125 * This appends the listed symbols to /proc/vmcore
1126 *
1127 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1128 * obtain access to symbols that are otherwise very difficult to locate. These
1129 * symbols are specifically used so that utilities can access and extract the
1130 * dmesg log from a vmcore file after a crash.
1131 */
1132void log_buf_vmcoreinfo_setup(void)
1133{
1134 VMCOREINFO_SYMBOL(log_buf);
1135 VMCOREINFO_SYMBOL(log_buf_len);
1136 VMCOREINFO_SYMBOL(log_first_idx);
1137 VMCOREINFO_SYMBOL(clear_idx);
1138 VMCOREINFO_SYMBOL(log_next_idx);
1139 /*
1140 * Export struct printk_log size and field offsets. User space tools can
1141 * parse it and detect any changes to structure down the line.
1142 */
1143 VMCOREINFO_STRUCT_SIZE(printk_log);
1144 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1145 VMCOREINFO_OFFSET(printk_log, len);
1146 VMCOREINFO_OFFSET(printk_log, text_len);
1147 VMCOREINFO_OFFSET(printk_log, dict_len);
1148#ifdef CONFIG_PRINTK_CALLER
1149 VMCOREINFO_OFFSET(printk_log, caller_id);
1150#endif
1151}
1152#endif
1153
1154/* requested log_buf_len from kernel cmdline */
1155static unsigned long __initdata new_log_buf_len;
1156
1157#ifdef CONFIG_PXA_RAMDUMP
1158#include <linux/ramdump.h>
1159static int __init printk_ramdump_register(void)
1160{
1161 ramdump_attach_cbuffer("printk",
1162 (void **)&log_buf, &log_buf_len, &log_next_idx,
1163 sizeof(log_buf[0]));
1164 return 0;
1165}
1166late_initcall(printk_ramdump_register);
1167#endif
1168
1169/* we practice scaling the ring buffer by powers of 2 */
1170static void __init log_buf_len_update(u64 size)
1171{
1172 if (size > (u64)LOG_BUF_LEN_MAX) {
1173 size = (u64)LOG_BUF_LEN_MAX;
1174 pr_err("log_buf over 2G is not supported.\n");
1175 }
1176
1177 if (size)
1178 size = roundup_pow_of_two(size);
1179 if (size > log_buf_len)
1180 new_log_buf_len = (unsigned long)size;
1181}
1182
1183/* save requested log_buf_len since it's too early to process it */
1184static int __init log_buf_len_setup(char *str)
1185{
1186 u64 size;
1187
1188 if (!str)
1189 return -EINVAL;
1190
1191 size = memparse(str, &str);
1192
1193 log_buf_len_update(size);
1194
1195 return 0;
1196}
1197early_param("log_buf_len", log_buf_len_setup);
1198
1199#ifdef CONFIG_SMP
1200#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1201
1202static void __init log_buf_add_cpu(void)
1203{
1204 unsigned int cpu_extra;
1205
1206 /*
1207 * archs should set up cpu_possible_bits properly with
1208 * set_cpu_possible() after setup_arch() but just in
1209 * case lets ensure this is valid.
1210 */
1211 if (num_possible_cpus() == 1)
1212 return;
1213
1214 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1215
1216 /* by default this will only continue through for large > 64 CPUs */
1217 if (cpu_extra <= __LOG_BUF_LEN / 2)
1218 return;
1219
1220 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1221 __LOG_CPU_MAX_BUF_LEN);
1222 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1223 cpu_extra);
1224 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1225
1226 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1227}
1228#else /* !CONFIG_SMP */
1229static inline void log_buf_add_cpu(void) {}
1230#endif /* CONFIG_SMP */
1231
1232static void __init set_percpu_data_ready(void)
1233{
1234 printk_safe_init();
1235 /* Make sure we set this flag only after printk_safe() init is done */
1236 barrier();
1237 __printk_percpu_data_ready = true;
1238}
1239
1240void __init setup_log_buf(int early)
1241{
1242 unsigned long flags;
1243 char *new_log_buf;
1244 unsigned int free;
1245
1246 /*
1247 * Some archs call setup_log_buf() multiple times - first is very
1248 * early, e.g. from setup_arch(), and second - when percpu_areas
1249 * are initialised.
1250 */
1251 if (!early)
1252 set_percpu_data_ready();
1253
1254 if (log_buf != __log_buf)
1255 return;
1256
1257 if (!early && !new_log_buf_len)
1258 log_buf_add_cpu();
1259
1260 if (!new_log_buf_len)
1261 return;
1262
1263 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1264 if (unlikely(!new_log_buf)) {
1265 pr_err("log_buf_len: %lu bytes not available\n",
1266 new_log_buf_len);
1267 return;
1268 }
1269
1270 logbuf_lock_irqsave(flags);
1271 log_buf_len = new_log_buf_len;
1272 log_buf = new_log_buf;
1273 new_log_buf_len = 0;
1274 free = __LOG_BUF_LEN - log_next_idx;
1275 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1276 logbuf_unlock_irqrestore(flags);
1277
1278 pr_info("log_buf_len: %u bytes\n", log_buf_len);
1279 pr_info("early log buf free: %u(%u%%)\n",
1280 free, (free * 100) / __LOG_BUF_LEN);
1281}
1282
1283static bool __read_mostly ignore_loglevel;
1284
1285static int __init ignore_loglevel_setup(char *str)
1286{
1287 ignore_loglevel = true;
1288 pr_info("debug: ignoring loglevel setting.\n");
1289
1290 return 0;
1291}
1292
1293early_param("ignore_loglevel", ignore_loglevel_setup);
1294module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1295MODULE_PARM_DESC(ignore_loglevel,
1296 "ignore loglevel setting (prints all kernel messages to the console)");
1297
1298static bool suppress_message_printing(int level)
1299{
1300 return (level >= console_loglevel && !ignore_loglevel);
1301}
1302
1303#ifdef CONFIG_BOOT_PRINTK_DELAY
1304
1305static int boot_delay; /* msecs delay after each printk during bootup */
1306static unsigned long long loops_per_msec; /* based on boot_delay */
1307
1308static int __init boot_delay_setup(char *str)
1309{
1310 unsigned long lpj;
1311
1312 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1313 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1314
1315 get_option(&str, &boot_delay);
1316 if (boot_delay > 10 * 1000)
1317 boot_delay = 0;
1318
1319 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1320 "HZ: %d, loops_per_msec: %llu\n",
1321 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1322 return 0;
1323}
1324early_param("boot_delay", boot_delay_setup);
1325
1326static void boot_delay_msec(int level)
1327{
1328 unsigned long long k;
1329 unsigned long timeout;
1330
1331 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1332 || suppress_message_printing(level)) {
1333 return;
1334 }
1335
1336 k = (unsigned long long)loops_per_msec * boot_delay;
1337
1338 timeout = jiffies + msecs_to_jiffies(boot_delay);
1339 while (k) {
1340 k--;
1341 cpu_relax();
1342 /*
1343 * use (volatile) jiffies to prevent
1344 * compiler reduction; loop termination via jiffies
1345 * is secondary and may or may not happen.
1346 */
1347 if (time_after(jiffies, timeout))
1348 break;
1349 touch_nmi_watchdog();
1350 }
1351}
1352#else
1353static inline void boot_delay_msec(int level)
1354{
1355}
1356#endif
1357
1358static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1359module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1360
1361static size_t print_syslog(unsigned int level, char *buf)
1362{
1363 return sprintf(buf, "<%u>", level);
1364}
1365
1366static size_t print_time(u64 ts, char *buf)
1367{
1368 unsigned long rem_nsec = do_div(ts, 1000000000);
1369
1370 return sprintf(buf, "[%5lu.%06lu]",
1371 (unsigned long)ts, rem_nsec / 1000);
1372}
1373
1374#ifdef CONFIG_PRINTK_CALLER
1375static size_t print_caller(u32 id, char *buf)
1376{
1377 char caller[12];
1378
1379 snprintf(caller, sizeof(caller), "%c%u",
1380 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1381 return sprintf(buf, "[%6s]", caller);
1382}
1383#else
1384#define print_caller(id, buf) 0
1385#endif
1386
1387static size_t print_prefix(const struct printk_log *msg, bool syslog,
1388 bool time, char *buf)
1389{
1390 size_t len = 0;
1391
1392 if (syslog)
1393 len = print_syslog((msg->facility << 3) | msg->level, buf);
1394
1395 if (time)
1396 len += print_time(msg->ts_nsec, buf + len);
1397
1398 len += print_caller(msg->caller_id, buf + len);
1399
1400 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1401 buf[len++] = ' ';
1402 buf[len] = '\0';
1403 }
1404
1405 return len;
1406}
1407
1408static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1409 bool time, char *buf, size_t size)
1410{
1411 const char *text = log_text(msg);
1412 size_t text_size = msg->text_len;
1413 size_t len = 0;
1414 char prefix[PREFIX_MAX];
1415 const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1416
1417 do {
1418 const char *next = memchr(text, '\n', text_size);
1419 size_t text_len;
1420
1421 if (next) {
1422 text_len = next - text;
1423 next++;
1424 text_size -= next - text;
1425 } else {
1426 text_len = text_size;
1427 }
1428
1429 if (buf) {
1430 if (prefix_len + text_len + 1 >= size - len)
1431 break;
1432
1433 memcpy(buf + len, prefix, prefix_len);
1434 len += prefix_len;
1435 memcpy(buf + len, text, text_len);
1436 len += text_len;
1437 buf[len++] = '\n';
1438 } else {
1439 /* SYSLOG_ACTION_* buffer size only calculation */
1440 len += prefix_len + text_len + 1;
1441 }
1442
1443 text = next;
1444 } while (text);
1445
1446 return len;
1447}
1448
1449static int syslog_print(char __user *buf, int size)
1450{
1451 char *text;
1452 struct printk_log *msg;
1453 int len = 0;
1454
1455 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1456 if (!text)
1457 return -ENOMEM;
1458
1459 while (size > 0) {
1460 size_t n;
1461 size_t skip;
1462
1463 logbuf_lock_irq();
1464 if (syslog_seq < log_first_seq) {
1465 /* messages are gone, move to first one */
1466 syslog_seq = log_first_seq;
1467 syslog_idx = log_first_idx;
1468 syslog_partial = 0;
1469 }
1470 if (syslog_seq == log_next_seq) {
1471 logbuf_unlock_irq();
1472 break;
1473 }
1474
1475 /*
1476 * To keep reading/counting partial line consistent,
1477 * use printk_time value as of the beginning of a line.
