| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing) |
| 4 | * |
| 5 | * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com> |
| 6 | * |
| 7 | * Meant to be mostly used for locally generated traffic : |
| 8 | * Fast classification depends on skb->sk being set before reaching us. |
| 9 | * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash. |
| 10 | * All packets belonging to a socket are considered as a 'flow'. |
| 11 | * |
| 12 | * Flows are dynamically allocated and stored in a hash table of RB trees |
| 13 | * They are also part of one Round Robin 'queues' (new or old flows) |
| 14 | * |
| 15 | * Burst avoidance (aka pacing) capability : |
| 16 | * |
| 17 | * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a |
| 18 | * bunch of packets, and this packet scheduler adds delay between |
| 19 | * packets to respect rate limitation. |
| 20 | * |
| 21 | * enqueue() : |
| 22 | * - lookup one RB tree (out of 1024 or more) to find the flow. |
| 23 | * If non existent flow, create it, add it to the tree. |
| 24 | * Add skb to the per flow list of skb (fifo). |
| 25 | * - Use a special fifo for high prio packets |
| 26 | * |
| 27 | * dequeue() : serves flows in Round Robin |
| 28 | * Note : When a flow becomes empty, we do not immediately remove it from |
| 29 | * rb trees, for performance reasons (its expected to send additional packets, |
| 30 | * or SLAB cache will reuse socket for another flow) |
| 31 | */ |
| 32 | |
| 33 | #include <linux/module.h> |
| 34 | #include <linux/types.h> |
| 35 | #include <linux/kernel.h> |
| 36 | #include <linux/jiffies.h> |
| 37 | #include <linux/string.h> |
| 38 | #include <linux/in.h> |
| 39 | #include <linux/errno.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/skbuff.h> |
| 42 | #include <linux/slab.h> |
| 43 | #include <linux/rbtree.h> |
| 44 | #include <linux/hash.h> |
| 45 | #include <linux/prefetch.h> |
| 46 | #include <linux/vmalloc.h> |
| 47 | #include <net/netlink.h> |
| 48 | #include <net/pkt_sched.h> |
| 49 | #include <net/sock.h> |
| 50 | #include <net/tcp_states.h> |
| 51 | #include <net/tcp.h> |
| 52 | |
| 53 | struct fq_skb_cb { |
| 54 | u64 time_to_send; |
| 55 | }; |
| 56 | |
| 57 | static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb) |
| 58 | { |
| 59 | qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb)); |
| 60 | return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data; |
| 61 | } |
| 62 | |
| 63 | /* |
| 64 | * Per flow structure, dynamically allocated. |
| 65 | * If packets have monotically increasing time_to_send, they are placed in O(1) |
| 66 | * in linear list (head,tail), otherwise are placed in a rbtree (t_root). |
| 67 | */ |
| 68 | struct fq_flow { |
| 69 | struct rb_root t_root; |
| 70 | struct sk_buff *head; /* list of skbs for this flow : first skb */ |
| 71 | union { |
| 72 | struct sk_buff *tail; /* last skb in the list */ |
| 73 | unsigned long age; /* jiffies when flow was emptied, for gc */ |
| 74 | }; |
| 75 | struct rb_node fq_node; /* anchor in fq_root[] trees */ |
| 76 | struct sock *sk; |
| 77 | int qlen; /* number of packets in flow queue */ |
| 78 | int credit; |
| 79 | u32 socket_hash; /* sk_hash */ |
| 80 | struct fq_flow *next; /* next pointer in RR lists, or &detached */ |
| 81 | |
| 82 | struct rb_node rate_node; /* anchor in q->delayed tree */ |
| 83 | u64 time_next_packet; |
| 84 | }; |
| 85 | |
| 86 | struct fq_flow_head { |
| 87 | struct fq_flow *first; |
| 88 | struct fq_flow *last; |
| 89 | }; |
| 90 | |
| 91 | struct fq_sched_data { |
| 92 | struct fq_flow_head new_flows; |
| 93 | |
| 94 | struct fq_flow_head old_flows; |
| 95 | |
| 96 | struct rb_root delayed; /* for rate limited flows */ |
| 97 | u64 time_next_delayed_flow; |
| 98 | unsigned long unthrottle_latency_ns; |
| 99 | |
| 100 | struct fq_flow internal; /* for non classified or high prio packets */ |
| 101 | u32 quantum; |
| 102 | u32 initial_quantum; |
| 103 | u32 flow_refill_delay; |
| 104 | u32 flow_plimit; /* max packets per flow */ |
| 105 | unsigned long flow_max_rate; /* optional max rate per flow */ |
| 106 | u64 ce_threshold; |