1478 */
1479 if (!syslog_partial)
1480 syslog_time = printk_time;
1481
1482 skip = syslog_partial;
1483 msg = log_from_idx(syslog_idx);
1484 n = msg_print_text(msg, true, syslog_time, text,
1485 LOG_LINE_MAX + PREFIX_MAX);
1486 if (n - syslog_partial <= size) {
1487 /* message fits into buffer, move forward */
1488 syslog_idx = log_next(syslog_idx);
1489 syslog_seq++;
1490 n -= syslog_partial;
1491 syslog_partial = 0;
1492 } else if (!len){
1493 /* partial read(), remember position */
1494 n = size;
1495 syslog_partial += n;
1496 } else
1497 n = 0;
1498 logbuf_unlock_irq();
1499
1500 if (!n)
1501 break;
1502
1503 if (copy_to_user(buf, text + skip, n)) {
1504 if (!len)
1505 len = -EFAULT;
1506 break;
1507 }
1508
1509 len += n;
1510 size -= n;
1511 buf += n;
1512 }
1513
1514 kfree(text);
1515 return len;
1516}
1517
1518static int syslog_print_all(char __user *buf, int size, bool clear)
1519{
1520 char *text;
1521 int len = 0;
1522 u64 next_seq;
1523 u64 seq;
1524 u32 idx;
1525 bool time;
1526
1527 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1528 if (!text)
1529 return -ENOMEM;
1530
1531 time = printk_time;
1532 logbuf_lock_irq();
1533 /*
1534 * Find first record that fits, including all following records,
1535 * into the user-provided buffer for this dump.
1536 */
1537 seq = clear_seq;
1538 idx = clear_idx;
1539 while (seq < log_next_seq) {
1540 struct printk_log *msg = log_from_idx(idx);
1541
1542 len += msg_print_text(msg, true, time, NULL, 0);
1543 idx = log_next(idx);
1544 seq++;
1545 }
1546
1547 /* move first record forward until length fits into the buffer */
1548 seq = clear_seq;
1549 idx = clear_idx;
1550 while (len > size && seq < log_next_seq) {
1551 struct printk_log *msg = log_from_idx(idx);
1552
1553 len -= msg_print_text(msg, true, time, NULL, 0);
1554 idx = log_next(idx);
1555 seq++;
1556 }
1557
1558 /* last message fitting into this dump */
1559 next_seq = log_next_seq;
1560
1561 len = 0;
1562 while (len >= 0 && seq < next_seq) {
1563 struct printk_log *msg = log_from_idx(idx);
1564 int textlen = msg_print_text(msg, true, time, text,
1565 LOG_LINE_MAX + PREFIX_MAX);
1566
1567 idx = log_next(idx);
1568 seq++;
1569
1570 logbuf_unlock_irq();
1571 if (copy_to_user(buf + len, text, textlen))
1572 len = -EFAULT;
1573 else
1574 len += textlen;
1575 logbuf_lock_irq();
1576
1577 if (seq < log_first_seq) {
1578 /* messages are gone, move to next one */
1579 seq = log_first_seq;
1580 idx = log_first_idx;
1581 }
1582 }
1583
1584 if (clear) {
1585 clear_seq = log_next_seq;
1586 clear_idx = log_next_idx;
1587 }
1588 logbuf_unlock_irq();
1589
1590 kfree(text);
1591 return len;
1592}
1593
1594static void syslog_clear(void)
1595{
1596 logbuf_lock_irq();
1597 clear_seq = log_next_seq;
1598 clear_idx = log_next_idx;
1599 logbuf_unlock_irq();
1600}
1601
1602int do_syslog(int type, char __user *buf, int len, int source)
1603{
1604 bool clear = false;
1605 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1606 int error;
1607
1608 error = check_syslog_permissions(type, source);
1609 if (error)
1610 return error;
1611
1612 switch (type) {
1613 case SYSLOG_ACTION_CLOSE: /* Close log */
1614 break;
1615 case SYSLOG_ACTION_OPEN: /* Open log */
1616 break;
1617 case SYSLOG_ACTION_READ: /* Read from log */
1618 if (!buf || len < 0)
1619 return -EINVAL;
1620 if (!len)
1621 return 0;
1622 if (!access_ok(buf, len))
1623 return -EFAULT;
1624 error = wait_event_interruptible(log_wait,
1625 syslog_seq != log_next_seq);
1626 if (error)
1627 return error;
1628 error = syslog_print(buf, len);
1629 break;
1630 /* Read/clear last kernel messages */
1631 case SYSLOG_ACTION_READ_CLEAR:
1632 clear = true;
1633 /* FALL THRU */
1634 /* Read last kernel messages */
1635 case SYSLOG_ACTION_READ_ALL:
1636 if (!buf || len < 0)
1637 return -EINVAL;
1638 if (!len)
1639 return 0;
1640 if (!access_ok(buf, len))
1641 return -EFAULT;
1642 error = syslog_print_all(buf, len, clear);
1643 break;
1644 /* Clear ring buffer */
1645 case SYSLOG_ACTION_CLEAR:
1646 syslog_clear();
1647 break;
1648 /* Disable logging to console */
1649 case SYSLOG_ACTION_CONSOLE_OFF:
1650 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1651 saved_console_loglevel = console_loglevel;
1652 console_loglevel = minimum_console_loglevel;
1653 break;
1654 /* Enable logging to console */
1655 case SYSLOG_ACTION_CONSOLE_ON:
1656 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1657 console_loglevel = saved_console_loglevel;
1658 saved_console_loglevel = LOGLEVEL_DEFAULT;
1659 }
1660 break;
1661 /* Set level of messages printed to console */
1662 case SYSLOG_ACTION_CONSOLE_LEVEL:
1663 if (len < 1 || len > 8)
1664 return -EINVAL;
1665 if (len < minimum_console_loglevel)
1666 len = minimum_console_loglevel;
1667 console_loglevel = len;
1668 /* Implicitly re-enable logging to console */
1669 saved_console_loglevel = LOGLEVEL_DEFAULT;
1670 break;
1671 /* Number of chars in the log buffer */
1672 case SYSLOG_ACTION_SIZE_UNREAD:
1673 logbuf_lock_irq();
1674 if (syslog_seq < log_first_seq) {
1675 /* messages are gone, move to first one */
1676 syslog_seq = log_first_seq;
1677 syslog_idx = log_first_idx;
1678 syslog_partial = 0;
1679 }
1680 if (source == SYSLOG_FROM_PROC) {
1681 /*
1682 * Short-cut for poll(/"proc/kmsg") which simply checks
1683 * for pending data, not the size; return the count of
1684 * records, not the length.
1685 */
1686 error = log_next_seq - syslog_seq;
1687 } else {
1688 u64 seq = syslog_seq;
1689 u32 idx = syslog_idx;
1690 bool time = syslog_partial ? syslog_time : printk_time;
1691
1692 while (seq < log_next_seq) {
1693 struct printk_log *msg = log_from_idx(idx);
1694
1695 error += msg_print_text(msg, true, time, NULL,
1696 0);
1697 time = printk_time;
1698 idx = log_next(idx);
1699 seq++;
1700 }
1701 error -= syslog_partial;
1702 }
1703 logbuf_unlock_irq();
1704 break;
1705 /* Size of the log buffer */
1706 case SYSLOG_ACTION_SIZE_BUFFER:
1707 error = log_buf_len;
1708 break;
1709 default:
1710 error = -EINVAL;
1711 break;
1712 }
1713
1714 return error;
1715}
1716
1717SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1718{
1719 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1720}
1721
1722/*
1723 * Special console_lock variants that help to reduce the risk of soft-lockups.
1724 * They allow to pass console_lock to another printk() call using a busy wait.
1725 */
1726
1727#ifdef CONFIG_LOCKDEP
1728static struct lockdep_map console_owner_dep_map = {
1729 .name = "console_owner"
1730};
1731#endif
1732
1733static DEFINE_RAW_SPINLOCK(console_owner_lock);
1734static struct task_struct *console_owner;
1735static bool console_waiter;
1736
1737/**
1738 * console_lock_spinning_enable - mark beginning of code where another
1739 * thread might safely busy wait
1740 *
1741 * This basically converts console_lock into a spinlock. This marks
1742 * the section where the console_lock owner can not sleep, because
1743 * there may be a waiter spinning (like a spinlock). Also it must be
1744 * ready to hand over the lock at the end of the section.
1745 */
1746static void console_lock_spinning_enable(void)
1747{
1748 raw_spin_lock(&console_owner_lock);
1749 console_owner = current;
1750 raw_spin_unlock(&console_owner_lock);
1751
1752 /* The waiter may spin on us after setting console_owner */
1753 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1754}
1755
1756/**
1757 * console_lock_spinning_disable_and_check - mark end of code where another
1758 * thread was able to busy wait and check if there is a waiter
1759 *
1760 * This is called at the end of the section where spinning is allowed.
1761 * It has two functions. First, it is a signal that it is no longer
1762 * safe to start busy waiting for the lock. Second, it checks if
1763 * there is a busy waiter and passes the lock rights to her.
1764 *
1765 * Important: Callers lose the lock if there was a busy waiter.
1766 * They must not touch items synchronized by console_lock
1767 * in this case.
1768 *
1769 * Return: 1 if the lock rights were passed, 0 otherwise.
1770 */
1771static int console_lock_spinning_disable_and_check(void)
1772{
1773 int waiter;
1774
1775 raw_spin_lock(&console_owner_lock);
1776 waiter = READ_ONCE(console_waiter);
1777 console_owner = NULL;
1778 raw_spin_unlock(&console_owner_lock);
1779
1780 if (!waiter) {
1781 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1782 return 0;
1783 }
1784
1785 /* The waiter is now free to continue */
1786 WRITE_ONCE(console_waiter, false);
1787
1788 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1789
1790 /*
1791 * Hand off console_lock to waiter. The waiter will perform
1792 * the up(). After this, the waiter is the console_lock owner.
1793 */
1794 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1795 return 1;
1796}
1797
1798/**
1799 * console_trylock_spinning - try to get console_lock by busy waiting
1800 *
1801 * This allows to busy wait for the console_lock when the current
1802 * owner is running in specially marked sections. It means that
1803 * the current owner is running and cannot reschedule until it
1804 * is ready to lose the lock.
1805 *
1806 * Return: 1 if we got the lock, 0 othrewise
1807 */
1808static int console_trylock_spinning(void)
1809{
1810 struct task_struct *owner = NULL;
1811 bool waiter;
1812 bool spin = false;
1813 unsigned long flags;
1814
1815 if (console_trylock())
1816 return 1;
1817
1818 printk_safe_enter_irqsave(flags);
1819
1820 raw_spin_lock(&console_owner_lock);
1821 owner = READ_ONCE(console_owner);
1822 waiter = READ_ONCE(console_waiter);
1823 if (!waiter && owner && owner != current) {
1824 WRITE_ONCE(console_waiter, true);
1825 spin = true;
1826 }
1827 raw_spin_unlock(&console_owner_lock);
1828
1829 /*
1830 * If there is an active printk() writing to the
1831 * consoles, instead of having it write our data too,
1832 * see if we can offload that load from the active
1833 * printer, and do some printing ourselves.
1834 * Go into a spin only if there isn't already a waiter
1835 * spinning, and there is an active printer, and
1836 * that active printer isn't us (recursive printk?).
1837 */
1838 if (!spin) {
1839 printk_safe_exit_irqrestore(flags);
1840 return 0;
1841 }
1842
1843 /* We spin waiting for the owner to release us */
1844 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1845 /* Owner will clear console_waiter on hand off */
1846 while (READ_ONCE(console_waiter))
1847 cpu_relax();
1848 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1849
1850 printk_safe_exit_irqrestore(flags);
1851 /*
1852 * The owner passed the console lock to us.
1853 * Since we did not spin on console lock, annotate
1854 * this as a trylock. Otherwise lockdep will
1855 * complain.
1856 */
1857 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1858
1859 /*
1860 * Update @console_may_schedule for trylock because the previous
1861 * owner may have been schedulable.
1862 */
1863 console_may_schedule = 0;
1864
1865 return 1;
1866}
1867
1868/*
1869 * Call the console drivers, asking them to write out
1870 * log_buf[start] to log_buf[end - 1].
1871 * The console_lock must be held.
1872 */
1873static void call_console_drivers(const char *ext_text, size_t ext_len,
1874 const char *text, size_t len)
1875{
1876 struct console *con;
1877
1878 trace_console_rcuidle(text, len);
1879
1880 if (!console_drivers)
1881 return;
1882
1883 for_each_console(con) {
1884 if (exclusive_console && con != exclusive_console)
1885 continue;
1886 if (!(con->flags & CON_ENABLED))
1887 continue;
1888 if (!con->write)
1889 continue;
1890 if (!cpu_online(smp_processor_id()) &&
1891 !(con->flags & CON_ANYTIME))
1892 continue;
1893 if (con->flags & CON_EXTENDED)
1894 con->write(con, ext_text, ext_len);
1895 else
1896 con->write(con, text, len);
1897 }
1898}
1899
1900int printk_delay_msec __read_mostly;
1901
1902static inline void printk_delay(void)
1903{
1904 if (unlikely(printk_delay_msec)) {
1905 int m = printk_delay_msec;
1906
1907 while (m--) {
1908 mdelay(1);
1909 touch_nmi_watchdog();
1910 }
1911 }
1912}
1913
1914static inline u32 printk_caller_id(void)
1915{
1916 return in_task() ? task_pid_nr(current) :
1917 0x80000000 + raw_smp_processor_id();
1918}
1919
1920/*
1921 * Continuation lines are buffered, and not committed to the record buffer
1922 * until the line is complete, or a race forces it. The line fragments
1923 * though, are printed immediately to the consoles to ensure everything has
1924 * reached the console in case of a kernel crash.
1925 */
1926static struct cont {
1927 char buf[LOG_LINE_MAX];
1928 size_t len; /* length == 0 means unused buffer */
1929 u32 caller_id; /* printk_caller_id() of first print */
1930 u64 ts_nsec; /* time of first print */
1931 u8 level; /* log level of first message */
1932 u8 facility; /* log facility of first message */
1933 enum log_flags flags; /* prefix, newline flags */
1934} cont;
1935
1936static void cont_flush(void)
1937{
1938 if (cont.len == 0)
1939 return;
1940
1941 log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1942 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1943 cont.len = 0;
1944}
1945
1946static bool cont_add(u32 caller_id, int facility, int level,
1947 enum log_flags flags, const char *text, size_t len)
1948{
1949 /* If the line gets too long, split it up in separate records. */
1950 if (cont.len + len > sizeof(cont.buf)) {
1951 cont_flush();
1952 return false;
1953 }
1954
1955 if (!cont.len) {
1956 cont.facility = facility;
1957 cont.level = level;
1958 cont.caller_id = caller_id;
1959 cont.ts_nsec = print_clock();
1960 cont.flags = flags;
1961 }
1962
1963 memcpy(cont.buf + cont.len, text, len);
1964 cont.len += len;
1965
1966 // The original flags come from the first line,
1967 // but later continuations can add a newline.
1968 if (flags & LOG_NEWLINE) {
1969 cont.flags |= LOG_NEWLINE;
1970 cont_flush();
1971 }
1972
1973 return true;
1974}
1975
1976static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1977{
1978 const u32 caller_id = printk_caller_id();
1979
1980 /*
1981 * If an earlier line was buffered, and we're a continuation
1982 * write from the same context, try to add it to the buffer.
1983 */
1984 if (cont.len) {
1985 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1986 if (cont_add(caller_id, facility, level, lflags, text, text_len))
1987 return text_len;
1988 }
1989 /* Otherwise, make sure it's flushed */
1990 cont_flush();
1991 }
1992
1993 /* Skip empty continuation lines that couldn't be added - they just flush */
1994 if (!text_len && (lflags & LOG_CONT))
1995 return 0;
1996
1997 /* If it doesn't end in a newline, try to buffer the current line */
1998 if (!(lflags & LOG_NEWLINE)) {
1999 if (cont_add(caller_id, facility, level, lflags, text, text_len))
2000 return text_len;
2001 }
2002
2003 /* Store it in the record log */
2004 return log_store(caller_id, facility, level, lflags, 0,
2005 dict, dictlen, text, text_len);
2006}
2007
2008/* Must be called under logbuf_lock. */
2009int vprintk_store(int facility, int level,
2010 const char *dict, size_t dictlen,
2011 const char *fmt, va_list args)
2012{
2013 static char textbuf[LOG_LINE_MAX];
2014 char *text = textbuf;
2015 size_t text_len;
2016 enum log_flags lflags = 0;
2017
2018 /*
2019 * The printf needs to come first; we need the syslog
2020 * prefix which might be passed-in as a parameter.