| 107 | u32 orphan_mask; /* mask for orphaned skb */ |
| 108 | u32 low_rate_threshold; |
| 109 | struct rb_root *fq_root; |
| 110 | u8 rate_enable; |
| 111 | u8 fq_trees_log; |
| 112 | |
| 113 | u32 flows; |
| 114 | u32 inactive_flows; |
| 115 | u32 throttled_flows; |
| 116 | |
| 117 | u64 stat_gc_flows; |
| 118 | u64 stat_internal_packets; |
| 119 | u64 stat_throttled; |
| 120 | u64 stat_ce_mark; |
| 121 | u64 stat_flows_plimit; |
| 122 | u64 stat_pkts_too_long; |
| 123 | u64 stat_allocation_errors; |
| 124 | struct qdisc_watchdog watchdog; |
| 125 | }; |
| 126 | |
| 127 | /* special value to mark a detached flow (not on old/new list) */ |
| 128 | static struct fq_flow detached, throttled; |
| 129 | |
| 130 | static void fq_flow_set_detached(struct fq_flow *f) |
| 131 | { |
| 132 | f->next = &detached; |
| 133 | f->age = jiffies; |
| 134 | } |
| 135 | |
| 136 | static bool fq_flow_is_detached(const struct fq_flow *f) |
| 137 | { |
| 138 | return f->next == &detached; |
| 139 | } |
| 140 | |
| 141 | static bool fq_flow_is_throttled(const struct fq_flow *f) |
| 142 | { |
| 143 | return f->next == &throttled; |
| 144 | } |
| 145 | |
| 146 | static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow) |
| 147 | { |
| 148 | if (head->first) |
| 149 | head->last->next = flow; |
| 150 | else |
| 151 | head->first = flow; |
| 152 | head->last = flow; |
| 153 | flow->next = NULL; |
| 154 | } |
| 155 | |
| 156 | static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f) |
| 157 | { |
| 158 | rb_erase(&f->rate_node, &q->delayed); |
| 159 | q->throttled_flows--; |
| 160 | fq_flow_add_tail(&q->old_flows, f); |
| 161 | } |
| 162 | |
| 163 | static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f) |
| 164 | { |
| 165 | struct rb_node **p = &q->delayed.rb_node, *parent = NULL; |
| 166 | |
| 167 | while (*p) { |
| 168 | struct fq_flow *aux; |
| 169 | |
| 170 | parent = *p; |
| 171 | aux = rb_entry(parent, struct fq_flow, rate_node); |
| 172 | if (f->time_next_packet >= aux->time_next_packet) |
| 173 | p = &parent->rb_right; |
| 174 | else |
| 175 | p = &parent->rb_left; |
| 176 | } |
| 177 | rb_link_node(&f->rate_node, parent, p); |
| 178 | rb_insert_color(&f->rate_node, &q->delayed); |
| 179 | q->throttled_flows++; |
| 180 | q->stat_throttled++; |
| 181 | |
| 182 | f->next = &throttled; |
| 183 | if (q->time_next_delayed_flow > f->time_next_packet) |
| 184 | q->time_next_delayed_flow = f->time_next_packet; |
| 185 | } |
| 186 | |
| 187 | |
| 188 | static struct kmem_cache *fq_flow_cachep __read_mostly; |
| 189 | |
| 190 | |
| 191 | /* limit number of collected flows per round */ |
| 192 | #define FQ_GC_MAX 8 |
| 193 | #define FQ_GC_AGE (3*HZ) |
| 194 | |
| 195 | static bool fq_gc_candidate(const struct fq_flow *f) |
| 196 | { |
| 197 | return fq_flow_is_detached(f) && |
| 198 | time_after(jiffies, f->age + FQ_GC_AGE); |
| 199 | } |
| 200 | |
| 201 | static void fq_gc(struct fq_sched_data *q, |
| 202 | struct rb_root *root, |
| 203 | struct sock *sk) |
| 204 | { |
| 205 | struct fq_flow *f, *tofree[FQ_GC_MAX]; |
| 206 | struct rb_node **p, *parent; |
| 207 | int fcnt = 0; |
| 208 | |
| 209 | p = &root->rb_node; |
| 210 | parent = NULL; |
| 211 | while (*p) { |
| 212 | parent = *p; |
| 213 | |
| 214 | f = rb_entry(parent, struct fq_flow, fq_node); |
| 215 | if (f->sk == sk) |
| 216 | break; |
| 217 | |
| 218 | if (fq_gc_candidate(f)) { |
| 219 | tofree[fcnt++] = f; |
| 220 | if (fcnt == FQ_GC_MAX) |
| 221 | break; |
| 222 | } |
| 223 | |
| 224 | if (f->sk > sk) |
| 225 | p = &parent->rb_right; |
| 226 | else |
| 227 | p = &parent->rb_left; |
| 228 | } |
| 229 | |
| 230 | q->flows -= fcnt; |
| 231 | q->inactive_flows -= fcnt; |
| 232 | q->stat_gc_flows += fcnt; |
| 233 | while (fcnt) { |
| 234 | struct fq_flow *f = tofree[--fcnt]; |
| 235 | |
| 236 | rb_erase(&f->fq_node, root); |
| 237 | kmem_cache_free(fq_flow_cachep, f); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q) |
| 242 | { |
| 243 | struct rb_node **p, *parent; |
| 244 | struct sock *sk = skb->sk; |
| 245 | struct rb_root *root; |
| 246 | struct fq_flow *f; |
| 247 | |
| 248 | /* warning: no starvation prevention... */ |
| 249 | if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL)) |
| 250 | return &q->internal; |
| 251 | |
| 252 | /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket |
| 253 | * or a listener (SYNCOOKIE mode) |
| 254 | * 1) request sockets are not full blown, |
| 255 | * they do not contain sk_pacing_rate |
| 256 | * 2) They are not part of a 'flow' yet |
| 257 | * 3) We do not want to rate limit them (eg SYNFLOOD attack), |
| 258 | * especially if the listener set SO_MAX_PACING_RATE |
| 259 | * 4) We pretend they are orphaned |
| 260 | */ |
| 261 | if (!sk || sk_listener(sk)) { |
| 262 | unsigned long hash = skb_get_hash(skb) & q->orphan_mask; |
| 263 | |
| 264 | /* By forcing low order bit to 1, we make sure to not |
| 265 | * collide with a local flow (socket pointers are word aligned) |
| 266 | */ |
| 267 | sk = (struct sock *)((hash << 1) | 1UL); |
| 268 | skb_orphan(skb); |
| 269 | } else if (sk->sk_state == TCP_CLOSE) { |
| 270 | unsigned long hash = skb_get_hash(skb) & q->orphan_mask; |
| 271 | /* |
| 272 | * Sockets in TCP_CLOSE are non connected. |
| 273 | * Typical use case is UDP sockets, they can send packets |
| 274 | * with sendto() to many different destinations. |
| 275 | * We probably could use a generic bit advertising |
| 276 | * non connected sockets, instead of sk_state == TCP_CLOSE, |
| 277 | * if we care enough. |
| 278 | */ |
| 279 | sk = (struct sock *)((hash << 1) | 1UL); |
| 280 | } |
| 281 | |
| 282 | root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)]; |
| 283 | |
| 284 | if (q->flows >= (2U << q->fq_trees_log) && |
| 285 | q->inactive_flows > q->flows/2) |
| 286 | fq_gc(q, root, sk); |
| 287 | |
| 288 | p = &root->rb_node; |
| 289 | parent = NULL; |
| 290 | while (*p) { |
| 291 | parent = *p; |
| 292 | |
| 293 | f = rb_entry(parent, struct fq_flow, fq_node); |
| 294 | if (f->sk == sk) { |
| 295 | /* socket might have been reallocated, so check |
| 296 | * if its sk_hash is the same. |
| 297 | * It not, we need to refill credit with |
| 298 | * initial quantum |
| 299 | */ |
| 300 | if (unlikely(skb->sk == sk && |
| 301 | f->socket_hash != sk->sk_hash)) { |
| 302 | f->credit = q->initial_quantum; |
| 303 | f->socket_hash = sk->sk_hash; |
| 304 | if (q->rate_enable) |
| 305 | smp_store_release(&sk->sk_pacing_status, |
| 306 | SK_PACING_FQ); |
| 307 | if (fq_flow_is_throttled(f)) |
| 308 | fq_flow_unset_throttled(q, f); |
| 309 | f->time_next_packet = 0ULL; |
| 310 | } |
| 311 | return f; |
| 312 | } |
| 313 | if (f->sk > sk) |
| 314 | p = &parent->rb_right; |
| 315 | else |
| 316 | p = &parent->rb_left; |
| 317 | } |
| 318 | |
| 319 | f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN); |
| 320 | if (unlikely(!f)) { |
| 321 | q->stat_allocation_errors++; |
| 322 | return &q->internal; |
| 323 | } |
| 324 | /* f->t_root is already zeroed after kmem_cache_zalloc() */ |
| 325 | |
| 326 | fq_flow_set_detached(f); |
| 327 | f->sk = sk; |
| 328 | if (skb->sk == sk) { |
| 329 | f->socket_hash = sk->sk_hash; |
| 330 | if (q->rate_enable) |
| 331 | smp_store_release(&sk->sk_pacing_status, |
| 332 | SK_PACING_FQ); |
| 333 | } |
| 334 | f->credit = q->initial_quantum; |
| 335 | |
| 336 | rb_link_node(&f->fq_node, parent, p); |
| 337 | rb_insert_color(&f->fq_node, root); |
| 338 | |
| 339 | q->flows++; |
| 340 | q->inactive_flows++; |
| 341 | return f; |
| 342 | } |
| 343 | |
| 344 | static struct sk_buff *fq_peek(struct fq_flow *flow) |
| 345 | { |
| 346 | struct sk_buff *skb = skb_rb_first(&flow->t_root); |
| 347 | struct sk_buff *head = flow->head; |
| 348 | |
| 349 | if (!skb) |
| 350 | return head; |
| 351 | |
| 352 | if (!head) |
| 353 | return skb; |
| 354 | |
| 355 | if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send) |
| 356 | return skb; |
| 357 | return head; |
| 358 | } |
| 359 | |
| 360 | static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow, |
| 361 | struct sk_buff *skb) |
| 362 | { |
| 363 | if (skb == flow->head) { |
| 364 | flow->head = skb->next; |
| 365 | } else { |
| 366 | rb_erase(&skb->rbnode, &flow->t_root); |