2021 */
2022 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
2023
2024 /* mark and strip a trailing newline */
2025 if (text_len && text[text_len-1] == '\n') {
2026 text_len--;
2027 lflags |= LOG_NEWLINE;
2028 }
2029
2030 /* strip kernel syslog prefix and extract log level or control flags */
2031 if (facility == 0) {
2032 int kern_level;
2033
2034 while ((kern_level = printk_get_level(text)) != 0) {
2035 switch (kern_level) {
2036 case '0' ... '7':
2037 if (level == LOGLEVEL_DEFAULT)
2038 level = kern_level - '0';
2039 break;
2040 case 'c': /* KERN_CONT */
2041 lflags |= LOG_CONT;
2042 }
2043
2044 text_len -= 2;
2045 text += 2;
2046 }
2047 }
2048
2049#ifdef CONFIG_EARLY_PRINTK_DIRECT
2050 if (console_drivers == NULL)
2051 printascii(text);
2052#endif
2053
2054 if (level == LOGLEVEL_DEFAULT)
2055 level = default_message_loglevel;
2056
2057 if (dict)
2058 lflags |= LOG_NEWLINE;
2059
2060 return log_output(facility, level, lflags,
2061 dict, dictlen, text, text_len);
2062}
2063
2064asmlinkage int vprintk_emit(int facility, int level,
2065 const char *dict, size_t dictlen,
2066 const char *fmt, va_list args)
2067{
2068 int printed_len;
2069 bool in_sched = false, pending_output;
2070 unsigned long flags;
2071 u64 curr_log_seq;
2072
2073 /* Suppress unimportant messages after panic happens */
2074 if (unlikely(suppress_printk))
2075 return 0;
2076
2077 if (level == LOGLEVEL_SCHED) {
2078 level = LOGLEVEL_DEFAULT;
2079 in_sched = true;
2080 }
2081
2082 boot_delay_msec(level);
2083 printk_delay();
2084
2085 /* This stops the holder of console_sem just where we want him */
2086 logbuf_lock_irqsave(flags);
2087 curr_log_seq = log_next_seq;
2088 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2089 pending_output = (curr_log_seq != log_next_seq);
2090 logbuf_unlock_irqrestore(flags);
2091
2092 /* If called from the scheduler, we can not call up(). */
2093 if (!in_sched && pending_output) {
2094 /*
2095 * Disable preemption to avoid being preempted while holding
2096 * console_sem which would prevent anyone from printing to
2097 * console
2098 */
2099 preempt_disable();
2100 /*
2101 * Try to acquire and then immediately release the console
2102 * semaphore. The release will print out buffers and wake up
2103 * /dev/kmsg and syslog() users.
2104 */
2105 if (console_trylock_spinning())
2106 console_unlock();
2107 preempt_enable();
2108 }
2109
2110 if (pending_output)
2111 wake_up_klogd();
2112 return printed_len;
2113}
2114EXPORT_SYMBOL(vprintk_emit);
2115
2116asmlinkage int vprintk(const char *fmt, va_list args)
2117{
2118 return vprintk_func(fmt, args);
2119}
2120EXPORT_SYMBOL(vprintk);
2121
2122int vprintk_default(const char *fmt, va_list args)
2123{
2124 int r;
2125
2126#ifdef CONFIG_KGDB_KDB
2127 /* Allow to pass printk() to kdb but avoid a recursion. */
2128 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2129 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2130 return r;
2131 }
2132#endif
2133 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2134
2135 return r;
2136}
2137EXPORT_SYMBOL_GPL(vprintk_default);
2138
2139/**
2140 * printk - print a kernel message
2141 * @fmt: format string
2142 *
2143 * This is printk(). It can be called from any context. We want it to work.
2144 *
2145 * We try to grab the console_lock. If we succeed, it's easy - we log the
2146 * output and call the console drivers. If we fail to get the semaphore, we
2147 * place the output into the log buffer and return. The current holder of
2148 * the console_sem will notice the new output in console_unlock(); and will
2149 * send it to the consoles before releasing the lock.
2150 *
2151 * One effect of this deferred printing is that code which calls printk() and
2152 * then changes console_loglevel may break. This is because console_loglevel
2153 * is inspected when the actual printing occurs.
2154 *
2155 * See also:
2156 * printf(3)
2157 *
2158 * See the vsnprintf() documentation for format string extensions over C99.
2159 */
2160asmlinkage __visible int printk(const char *fmt, ...)
2161{
2162 va_list args;
2163 int r;
2164
2165 if (unlikely(keep_silent))
2166 return 0;
2167
2168 va_start(args, fmt);
2169 r = vprintk_func(fmt, args);
2170 va_end(args);
2171
2172 return r;
2173}
2174EXPORT_SYMBOL(printk);
2175
2176#else /* CONFIG_PRINTK */
2177
2178#define LOG_LINE_MAX 0
2179#define PREFIX_MAX 0
2180#define printk_time false
2181
2182static u64 syslog_seq;
2183static u32 syslog_idx;
2184static u64 console_seq;
2185static u32 console_idx;
2186static u64 exclusive_console_stop_seq;
2187static u64 log_first_seq;
2188static u32 log_first_idx;
2189static u64 log_next_seq;
2190static char *log_text(const struct printk_log *msg) { return NULL; }
2191static char *log_dict(const struct printk_log *msg) { return NULL; }
2192static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2193static u32 log_next(u32 idx) { return 0; }
2194static ssize_t msg_print_ext_header(char *buf, size_t size,
2195 struct printk_log *msg,
2196 u64 seq) { return 0; }
2197static ssize_t msg_print_ext_body(char *buf, size_t size,
2198 char *dict, size_t dict_len,
2199 char *text, size_t text_len) { return 0; }
2200static void console_lock_spinning_enable(void) { }
2201static int console_lock_spinning_disable_and_check(void) { return 0; }
2202static void call_console_drivers(const char *ext_text, size_t ext_len,
2203 const char *text, size_t len) {}
2204static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2205 bool time, char *buf, size_t size) { return 0; }
2206static bool suppress_message_printing(int level) { return false; }
2207
2208#endif /* CONFIG_PRINTK */
2209
2210#ifdef CONFIG_EARLY_PRINTK
2211struct console *early_console;
2212
2213asmlinkage __visible void early_printk(const char *fmt, ...)
2214{
2215 va_list ap;
2216 char buf[512];
2217 int n;
2218
2219 if (!early_console)
2220 return;
2221
2222 va_start(ap, fmt);
2223 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2224 va_end(ap);
2225
2226 early_console->write(early_console, buf, n);
2227}
2228#endif
2229
2230static int __add_preferred_console(char *name, int idx, char *options,
2231 char *brl_options)
2232{
2233 struct console_cmdline *c;
2234 int i;
2235
2236 /*
2237 * See if this tty is not yet registered, and
2238 * if we have a slot free.
2239 */
2240 for (i = 0, c = console_cmdline;
2241 i < MAX_CMDLINECONSOLES && c->name[0];
2242 i++, c++) {
2243 if (strcmp(c->name, name) == 0 && c->index == idx) {
2244 if (!brl_options)
2245 preferred_console = i;
2246 return 0;
2247 }
2248 }
2249 if (i == MAX_CMDLINECONSOLES)
2250 return -E2BIG;
2251 if (!brl_options)
2252 preferred_console = i;
2253 strlcpy(c->name, name, sizeof(c->name));
2254 c->options = options;
2255 braille_set_options(c, brl_options);
2256
2257 c->index = idx;
2258 return 0;
2259}
2260
2261static int __init console_msg_format_setup(char *str)
2262{
2263 if (!strcmp(str, "syslog"))
2264 console_msg_format = MSG_FORMAT_SYSLOG;
2265 if (!strcmp(str, "default"))
2266 console_msg_format = MSG_FORMAT_DEFAULT;
2267 return 1;
2268}
2269__setup("console_msg_format=", console_msg_format_setup);
2270
2271/*
2272 * Set up a console. Called via do_early_param() in init/main.c
2273 * for each "console=" parameter in the boot command line.
2274 */
2275static int __init console_setup(char *str)
2276{
2277 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2278 char *s, *options, *brl_options = NULL;
2279 int idx;
2280
2281 /*
2282 * console="" or console=null have been suggested as a way to
2283 * disable console output. Use ttynull that has been created
2284 * for exacly this purpose.
2285 */
2286 if (str[0] == 0 || strcmp(str, "null") == 0) {
2287 __add_preferred_console("ttynull", 0, NULL, NULL);
2288 return 1;
2289 }
2290
2291 if (_braille_console_setup(&str, &brl_options))
2292 return 1;
2293
2294 /*
2295 * Decode str into name, index, options.
2296 */
2297 if (str[0] >= '0' && str[0] <= '9') {
2298 strcpy(buf, "ttyS");
2299 strncpy(buf + 4, str, sizeof(buf) - 5);
2300 } else {
2301 strncpy(buf, str, sizeof(buf) - 1);
2302 }
2303 buf[sizeof(buf) - 1] = 0;
2304 options = strchr(str, ',');
2305 if (options)
2306 *(options++) = 0;
2307#ifdef __sparc__
2308 if (!strcmp(str, "ttya"))
2309 strcpy(buf, "ttyS0");
2310 if (!strcmp(str, "ttyb"))
2311 strcpy(buf, "ttyS1");
2312#endif
2313 for (s = buf; *s; s++)
2314 if (isdigit(*s) || *s == ',')
2315 break;
2316 idx = simple_strtoul(s, NULL, 10);
2317 *s = 0;
2318
2319 __add_preferred_console(buf, idx, options, brl_options);
2320 console_set_on_cmdline = 1;
2321 return 1;
2322}
2323__setup("console=", console_setup);
2324
2325/**
2326 * add_preferred_console - add a device to the list of preferred consoles.