| 367 | skb->dev = qdisc_dev(sch); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | /* remove one skb from head of flow queue */ |
| 372 | static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow) |
| 373 | { |
| 374 | struct sk_buff *skb = fq_peek(flow); |
| 375 | |
| 376 | if (skb) { |
| 377 | fq_erase_head(sch, flow, skb); |
| 378 | skb_mark_not_on_list(skb); |
| 379 | flow->qlen--; |
| 380 | qdisc_qstats_backlog_dec(sch, skb); |
| 381 | sch->q.qlen--; |
| 382 | } |
| 383 | return skb; |
| 384 | } |
| 385 | |
| 386 | static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb) |
| 387 | { |
| 388 | struct rb_node **p, *parent; |
| 389 | struct sk_buff *head, *aux; |
| 390 | |
| 391 | fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns(); |
| 392 | |
| 393 | head = flow->head; |
| 394 | if (!head || |
| 395 | fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) { |
| 396 | if (!head) |
| 397 | flow->head = skb; |
| 398 | else |
| 399 | flow->tail->next = skb; |
| 400 | flow->tail = skb; |
| 401 | skb->next = NULL; |
| 402 | return; |
| 403 | } |
| 404 | |
| 405 | p = &flow->t_root.rb_node; |
| 406 | parent = NULL; |
| 407 | |
| 408 | while (*p) { |
| 409 | parent = *p; |
| 410 | aux = rb_to_skb(parent); |
| 411 | if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send) |
| 412 | p = &parent->rb_right; |
| 413 | else |
| 414 | p = &parent->rb_left; |
| 415 | } |
| 416 | rb_link_node(&skb->rbnode, parent, p); |
| 417 | rb_insert_color(&skb->rbnode, &flow->t_root); |
| 418 | } |
| 419 | |
| 420 | static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| 421 | struct sk_buff **to_free) |
| 422 | { |
| 423 | struct fq_sched_data *q = qdisc_priv(sch); |
| 424 | struct fq_flow *f; |
| 425 | |
| 426 | if (unlikely(sch->q.qlen >= sch->limit)) |
| 427 | return qdisc_drop(skb, sch, to_free); |
| 428 | |
| 429 | f = fq_classify(skb, q); |
| 430 | if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) { |
| 431 | q->stat_flows_plimit++; |
| 432 | return qdisc_drop(skb, sch, to_free); |
| 433 | } |
| 434 | |
| 435 | f->qlen++; |
| 436 | qdisc_qstats_backlog_inc(sch, skb); |
| 437 | if (fq_flow_is_detached(f)) { |
| 438 | fq_flow_add_tail(&q->new_flows, f); |
| 439 | if (time_after(jiffies, f->age + q->flow_refill_delay)) |
| 440 | f->credit = max_t(u32, f->credit, q->quantum); |
| 441 | q->inactive_flows--; |
| 442 | } |
| 443 | |
| 444 | /* Note: this overwrites f->age */ |
| 445 | flow_queue_add(f, skb); |
| 446 | |
| 447 | if (unlikely(f == &q->internal)) { |
| 448 | q->stat_internal_packets++; |
| 449 | } |
| 450 | sch->q.qlen++; |
| 451 | |
| 452 | return NET_XMIT_SUCCESS; |
| 453 | } |
| 454 | |
| 455 | static void fq_check_throttled(struct fq_sched_data *q, u64 now) |
| 456 | { |
| 457 | unsigned long sample; |
| 458 | struct rb_node *p; |
| 459 | |
| 460 | if (q->time_next_delayed_flow > now) |
| 461 | return; |
| 462 | |
| 463 | /* Update unthrottle latency EWMA. |
| 464 | * This is cheap and can help diagnosing timer/latency problems. |
| 465 | */ |
| 466 | sample = (unsigned long)(now - q->time_next_delayed_flow); |
| 467 | q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3; |
| 468 | q->unthrottle_latency_ns += sample >> 3; |
| 469 | |
| 470 | q->time_next_delayed_flow = ~0ULL; |
| 471 | while ((p = rb_first(&q->delayed)) != NULL) { |
| 472 | struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node); |
| 473 | |
| 474 | if (f->time_next_packet > now) { |
| 475 | q->time_next_delayed_flow = f->time_next_packet; |
| 476 | break; |
| 477 | } |
| 478 | fq_flow_unset_throttled(q, f); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | static struct sk_buff *fq_dequeue(struct Qdisc *sch) |
| 483 | { |
| 484 | struct fq_sched_data *q = qdisc_priv(sch); |
| 485 | struct fq_flow_head *head; |
| 486 | struct sk_buff *skb; |
| 487 | struct fq_flow *f; |
| 488 | unsigned long rate; |
| 489 | u32 plen; |
| 490 | u64 now; |
| 491 | |
| 492 | if (!sch->q.qlen) |
| 493 | return NULL; |
| 494 | |
| 495 | skb = fq_dequeue_head(sch, &q->internal); |
| 496 | if (skb) |
| 497 | goto out; |
| 498 | |
| 499 | now = ktime_get_ns(); |
| 500 | fq_check_throttled(q, now); |
| 501 | begin: |