2327 * @name: device name
2328 * @idx: device index
2329 * @options: options for this console
2330 *
2331 * The last preferred console added will be used for kernel messages
2332 * and stdin/out/err for init. Normally this is used by console_setup
2333 * above to handle user-supplied console arguments; however it can also
2334 * be used by arch-specific code either to override the user or more
2335 * commonly to provide a default console (ie from PROM variables) when
2336 * the user has not supplied one.
2337 */
2338int add_preferred_console(char *name, int idx, char *options)
2339{
2340 return __add_preferred_console(name, idx, options, NULL);
2341}
2342
2343bool console_suspend_enabled = true;
2344EXPORT_SYMBOL(console_suspend_enabled);
2345
2346static int __init console_suspend_disable(char *str)
2347{
2348 console_suspend_enabled = false;
2349 return 1;
2350}
2351__setup("no_console_suspend", console_suspend_disable);
2352module_param_named(console_suspend, console_suspend_enabled,
2353 bool, S_IRUGO | S_IWUSR);
2354MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2355 " and hibernate operations");
2356
2357/**
2358 * suspend_console - suspend the console subsystem
2359 *
2360 * This disables printk() while we go into suspend states
2361 */
2362void suspend_console(void)
2363{
2364 if (!console_suspend_enabled)
2365 return;
2366 pr_pm_debug("Suspending console(s) (use no_console_suspend to debug)\n");
2367 console_lock();
2368 console_suspended = 1;
2369 up_console_sem();
2370}
2371
2372void resume_console(void)
2373{
2374 if (!console_suspend_enabled)
2375 return;
2376 down_console_sem();
2377 console_suspended = 0;
2378 console_unlock();
2379}
2380
2381/**
2382 * console_cpu_notify - print deferred console messages after CPU hotplug
2383 * @cpu: unused
2384 *
2385 * If printk() is called from a CPU that is not online yet, the messages
2386 * will be printed on the console only if there are CON_ANYTIME consoles.
2387 * This function is called when a new CPU comes online (or fails to come
2388 * up) or goes offline.
2389 */
2390static int console_cpu_notify(unsigned int cpu)
2391{
2392 if (!cpuhp_tasks_frozen) {
2393 /* If trylock fails, someone else is doing the printing */
2394 if (console_trylock())
2395 console_unlock();
2396 }
2397 return 0;
2398}
2399
2400/**
2401 * console_lock - lock the console system for exclusive use.
2402 *
2403 * Acquires a lock which guarantees that the caller has
2404 * exclusive access to the console system and the console_drivers list.
2405 *
2406 * Can sleep, returns nothing.
2407 */
2408void console_lock(void)
2409{
2410 might_sleep();
2411
2412 down_console_sem();
2413 if (console_suspended)
2414 return;
2415 console_locked = 1;
2416 console_may_schedule = 1;
2417}
2418EXPORT_SYMBOL(console_lock);
2419
2420/**
2421 * console_trylock - try to lock the console system for exclusive use.
2422 *
2423 * Try to acquire a lock which guarantees that the caller has exclusive
2424 * access to the console system and the console_drivers list.
2425 *
2426 * returns 1 on success, and 0 on failure to acquire the lock.
2427 */
2428int console_trylock(void)
2429{
2430 if (down_trylock_console_sem())
2431 return 0;
2432 if (console_suspended) {
2433 up_console_sem();
2434 return 0;
2435 }
2436 console_locked = 1;
2437 console_may_schedule = 0;
2438 return 1;
2439}
2440EXPORT_SYMBOL(console_trylock);
2441
2442int is_console_locked(void)
2443{
2444 return console_locked;
2445}
2446EXPORT_SYMBOL(is_console_locked);
2447
2448/*
2449 * Check if we have any console that is capable of printing while cpu is
2450 * booting or shutting down. Requires console_sem.
2451 */
2452static int have_callable_console(void)
2453{
2454 struct console *con;
2455
2456 for_each_console(con)
2457 if ((con->flags & CON_ENABLED) &&
2458 (con->flags & CON_ANYTIME))
2459 return 1;
2460
2461 return 0;
2462}
2463
2464/*
2465 * Can we actually use the console at this time on this cpu?
2466 *
2467 * Console drivers may assume that per-cpu resources have been allocated. So
2468 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2469 * call them until this CPU is officially up.
2470 */
2471static inline int can_use_console(void)
2472{
2473 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2474}
2475
2476/**
2477 * console_unlock - unlock the console system
2478 *
2479 * Releases the console_lock which the caller holds on the console system
2480 * and the console driver list.
2481 *
2482 * While the console_lock was held, console output may have been buffered
2483 * by printk(). If this is the case, console_unlock(); emits
2484 * the output prior to releasing the lock.
2485 *
2486 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2487 *
2488 * console_unlock(); may be called from any context.
2489 */
2490void console_unlock(void)
2491{
2492 static char ext_text[CONSOLE_EXT_LOG_MAX];
2493 static char text[LOG_LINE_MAX + PREFIX_MAX];
2494 unsigned long flags;
2495 bool do_cond_resched, retry;
2496
2497 if (console_suspended) {
2498 up_console_sem();
2499 return;
2500 }
2501
2502 /*
2503 * Console drivers are called with interrupts disabled, so
2504 * @console_may_schedule should be cleared before; however, we may
2505 * end up dumping a lot of lines, for example, if called from
2506 * console registration path, and should invoke cond_resched()
2507 * between lines if allowable. Not doing so can cause a very long
2508 * scheduling stall on a slow console leading to RCU stall and
2509 * softlockup warnings which exacerbate the issue with more
2510 * messages practically incapacitating the system.
2511 *
2512 * console_trylock() is not able to detect the preemptive
2513 * context reliably. Therefore the value must be stored before
2514 * and cleared after the the "again" goto label.
2515 */
2516 do_cond_resched = console_may_schedule;
2517again:
2518 console_may_schedule = 0;
2519
2520 /*
2521 * We released the console_sem lock, so we need to recheck if
2522 * cpu is online and (if not) is there at least one CON_ANYTIME
2523 * console.
2524 */
2525 if (!can_use_console()) {
2526 console_locked = 0;
2527 up_console_sem();
2528 return;
2529 }
2530
2531 for (;;) {
2532 struct printk_log *msg;
2533 size_t ext_len = 0;
2534 size_t len;
2535
2536 printk_safe_enter_irqsave(flags);
2537 raw_spin_lock(&logbuf_lock);
2538 if (console_seq < log_first_seq) {
2539 len = sprintf(text,
2540 "** %llu printk messages dropped **\n",
2541 log_first_seq - console_seq);
2542
2543 /* messages are gone, move to first one */
2544 console_seq = log_first_seq;
2545 console_idx = log_first_idx;
2546 } else {
2547 len = 0;
2548 }
2549skip:
2550 if (console_seq == log_next_seq)
2551 break;
2552
2553 msg = log_from_idx(console_idx);
2554 if (suppress_message_printing(msg->level)) {
2555 /*
2556 * Skip record we have buffered and already printed
2557 * directly to the console when we received it, and
2558 * record that has level above the console loglevel.
2559 */
2560 console_idx = log_next(console_idx);
2561 console_seq++;
2562 goto skip;
2563 }
2564
2565 /* Output to all consoles once old messages replayed. */
2566 if (unlikely(exclusive_console &&
2567 console_seq >= exclusive_console_stop_seq)) {
2568 exclusive_console = NULL;
2569 }
2570
2571 len += msg_print_text(msg,
2572 console_msg_format & MSG_FORMAT_SYSLOG,
2573 printk_time, text + len, sizeof(text) - len);
2574 if (nr_ext_console_drivers) {
2575 ext_len = msg_print_ext_header(ext_text,
2576 sizeof(ext_text),
2577 msg, console_seq);
2578 ext_len += msg_print_ext_body(ext_text + ext_len,
2579 sizeof(ext_text) - ext_len,
2580 log_dict(msg), msg->dict_len,
2581 log_text(msg), msg->text_len);
2582 }
2583 console_idx = log_next(console_idx);
2584 console_seq++;
2585 raw_spin_unlock(&logbuf_lock);
2586
2587 /*
2588 * While actively printing out messages, if another printk()
2589 * were to occur on another CPU, it may wait for this one to
2590 * finish. This task can not be preempted if there is a
2591 * waiter waiting to take over.
2592 */
2593 console_lock_spinning_enable();
2594
2595 stop_critical_timings(); /* don't trace print latency */
2596 call_console_drivers(ext_text, ext_len, text, len);
2597 start_critical_timings();
2598
2599 if (console_lock_spinning_disable_and_check()) {
2600 printk_safe_exit_irqrestore(flags);
2601 return;
2602 }
2603
2604 printk_safe_exit_irqrestore(flags);
2605
2606 if (do_cond_resched)
2607 cond_resched();
2608 }
2609
2610 console_locked = 0;
2611
2612 raw_spin_unlock(&logbuf_lock);
2613
2614 up_console_sem();
2615
2616 /*
2617 * Someone could have filled up the buffer again, so re-check if there's
2618 * something to flush. In case we cannot trylock the console_sem again,
2619 * there's a new owner and the console_unlock() from them will do the
2620 * flush, no worries.
2621 */
2622 raw_spin_lock(&logbuf_lock);
2623 retry = console_seq != log_next_seq;
2624 raw_spin_unlock(&logbuf_lock);
2625 printk_safe_exit_irqrestore(flags);
2626
2627 if (retry && console_trylock())
2628 goto again;
2629}
2630EXPORT_SYMBOL(console_unlock);
2631
2632/**
2633 * console_conditional_schedule - yield the CPU if required
2634 *
2635 * If the console code is currently allowed to sleep, and
2636 * if this CPU should yield the CPU to another task, do
2637 * so here.
2638 *
2639 * Must be called within console_lock();.
2640 */
2641void __sched console_conditional_schedule(void)
2642{
2643 if (console_may_schedule)
2644 cond_resched();
2645}
2646EXPORT_SYMBOL(console_conditional_schedule);
2647
2648void console_unblank(void)
2649{
2650 struct console *c;
2651
2652 /*
2653 * console_unblank can no longer be called in interrupt context unless
2654 * oops_in_progress is set to 1..
2655 */
2656 if (oops_in_progress) {
2657 if (down_trylock_console_sem() != 0)
2658 return;
2659 } else
2660 console_lock();
2661
2662 console_locked = 1;
2663 console_may_schedule = 0;
2664 for_each_console(c)
2665 if ((c->flags & CON_ENABLED) && c->unblank)
2666 c->unblank();
2667 console_unlock();
2668}
2669
2670/**
2671 * console_flush_on_panic - flush console content on panic
2672 * @mode: flush all messages in buffer or just the pending ones
2673 *
2674 * Immediately output all pending messages no matter what.
2675 */
2676void console_flush_on_panic(enum con_flush_mode mode)
2677{
2678 /*
2679 * If someone else is holding the console lock, trylock will fail
2680 * and may_schedule may be set. Ignore and proceed to unlock so
2681 * that messages are flushed out. As this can be called from any
2682 * context and we don't want to get preempted while flushing,
2683 * ensure may_schedule is cleared.
2684 */
2685 console_trylock();
2686 console_may_schedule = 0;
2687
2688 if (mode == CONSOLE_REPLAY_ALL) {
2689 unsigned long flags;
2690
2691 logbuf_lock_irqsave(flags);
2692 console_seq = log_first_seq;
2693 console_idx = log_first_idx;
2694 logbuf_unlock_irqrestore(flags);
2695 }
2696 console_unlock();
2697}
2698
2699/*
2700 * Return the console tty driver structure and its associated index
2701 */
2702struct tty_driver *console_device(int *index)
2703{
2704 struct console *c;
2705 struct tty_driver *driver = NULL;
2706
2707 console_lock();
2708 for_each_console(c) {
2709 if (!c->device)
2710 continue;
2711 driver = c->device(c, index);
2712 if (driver)
2713 break;
2714 }
2715 console_unlock();
2716 return driver;
2717}
2718
2719/*
2720 * Prevent further output on the passed console device so that (for example)
2721 * serial drivers can disable console output before suspending a port, and can
2722 * re-enable output afterwards.
2723 */
2724void console_stop(struct console *console)
2725{
2726 console_lock();
2727 console->flags &= ~CON_ENABLED;
2728 console_unlock();
2729}
2730EXPORT_SYMBOL(console_stop);
2731
2732void console_start(struct console *console)
2733{
2734 console_lock();
2735 console->flags |= CON_ENABLED;
2736 console_unlock();
2737}
2738EXPORT_SYMBOL(console_start);
2739
2740static int __read_mostly keep_bootcon;
2741
2742static int __init keep_bootcon_setup(char *str)
2743{
2744 keep_bootcon = 1;
2745 pr_info("debug: skip boot console de-registration.\n");
2746
2747 return 0;
2748}
2749
2750early_param("keep_bootcon", keep_bootcon_setup);
2751
2752/*
2753 * The console driver calls this routine during kernel initialization
2754 * to register the console printing procedure with printk() and to
2755 * print any messages that were printed by the kernel before the
2756 * console driver was initialized.
2757 *
2758 * This can happen pretty early during the boot process (because of
2759 * early_printk) - sometimes before setup_arch() completes - be careful
2760 * of what kernel features are used - they may not be initialised yet.
2761 *
2762 * There are two types of consoles - bootconsoles (early_printk) and
2763 * "real" consoles (everything which is not a bootconsole) which are
2764 * handled differently.
2765 * - Any number of bootconsoles can be registered at any time.
2766 * - As soon as a "real" console is registered, all bootconsoles
2767 * will be unregistered automatically.
2768 * - Once a "real" console is registered, any attempt to register a
2769 * bootconsoles will be rejected
2770 */
2771void register_console(struct console *newcon)
2772{
2773 int i;
2774 unsigned long flags;
2775 struct console *bcon = NULL;
2776 struct console_cmdline *c;
2777 static bool has_preferred;
2778
2779 if (console_drivers)
2780 for_each_console(bcon)
2781 if (WARN(bcon == newcon,
2782 "console '%s%d' already registered\n",
2783 bcon->name, bcon->index))
2784 return;
2785
2786 /*
2787 * before we register a new CON_BOOT console, make sure we don't
2788 * already have a valid console
2789 */
2790 if (console_drivers && newcon->flags & CON_BOOT) {
2791 /* find the last or real console */
2792 for_each_console(bcon) {
2793 if (!(bcon->flags & CON_BOOT)) {
2794 pr_info("Too late to register bootconsole %s%d\n",
2795 newcon->name, newcon->index);
2796 return;
2797 }
2798 }
2799 }
2800
2801 if (console_drivers && console_drivers->flags & CON_BOOT)
2802 bcon = console_drivers;
2803
2804 if (!has_preferred || bcon || !console_drivers)
2805 has_preferred = preferred_console >= 0;
2806
2807 /*
2808 * See if we want to use this console driver. If we
2809 * didn't select a console we take the first one
2810 * that registers here.
2811 */
2812 if (!has_preferred) {
2813 if (newcon->index < 0)
2814 newcon->index = 0;
2815 if (newcon->setup == NULL ||
2816 newcon->setup(newcon, NULL) == 0) {
2817 newcon->flags |= CON_ENABLED;
2818 if (newcon->device) {
2819 newcon->flags |= CON_CONSDEV;
2820 has_preferred = true;
2821 }
2822 }
2823 }
2824
2825 /*
2826 * See if this console matches one we selected on
2827 * the command line.
2828 */
2829 for (i = 0, c = console_cmdline;
2830 i < MAX_CMDLINECONSOLES && c->name[0];
2831 i++, c++) {
2832 if (!newcon->match ||
2833 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2834 /* default matching */
2835 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2836 if (strcmp(c->name, newcon->name) != 0)
2837 continue;
2838 if (newcon->index >= 0 &&
2839 newcon->index != c->index)
2840 continue;
2841 if (newcon->index < 0)
2842 newcon->index = c->index;
2843
2844 if (_braille_register_console(newcon, c))
2845 return;
2846
2847 if (newcon->setup &&
2848 newcon->setup(newcon, c->options) != 0)
2849 break;
2850 }
2851
2852 newcon->flags |= CON_ENABLED;
2853 if (i == preferred_console) {
2854 newcon->flags |= CON_CONSDEV;
2855 has_preferred = true;
2856 }
2857 break;
2858 }
2859
2860 if (!(newcon->flags & CON_ENABLED))
2861 return;
2862
2863 /*
2864 * If we have a bootconsole, and are switching to a real console,
2865 * don't print everything out again, since when the boot console, and
2866 * the real console are the same physical device, it's annoying to
2867 * see the beginning boot messages twice
2868 */
2869 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2870 newcon->flags &= ~CON_PRINTBUFFER;
2871
2872 /*
2873 * Put this console in the list - keep the
2874 * preferred driver at the head of the list.
2875 */
2876 console_lock();
2877 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2878 newcon->next = console_drivers;
2879 console_drivers = newcon;
2880 if (newcon->next)
2881 newcon->next->flags &= ~CON_CONSDEV;
2882 } else {
2883 newcon->next = console_drivers->next;
2884 console_drivers->next = newcon;
2885 }
2886
2887 if (newcon->flags & CON_EXTENDED)
2888 nr_ext_console_drivers++;
2889
2890 if (newcon->flags & CON_PRINTBUFFER) {
2891 /*
2892 * console_unlock(); will print out the buffered messages
2893 * for us.
2894 */
2895 logbuf_lock_irqsave(flags);
2896 /*
2897 * We're about to replay the log buffer. Only do this to the
2898 * just-registered console to avoid excessive message spam to
2899 * the already-registered consoles.
2900 *
2901 * Set exclusive_console with disabled interrupts to reduce
2902 * race window with eventual console_flush_on_panic() that
2903 * ignores console_lock.