| 502 | head = &q->new_flows; |
| 503 | if (!head->first) { |
| 504 | head = &q->old_flows; |
| 505 | if (!head->first) { |
| 506 | if (q->time_next_delayed_flow != ~0ULL) |
| 507 | qdisc_watchdog_schedule_ns(&q->watchdog, |
| 508 | q->time_next_delayed_flow); |
| 509 | return NULL; |
| 510 | } |
| 511 | } |
| 512 | f = head->first; |
| 513 | |
| 514 | if (f->credit <= 0) { |
| 515 | f->credit += q->quantum; |
| 516 | head->first = f->next; |
| 517 | fq_flow_add_tail(&q->old_flows, f); |
| 518 | goto begin; |
| 519 | } |
| 520 | |
| 521 | skb = fq_peek(f); |
| 522 | if (skb) { |
| 523 | u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send, |
| 524 | f->time_next_packet); |
| 525 | |
| 526 | if (now < time_next_packet) { |
| 527 | head->first = f->next; |
| 528 | f->time_next_packet = time_next_packet; |
| 529 | fq_flow_set_throttled(q, f); |
| 530 | goto begin; |
| 531 | } |
| 532 | if (time_next_packet && |
| 533 | (s64)(now - time_next_packet - q->ce_threshold) > 0) { |
| 534 | INET_ECN_set_ce(skb); |
| 535 | q->stat_ce_mark++; |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | skb = fq_dequeue_head(sch, f); |
| 540 | if (!skb) { |
| 541 | head->first = f->next; |
| 542 | /* force a pass through old_flows to prevent starvation */ |
| 543 | if ((head == &q->new_flows) && q->old_flows.first) { |
| 544 | fq_flow_add_tail(&q->old_flows, f); |
| 545 | } else { |
| 546 | fq_flow_set_detached(f); |
| 547 | q->inactive_flows++; |
| 548 | } |
| 549 | goto begin; |
| 550 | } |
| 551 | prefetch(&skb->end); |
| 552 | plen = qdisc_pkt_len(skb); |
| 553 | f->credit -= plen; |
| 554 | |
| 555 | if (!q->rate_enable) |
| 556 | goto out; |
| 557 | |
| 558 | rate = q->flow_max_rate; |
| 559 | |
| 560 | /* If EDT time was provided for this skb, we need to |
| 561 | * update f->time_next_packet only if this qdisc enforces |
| 562 | * a flow max rate. |
| 563 | */ |
| 564 | if (!skb->tstamp) { |
| 565 | if (skb->sk) |
| 566 | rate = min(skb->sk->sk_pacing_rate, rate); |
| 567 | |
| 568 | if (rate <= q->low_rate_threshold) { |
| 569 | f->credit = 0; |
| 570 | } else { |
| 571 | plen = max(plen, q->quantum); |
| 572 | if (f->credit > 0) |
| 573 | goto out; |
| 574 | } |
| 575 | } |
| 576 | if (rate != ~0UL) { |
| 577 | u64 len = (u64)plen * NSEC_PER_SEC; |
| 578 | |
| 579 | if (likely(rate)) |
| 580 | len = div64_ul(len, rate); |
| 581 | /* Since socket rate can change later, |
| 582 | * clamp the delay to 1 second. |
| 583 | * Really, providers of too big packets should be fixed ! |
| 584 | */ |
| 585 | if (unlikely(len > NSEC_PER_SEC)) { |
| 586 | len = NSEC_PER_SEC; |
| 587 | q->stat_pkts_too_long++; |
| 588 | } |
| 589 | /* Account for schedule/timers drifts. |
| 590 | * f->time_next_packet was set when prior packet was sent, |
| 591 | * and current time (@now) can be too late by tens of us. |
| 592 | */ |
| 593 | if (f->time_next_packet) |
| 594 | len -= min(len/2, now - f->time_next_packet); |
| 595 | f->time_next_packet = now + len; |
| 596 | } |
| 597 | out: |
| 598 | qdisc_bstats_update(sch, skb); |
| 599 | return skb; |
| 600 | } |
| 601 | |
| 602 | static void fq_flow_purge(struct fq_flow *flow) |
| 603 | { |
| 604 | struct rb_node *p = rb_first(&flow->t_root); |
| 605 | |
| 606 | while (p) { |
| 607 | struct sk_buff *skb = rb_to_skb(p); |
| 608 | |
| 609 | p = rb_next(p); |
| 610 | rb_erase(&skb->rbnode, &flow->t_root); |
| 611 | rtnl_kfree_skbs(skb, skb); |
| 612 | } |
| 613 | rtnl_kfree_skbs(flow->head, flow->tail); |
| 614 | flow->head = NULL; |
| 615 | flow->qlen = 0; |
| 616 | } |
| 617 | |
| 618 | static void fq_reset(struct Qdisc *sch) |
| 619 | { |
| 620 | struct fq_sched_data *q = qdisc_priv(sch); |
| 621 | struct rb_root *root; |
| 622 | struct rb_node *p; |
| 623 | struct fq_flow *f; |
| 624 | unsigned int idx; |
| 625 | |
| 626 | sch->q.qlen = 0; |
| 627 | sch->qstats.backlog = 0; |
| 628 | |
| 629 | fq_flow_purge(&q->internal); |
| 630 | |
| 631 | if (!q->fq_root) |
| 632 | return; |
| 633 | |
| 634 | for (idx = 0; idx < (1U << q->fq_trees_log); idx++) { |
| 635 | root = &q->fq_root[idx]; |
| 636 | while ((p = rb_first(root)) != NULL) { |