2904 */
2905 exclusive_console = newcon;
2906 exclusive_console_stop_seq = console_seq;
2907 console_seq = syslog_seq;
2908 console_idx = syslog_idx;
2909 logbuf_unlock_irqrestore(flags);
2910 }
2911 console_unlock();
2912 console_sysfs_notify();
2913
2914 /*
2915 * By unregistering the bootconsoles after we enable the real console
2916 * we get the "console xxx enabled" message on all the consoles -
2917 * boot consoles, real consoles, etc - this is to ensure that end
2918 * users know there might be something in the kernel's log buffer that
2919 * went to the bootconsole (that they do not see on the real console)
2920 */
2921 pr_info("%sconsole [%s%d] enabled\n",
2922 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2923 newcon->name, newcon->index);
2924 if (bcon &&
2925 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2926 !keep_bootcon) {
2927 /* We need to iterate through all boot consoles, to make
2928 * sure we print everything out, before we unregister them.
2929 */
2930 for_each_console(bcon)
2931 if (bcon->flags & CON_BOOT)
2932 unregister_console(bcon);
2933 }
2934}
2935EXPORT_SYMBOL(register_console);
2936
2937int unregister_console(struct console *console)
2938{
2939 struct console *a, *b;
2940 int res;
2941
2942 pr_info("%sconsole [%s%d] disabled\n",
2943 (console->flags & CON_BOOT) ? "boot" : "" ,
2944 console->name, console->index);
2945
2946 res = _braille_unregister_console(console);
2947 if (res)
2948 return res;
2949
2950 res = 1;
2951 console_lock();
2952 if (console_drivers == console) {
2953 console_drivers=console->next;
2954 res = 0;
2955 } else if (console_drivers) {
2956 for (a=console_drivers->next, b=console_drivers ;
2957 a; b=a, a=b->next) {
2958 if (a == console) {
2959 b->next = a->next;
2960 res = 0;
2961 break;
2962 }
2963 }
2964 }
2965
2966 if (!res && (console->flags & CON_EXTENDED))
2967 nr_ext_console_drivers--;
2968
2969 /*
2970 * If this isn't the last console and it has CON_CONSDEV set, we
2971 * need to set it on the next preferred console.
2972 */
2973 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2974 console_drivers->flags |= CON_CONSDEV;
2975
2976 console->flags &= ~CON_ENABLED;
2977 console_unlock();
2978 console_sysfs_notify();
2979 return res;
2980}
2981EXPORT_SYMBOL(unregister_console);
2982
2983/*
2984 * Initialize the console device. This is called *early*, so
2985 * we can't necessarily depend on lots of kernel help here.
2986 * Just do some early initializations, and do the complex setup
2987 * later.
2988 */
2989void __init console_init(void)
2990{
2991 int ret;
2992 initcall_t call;
2993 initcall_entry_t *ce;
2994
2995 /* Setup the default TTY line discipline. */
2996 n_tty_init();
2997
2998 /*
2999 * set up the console device so that later boot sequences can
3000 * inform about problems etc..
3001 */
3002 ce = __con_initcall_start;
3003 trace_initcall_level("console");
3004 while (ce < __con_initcall_end) {
3005 call = initcall_from_entry(ce);
3006 trace_initcall_start(call);
3007 ret = call();
3008 trace_initcall_finish(call, ret);
3009 ce++;
3010 }
3011}
3012
3013/*
3014 * Some boot consoles access data that is in the init section and which will
3015 * be discarded after the initcalls have been run. To make sure that no code
3016 * will access this data, unregister the boot consoles in a late initcall.
3017 *
3018 * If for some reason, such as deferred probe or the driver being a loadable
3019 * module, the real console hasn't registered yet at this point, there will
3020 * be a brief interval in which no messages are logged to the console, which
3021 * makes it difficult to diagnose problems that occur during this time.
3022 *
3023 * To mitigate this problem somewhat, only unregister consoles whose memory
3024 * intersects with the init section. Note that all other boot consoles will
3025 * get unregistred when the real preferred console is registered.
3026 */
3027static int __init printk_late_init(void)
3028{
3029 struct console *con;
3030 int ret;
3031
3032 for_each_console(con) {
3033 if (!(con->flags & CON_BOOT))
3034 continue;
3035
3036 /* Check addresses that might be used for enabled consoles. */
3037 if (init_section_intersects(con, sizeof(*con)) ||
3038 init_section_contains(con->write, 0) ||
3039 init_section_contains(con->read, 0) ||
3040 init_section_contains(con->device, 0) ||
3041 init_section_contains(con->unblank, 0) ||
3042 init_section_contains(con->data, 0)) {
3043 /*
3044 * Please, consider moving the reported consoles out
3045 * of the init section.
3046 */
3047 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3048 con->name, con->index);
3049 unregister_console(con);
3050 }
3051 }
3052 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3053 console_cpu_notify);
3054 WARN_ON(ret < 0);
3055 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3056 console_cpu_notify, NULL);
3057 WARN_ON(ret < 0);
3058 return 0;
3059}
3060late_initcall(printk_late_init);
3061
3062#if defined CONFIG_PRINTK
3063/*
3064 * Delayed printk version, for scheduler-internal messages:
3065 */
3066#define PRINTK_PENDING_WAKEUP 0x01
3067#define PRINTK_PENDING_OUTPUT 0x02
3068
3069static DEFINE_PER_CPU(int, printk_pending);
3070
3071static void wake_up_klogd_work_func(struct irq_work *irq_work)
3072{
3073 int pending = __this_cpu_xchg(printk_pending, 0);
3074
3075 if (pending & PRINTK_PENDING_OUTPUT) {
3076 /* If trylock fails, someone else is doing the printing */
3077 if (console_trylock())
3078 console_unlock();
3079 }
3080
3081 if (pending & PRINTK_PENDING_WAKEUP)
3082 wake_up_interruptible(&log_wait);
3083}
3084
3085static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3086 .func = wake_up_klogd_work_func,
3087 .flags = IRQ_WORK_LAZY,
3088};
3089
3090void wake_up_klogd(void)
3091{
3092 if (!printk_percpu_data_ready())
3093 return;
3094
3095 preempt_disable();
3096 if (waitqueue_active(&log_wait)) {
3097 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3098 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3099 }
3100 preempt_enable();
3101}
3102
3103void defer_console_output(void)
3104{
3105 if (!printk_percpu_data_ready())
3106 return;
3107
3108 preempt_disable();
3109 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3110 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3111 preempt_enable();
3112}
3113
3114int vprintk_deferred(const char *fmt, va_list args)
3115{
3116 int r;
3117
3118 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3119 defer_console_output();
3120
3121 return r;
3122}
3123
3124int printk_deferred(const char *fmt, ...)
3125{
3126 va_list args;
3127 int r;
3128
3129 va_start(args, fmt);
3130 r = vprintk_deferred(fmt, args);
3131 va_end(args);
3132
3133 return r;
3134}
3135
3136/*
3137 * printk rate limiting, lifted from the networking subsystem.
3138 *
3139 * This enforces a rate limit: not more than 10 kernel messages
3140 * every 5s to make a denial-of-service attack impossible.
3141 */
3142DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3143
3144int __printk_ratelimit(const char *func)
3145{
3146 return ___ratelimit(&printk_ratelimit_state, func);
3147}
3148EXPORT_SYMBOL(__printk_ratelimit);
3149
3150/**
3151 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3152 * @caller_jiffies: pointer to caller's state
3153 * @interval_msecs: minimum interval between prints
3154 *
3155 * printk_timed_ratelimit() returns true if more than @interval_msecs
3156 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3157 * returned true.
3158 */
3159bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3160 unsigned int interval_msecs)
3161{
3162 unsigned long elapsed = jiffies - *caller_jiffies;
3163
3164 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3165 return false;
3166
3167 *caller_jiffies = jiffies;
3168 return true;
3169}
3170EXPORT_SYMBOL(printk_timed_ratelimit);
3171
3172static DEFINE_SPINLOCK(dump_list_lock);
3173static LIST_HEAD(dump_list);
3174
3175/**
3176 * kmsg_dump_register - register a kernel log dumper.
3177 * @dumper: pointer to the kmsg_dumper structure
3178 *
3179 * Adds a kernel log dumper to the system. The dump callback in the
3180 * structure will be called when the kernel oopses or panics and must be
3181 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3182 */
3183int kmsg_dump_register(struct kmsg_dumper *dumper)
3184{
3185 unsigned long flags;
3186 int err = -EBUSY;
3187
3188 /* The dump callback needs to be set */
3189 if (!dumper->dump)
3190 return -EINVAL;
3191
3192 spin_lock_irqsave(&dump_list_lock, flags);
3193 /* Don't allow registering multiple times */
3194 if (!dumper->registered) {
3195 dumper->registered = 1;
3196 list_add_tail_rcu(&dumper->list, &dump_list);
3197 err = 0;
3198 }
3199 spin_unlock_irqrestore(&dump_list_lock, flags);
3200
3201 return err;
3202}
3203EXPORT_SYMBOL_GPL(kmsg_dump_register);
3204
3205/**
3206 * kmsg_dump_unregister - unregister a kmsg dumper.