| 637 | f = rb_entry(p, struct fq_flow, fq_node); |
| 638 | rb_erase(p, root); |
| 639 | |
| 640 | fq_flow_purge(f); |
| 641 | |
| 642 | kmem_cache_free(fq_flow_cachep, f); |
| 643 | } |
| 644 | } |
| 645 | q->new_flows.first = NULL; |
| 646 | q->old_flows.first = NULL; |
| 647 | q->delayed = RB_ROOT; |
| 648 | q->flows = 0; |
| 649 | q->inactive_flows = 0; |
| 650 | q->throttled_flows = 0; |
| 651 | } |
| 652 | |
| 653 | static void fq_rehash(struct fq_sched_data *q, |
| 654 | struct rb_root *old_array, u32 old_log, |
| 655 | struct rb_root *new_array, u32 new_log) |
| 656 | { |
| 657 | struct rb_node *op, **np, *parent; |
| 658 | struct rb_root *oroot, *nroot; |
| 659 | struct fq_flow *of, *nf; |
| 660 | int fcnt = 0; |
| 661 | u32 idx; |
| 662 | |
| 663 | for (idx = 0; idx < (1U << old_log); idx++) { |
| 664 | oroot = &old_array[idx]; |
| 665 | while ((op = rb_first(oroot)) != NULL) { |
| 666 | rb_erase(op, oroot); |
| 667 | of = rb_entry(op, struct fq_flow, fq_node); |
| 668 | if (fq_gc_candidate(of)) { |
| 669 | fcnt++; |
| 670 | kmem_cache_free(fq_flow_cachep, of); |
| 671 | continue; |
| 672 | } |
| 673 | nroot = &new_array[hash_ptr(of->sk, new_log)]; |
| 674 | |
| 675 | np = &nroot->rb_node; |
| 676 | parent = NULL; |
| 677 | while (*np) { |
| 678 | parent = *np; |
| 679 | |
| 680 | nf = rb_entry(parent, struct fq_flow, fq_node); |
| 681 | BUG_ON(nf->sk == of->sk); |
| 682 | |
| 683 | if (nf->sk > of->sk) |
| 684 | np = &parent->rb_right; |
| 685 | else |
| 686 | np = &parent->rb_left; |
| 687 | } |
| 688 | |
| 689 | rb_link_node(&of->fq_node, parent, np); |
| 690 | rb_insert_color(&of->fq_node, nroot); |
| 691 | } |
| 692 | } |
| 693 | q->flows -= fcnt; |
| 694 | q->inactive_flows -= fcnt; |
| 695 | q->stat_gc_flows += fcnt; |
| 696 | } |
| 697 | |
| 698 | static void fq_free(void *addr) |
| 699 | { |
| 700 | kvfree(addr); |
| 701 | } |
| 702 | |
| 703 | static int fq_resize(struct Qdisc *sch, u32 log) |
| 704 | { |
| 705 | struct fq_sched_data *q = qdisc_priv(sch); |
| 706 | struct rb_root *array; |
| 707 | void *old_fq_root; |
| 708 | u32 idx; |
| 709 | |
| 710 | if (q->fq_root && log == q->fq_trees_log) |
| 711 | return 0; |
| 712 | |
| 713 | /* If XPS was setup, we can allocate memory on right NUMA node */ |
| 714 | array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL, |
| 715 | netdev_queue_numa_node_read(sch->dev_queue)); |
| 716 | if (!array) |
| 717 | return -ENOMEM; |
| 718 | |
| 719 | for (idx = 0; idx < (1U << log); idx++) |
| 720 | array[idx] = RB_ROOT; |
| 721 | |
| 722 | sch_tree_lock(sch); |
| 723 | |
| 724 | old_fq_root = q->fq_root; |
| 725 | if (old_fq_root) |
| 726 | fq_rehash(q, old_fq_root, q->fq_trees_log, array, log); |
| 727 | |
| 728 | q->fq_root = array; |
| 729 | q->fq_trees_log = log; |
| 730 | |
| 731 | sch_tree_unlock(sch); |
| 732 | |
| 733 | fq_free(old_fq_root); |
| 734 | |
| 735 | return 0; |
| 736 | } |
| 737 | |
| 738 | static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = { |
| 739 | [TCA_FQ_PLIMIT] = { .type = NLA_U32 }, |
| 740 | [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 }, |
| 741 | [TCA_FQ_QUANTUM] = { .type = NLA_U32 }, |
| 742 | [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 }, |
| 743 | [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 }, |
| 744 | [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 }, |
| 745 | [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 }, |
| 746 | [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 }, |
| 747 | [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 }, |
| 748 | [TCA_FQ_ORPHAN_MASK] = { .type = NLA_U32 }, |
| 749 | [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 }, |
| 750 | [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 }, |
| 751 | }; |
| 752 | |
| 753 | static int fq_change(struct Qdisc *sch, struct nlattr *opt, |
| 754 | struct netlink_ext_ack *extack) |
| 755 | { |
| 756 | struct fq_sched_data *q = qdisc_priv(sch); |
| 757 | struct nlattr *tb[TCA_FQ_MAX + 1]; |
| 758 | int err, drop_count = 0; |
| 759 | unsigned drop_len = 0; |
| 760 | u32 fq_log; |
| 761 | |
| 762 | if (!opt) |
| 763 | return -EINVAL; |
| 764 | |
| 765 | err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy, |
| 766 | NULL); |
| 767 | if (err < 0) |
| 768 | return err; |
| 769 | |
| 770 | sch_tree_lock(sch); |
| 771 | |
| 772 | fq_log = q->fq_trees_log; |
| 773 | |
| 774 | if (tb[TCA_FQ_BUCKETS_LOG]) { |
| 775 | u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]); |
| 776 | |
| 777 | if (nval >= 1 && nval <= ilog2(256*1024)) |
| 778 | fq_log = nval; |
| 779 | else |
| 780 | err = -EINVAL; |
| 781 | } |
| 782 | if (tb[TCA_FQ_PLIMIT]) |
| 783 | sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]); |
| 784 | |
| 785 | if (tb[TCA_FQ_FLOW_PLIMIT]) |
| 786 | q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]); |
| 787 | |
| 788 | if (tb[TCA_FQ_QUANTUM]) { |
| 789 | u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]); |
| 790 | |
| 791 | if (quantum > 0 && quantum <= (1 << 20)) { |
| 792 | q->quantum = quantum; |
| 793 | } else { |
| 794 | NL_SET_ERR_MSG_MOD(extack, "invalid quantum"); |
| 795 | err = -EINVAL; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | if (tb[TCA_FQ_INITIAL_QUANTUM]) |
| 800 | q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]); |
| 801 | |
| 802 | if (tb[TCA_FQ_FLOW_DEFAULT_RATE]) |
| 803 | pr_warn_ratelimited("sch_fq: defrate %u ignored.\n", |
| 804 | nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE])); |
| 805 | |
| 806 | if (tb[TCA_FQ_FLOW_MAX_RATE]) { |
| 807 | u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]); |
| 808 | |
| 809 | q->flow_max_rate = (rate == ~0U) ? ~0UL : rate; |
| 810 | } |
| 811 | if (tb[TCA_FQ_LOW_RATE_THRESHOLD]) |
| 812 | q->low_rate_threshold = |
| 813 | nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]); |
| 814 | |
| 815 | if (tb[TCA_FQ_RATE_ENABLE]) { |
| 816 | u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]); |
| 817 | |
| 818 | if (enable <= 1) |
| 819 | q->rate_enable = enable; |
| 820 | else |
| 821 | err = -EINVAL; |
| 822 | } |
| 823 | |
| 824 | if (tb[TCA_FQ_FLOW_REFILL_DELAY]) { |
| 825 | u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ; |
| 826 | |
| 827 | q->flow_refill_delay = usecs_to_jiffies(usecs_delay); |
| 828 | } |
| 829 | |
| 830 | if (tb[TCA_FQ_ORPHAN_MASK]) |
| 831 | q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]); |
| 832 | |
| 833 | if (tb[TCA_FQ_CE_THRESHOLD]) |
| 834 | q->ce_threshold = (u64)NSEC_PER_USEC * |
| 835 | nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]); |
| 836 | |
| 837 | if (!err) { |
| 838 | sch_tree_unlock(sch); |
| 839 | err = fq_resize(sch, fq_log); |
| 840 | sch_tree_lock(sch); |
| 841 | } |
| 842 | while (sch->q.qlen > sch->limit) { |
| 843 | struct sk_buff *skb = fq_dequeue(sch); |
| 844 | |
| 845 | if (!skb) |
| 846 | break; |
| 847 | drop_len += qdisc_pkt_len(skb); |
| 848 | rtnl_kfree_skbs(skb, skb); |
| 849 | drop_count++; |
| 850 | } |
| 851 | qdisc_tree_reduce_backlog(sch, drop_count, drop_len); |
| 852 | |
| 853 | sch_tree_unlock(sch); |
| 854 | return err; |
| 855 | } |
| 856 | |
| 857 | static void fq_destroy(struct Qdisc *sch) |
| 858 | { |
| 859 | struct fq_sched_data *q = qdisc_priv(sch); |
| 860 | |
| 861 | fq_reset(sch); |
| 862 | fq_free(q->fq_root); |
| 863 | qdisc_watchdog_cancel(&q->watchdog); |
| 864 | } |
| 865 | |
| 866 | static int fq_init(struct Qdisc *sch, struct nlattr *opt, |
| 867 | struct netlink_ext_ack *extack) |
| 868 | { |
| 869 | struct fq_sched_data *q = qdisc_priv(sch); |
| 870 | int err; |
| 871 | |
| 872 | sch->limit = 10000; |
| 873 | q->flow_plimit = 100; |
| 874 | q->quantum = 2 * psched_mtu(qdisc_dev(sch)); |
| 875 | q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch)); |
| 876 | q->flow_refill_delay = msecs_to_jiffies(40); |
| 877 | q->flow_max_rate = ~0UL; |
| 878 | q->time_next_delayed_flow = ~0ULL; |
| 879 | q->rate_enable = 1; |
| 880 | q->new_flows.first = NULL; |
| 881 | q->old_flows.first = NULL; |
| 882 | q->delayed = RB_ROOT; |
| 883 | q->fq_root = NULL; |
| 884 | q->fq_trees_log = ilog2(1024); |
| 885 | q->orphan_mask = 1024 - 1; |
| 886 | q->low_rate_threshold = 550000 / 8; |
| 887 | |
| 888 | /* Default ce_threshold of 4294 seconds */ |