3207 * @dumper: pointer to the kmsg_dumper structure
3208 *
3209 * Removes a dump device from the system. Returns zero on success and
3210 * %-EINVAL otherwise.
3211 */
3212int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3213{
3214 unsigned long flags;
3215 int err = -EINVAL;
3216
3217 spin_lock_irqsave(&dump_list_lock, flags);
3218 if (dumper->registered) {
3219 dumper->registered = 0;
3220 list_del_rcu(&dumper->list);
3221 err = 0;
3222 }
3223 spin_unlock_irqrestore(&dump_list_lock, flags);
3224 synchronize_rcu();
3225
3226 return err;
3227}
3228EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3229
3230static bool always_kmsg_dump;
3231module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3232
3233const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3234{
3235 switch (reason) {
3236 case KMSG_DUMP_PANIC:
3237 return "Panic";
3238 case KMSG_DUMP_OOPS:
3239 return "Oops";
3240 case KMSG_DUMP_EMERG:
3241 return "Emergency";
3242 case KMSG_DUMP_SHUTDOWN:
3243 return "Shutdown";
3244 default:
3245 return "Unknown";
3246 }
3247}
3248EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3249
3250/**
3251 * kmsg_dump - dump kernel log to kernel message dumpers.
3252 * @reason: the reason (oops, panic etc) for dumping
3253 *
3254 * Call each of the registered dumper's dump() callback, which can
3255 * retrieve the kmsg records with kmsg_dump_get_line() or
3256 * kmsg_dump_get_buffer().
3257 */
3258void kmsg_dump(enum kmsg_dump_reason reason)
3259{
3260 struct kmsg_dumper *dumper;
3261 unsigned long flags;
3262
3263 rcu_read_lock();
3264 list_for_each_entry_rcu(dumper, &dump_list, list) {
3265 enum kmsg_dump_reason max_reason = dumper->max_reason;
3266
3267 /*
3268 * If client has not provided a specific max_reason, default
3269 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3270 */
3271 if (max_reason == KMSG_DUMP_UNDEF) {
3272 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3273 KMSG_DUMP_OOPS;
3274 }
3275 if (reason > max_reason)
3276 continue;
3277
3278 /* initialize iterator with data about the stored records */
3279 dumper->active = true;
3280
3281 logbuf_lock_irqsave(flags);
3282 dumper->cur_seq = clear_seq;
3283 dumper->cur_idx = clear_idx;
3284 dumper->next_seq = log_next_seq;
3285 dumper->next_idx = log_next_idx;
3286 logbuf_unlock_irqrestore(flags);
3287
3288 /* invoke dumper which will iterate over records */
3289 dumper->dump(dumper, reason);
3290
3291 /* reset iterator */
3292 dumper->active = false;
3293 }
3294 rcu_read_unlock();
3295}
3296
3297/**
3298 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3299 * @dumper: registered kmsg dumper
3300 * @syslog: include the "<4>" prefixes
3301 * @line: buffer to copy the line to
3302 * @size: maximum size of the buffer
3303 * @len: length of line placed into buffer
3304 *
3305 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3306 * record, and copy one record into the provided buffer.
3307 *
3308 * Consecutive calls will return the next available record moving
3309 * towards the end of the buffer with the youngest messages.
3310 *
3311 * A return value of FALSE indicates that there are no more records to
3312 * read.
3313 *
3314 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3315 */
3316bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3317 char *line, size_t size, size_t *len)
3318{
3319 struct printk_log *msg;
3320 size_t l = 0;
3321 bool ret = false;
3322
3323 if (!dumper->active)
3324 goto out;
3325
3326 if (dumper->cur_seq < log_first_seq) {
3327 /* messages are gone, move to first available one */
3328 dumper->cur_seq = log_first_seq;
3329 dumper->cur_idx = log_first_idx;
3330 }
3331
3332 /* last entry */
3333 if (dumper->cur_seq >= log_next_seq)
3334 goto out;
3335
3336 msg = log_from_idx(dumper->cur_idx);
3337 l = msg_print_text(msg, syslog, printk_time, line, size);
3338
3339 dumper->cur_idx = log_next(dumper->cur_idx);
3340 dumper->cur_seq++;
3341 ret = true;
3342out:
3343 if (len)
3344 *len = l;
3345 return ret;
3346}
3347
3348/**
3349 * kmsg_dump_get_line - retrieve one kmsg log line
3350 * @dumper: registered kmsg dumper
3351 * @syslog: include the "<4>" prefixes
3352 * @line: buffer to copy the line to
3353 * @size: maximum size of the buffer
3354 * @len: length of line placed into buffer
3355 *
3356 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3357 * record, and copy one record into the provided buffer.
3358 *
3359 * Consecutive calls will return the next available record moving
3360 * towards the end of the buffer with the youngest messages.
3361 *
3362 * A return value of FALSE indicates that there are no more records to
3363 * read.
3364 */
3365bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3366 char *line, size_t size, size_t *len)
3367{
3368 unsigned long flags;
3369 bool ret;
3370
3371 logbuf_lock_irqsave(flags);
3372 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3373 logbuf_unlock_irqrestore(flags);
3374
3375 return ret;
3376}
3377EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3378
3379/**
3380 * kmsg_dump_get_buffer - copy kmsg log lines
3381 * @dumper: registered kmsg dumper
3382 * @syslog: include the "<4>" prefixes
3383 * @buf: buffer to copy the line to
3384 * @size: maximum size of the buffer
3385 * @len: length of line placed into buffer
3386 *
3387 * Start at the end of the kmsg buffer and fill the provided buffer
3388 * with as many of the the *youngest* kmsg records that fit into it.
3389 * If the buffer is large enough, all available kmsg records will be
3390 * copied with a single call.
3391 *
3392 * Consecutive calls will fill the buffer with the next block of
3393 * available older records, not including the earlier retrieved ones.
3394 *
3395 * A return value of FALSE indicates that there are no more records to
3396 * read.
3397 */
3398bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3399 char *buf, size_t size, size_t *len)
3400{
3401 unsigned long flags;
3402 u64 seq;
3403 u32 idx;
3404 u64 next_seq;
3405 u32 next_idx;
3406 size_t l = 0;
3407 bool ret = false;
3408 bool time = printk_time;
3409
3410 if (!dumper->active)
3411 goto out;
3412
3413 logbuf_lock_irqsave(flags);
3414 if (dumper->cur_seq < log_first_seq) {
3415 /* messages are gone, move to first available one */
3416 dumper->cur_seq = log_first_seq;
3417 dumper->cur_idx = log_first_idx;
3418 }
3419
3420 /* last entry */
3421 if (dumper->cur_seq >= dumper->next_seq) {
3422 logbuf_unlock_irqrestore(flags);
3423 goto out;
3424 }
3425
3426 /* calculate length of entire buffer */
3427 seq = dumper->cur_seq;
3428 idx = dumper->cur_idx;
3429 while (seq < dumper->next_seq) {
3430 struct printk_log *msg = log_from_idx(idx);
3431
3432 l += msg_print_text(msg, true, time, NULL, 0);
3433 idx = log_next(idx);
3434 seq++;
3435 }
3436
3437 /* move first record forward until length fits into the buffer */
3438 seq = dumper->cur_seq;
3439 idx = dumper->cur_idx;
3440 while (l >= size && seq < dumper->next_seq) {
3441 struct printk_log *msg = log_from_idx(idx);
3442
3443 l -= msg_print_text(msg, true, time, NULL, 0);
3444 idx = log_next(idx);
3445 seq++;
3446 }
3447
3448 /* last message in next interation */
3449 next_seq = seq;
3450 next_idx = idx;
3451
3452 l = 0;
3453 while (seq < dumper->next_seq) {
3454 struct printk_log *msg = log_from_idx(idx);
3455
3456 l += msg_print_text(msg, syslog, time, buf + l, size - l);
3457 idx = log_next(idx);
3458 seq++;
3459 }
3460
3461 dumper->next_seq = next_seq;
3462 dumper->next_idx = next_idx;
3463 ret = true;
3464 logbuf_unlock_irqrestore(flags);
3465out:
3466 if (len)
3467 *len = l;
3468 return ret;
3469}
3470EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3471
3472/**
3473 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3474 * @dumper: registered kmsg dumper
3475 *
3476 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3477 * kmsg_dump_get_buffer() can be called again and used multiple
3478 * times within the same dumper.dump() callback.
3479 *
3480 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3481 */
3482void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3483{
3484 dumper->cur_seq = clear_seq;
3485 dumper->cur_idx = clear_idx;
3486 dumper->next_seq = log_next_seq;
3487 dumper->next_idx = log_next_idx;
3488}
3489
3490/**
3491 * kmsg_dump_rewind - reset the interator
3492 * @dumper: registered kmsg dumper
3493 *
3494 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3495 * kmsg_dump_get_buffer() can be called again and used multiple
3496 * times within the same dumper.dump() callback.
3497 */
3498void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3499{
3500 unsigned long flags;
3501
3502 logbuf_lock_irqsave(flags);
3503 kmsg_dump_rewind_nolock(dumper);
3504 logbuf_unlock_irqrestore(flags);
3505}
3506EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3507
3508#endif