| 889 | q->ce_threshold = (u64)NSEC_PER_USEC * ~0U; |
| 890 | |
| 891 | qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC); |
| 892 | |
| 893 | if (opt) |
| 894 | err = fq_change(sch, opt, extack); |
| 895 | else |
| 896 | err = fq_resize(sch, q->fq_trees_log); |
| 897 | |
| 898 | return err; |
| 899 | } |
| 900 | |
| 901 | static int fq_dump(struct Qdisc *sch, struct sk_buff *skb) |
| 902 | { |
| 903 | struct fq_sched_data *q = qdisc_priv(sch); |
| 904 | u64 ce_threshold = q->ce_threshold; |
| 905 | struct nlattr *opts; |
| 906 | |
| 907 | opts = nla_nest_start_noflag(skb, TCA_OPTIONS); |
| 908 | if (opts == NULL) |
| 909 | goto nla_put_failure; |
| 910 | |
| 911 | /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */ |
| 912 | |
| 913 | do_div(ce_threshold, NSEC_PER_USEC); |
| 914 | |
| 915 | if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) || |
| 916 | nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) || |
| 917 | nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) || |
| 918 | nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) || |
| 919 | nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) || |
| 920 | nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, |
| 921 | min_t(unsigned long, q->flow_max_rate, ~0U)) || |
| 922 | nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY, |
| 923 | jiffies_to_usecs(q->flow_refill_delay)) || |
| 924 | nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) || |
| 925 | nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD, |
| 926 | q->low_rate_threshold) || |
| 927 | nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) || |
| 928 | nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log)) |
| 929 | goto nla_put_failure; |
| 930 | |
| 931 | return nla_nest_end(skb, opts); |
| 932 | |
| 933 | nla_put_failure: |
| 934 | return -1; |
| 935 | } |
| 936 | |
| 937 | static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d) |
| 938 | { |
| 939 | struct fq_sched_data *q = qdisc_priv(sch); |
| 940 | struct tc_fq_qd_stats st; |
| 941 | |
| 942 | sch_tree_lock(sch); |
| 943 | |
| 944 | st.gc_flows = q->stat_gc_flows; |
| 945 | st.highprio_packets = q->stat_internal_packets; |
| 946 | st.tcp_retrans = 0; |
| 947 | st.throttled = q->stat_throttled; |
| 948 | st.flows_plimit = q->stat_flows_plimit; |
| 949 | st.pkts_too_long = q->stat_pkts_too_long; |
| 950 | st.allocation_errors = q->stat_allocation_errors; |
| 951 | st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns(); |
| 952 | st.flows = q->flows; |
| 953 | st.inactive_flows = q->inactive_flows; |
| 954 | st.throttled_flows = q->throttled_flows; |
| 955 | st.unthrottle_latency_ns = min_t(unsigned long, |
| 956 | q->unthrottle_latency_ns, ~0U); |
| 957 | st.ce_mark = q->stat_ce_mark; |
| 958 | sch_tree_unlock(sch); |
| 959 | |
| 960 | return gnet_stats_copy_app(d, &st, sizeof(st)); |
| 961 | } |
| 962 | |
| 963 | static struct Qdisc_ops fq_qdisc_ops __read_mostly = { |
| 964 | .id = "fq", |
| 965 | .priv_size = sizeof(struct fq_sched_data), |
| 966 | |
| 967 | .enqueue = fq_enqueue, |
| 968 | .dequeue = fq_dequeue, |
| 969 | .peek = qdisc_peek_dequeued, |
| 970 | .init = fq_init, |
| 971 | .reset = fq_reset, |
| 972 | .destroy = fq_destroy, |
| 973 | .change = fq_change, |
| 974 | .dump = fq_dump, |
| 975 | .dump_stats = fq_dump_stats, |
| 976 | .owner = THIS_MODULE, |
| 977 | }; |
| 978 | |
| 979 | static int __init fq_module_init(void) |
| 980 | { |
| 981 | int ret; |
| 982 | |
| 983 | fq_flow_cachep = kmem_cache_create("fq_flow_cache", |
| 984 | sizeof(struct fq_flow), |
| 985 | 0, 0, NULL); |
| 986 | if (!fq_flow_cachep) |
| 987 | return -ENOMEM; |
| 988 | |
| 989 | ret = register_qdisc(&fq_qdisc_ops); |
| 990 | if (ret) |
| 991 | kmem_cache_destroy(fq_flow_cachep); |
| 992 | return ret; |
| 993 | } |
| 994 | |
| 995 | static void __exit fq_module_exit(void) |
| 996 | { |
| 997 | unregister_qdisc(&fq_qdisc_ops); |
| 998 | kmem_cache_destroy(fq_flow_cachep); |
| 999 | } |
| 1000 | |
| 1001 | module_init(fq_module_init) |
| 1002 | module_exit(fq_module_exit) |
| 1003 | MODULE_AUTHOR("Eric Dumazet"); |
| 1004 | MODULE_LICENSE("GPL"); |