blob: db0e256dededf53a54e77a3f120488f56e3b0f02 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001From 32221046a302245a63d5e00d16cf3008b5b31255 Mon Sep 17 00:00:00 2001
2From: Steve Cornelius <steve.cornelius@freescale.com>
3Date: Tue, 23 Jul 2013 20:47:32 -0700
4Subject: [PATCH] MLKU-25-3 crypto: caam - add Secure Memory support
5MIME-Version: 1.0
6Content-Type: text/plain; charset=UTF-8
7Content-Transfer-Encoding: 8bit
8
9This is a squash of the following i.MX BSP commits
10(rel_imx_4.19.35_1.1.0_rc2)
11
121. ae8175a3f1be ("MLK-9710-10 Add CCM defs for FIFO_STORE instruction")
132. 9512280d066b ("MLK-9769-11 Add SM register defs, and expanded driver-private storage.")
143. a9dc44de8150 ("MLK-9769-10 Add Blob command bitdefs.")
154. 8f6a17b41917 ("ENGR00289885 [iMX6Q] Add Secure Memory and SECVIO support.")
165. c7d4f9db1077 ("MLK-9710-11 Add internal key cover and external blob export/import to prototype SM-API")
176. 568e449edfca ("MLK-9710-12 Adapt sm_test as a black-key handling example")
187. f42f12d9cb19 ("MLK-9710-13 Correct size in BLOB_OVERHEAD definition")
198. 022fc2b33f57 ("MLK-9710-14 Un-pad cache sizes for blob export/import")
209. 8d3e8c3c4dc1 ("MLK-9710-15 Correct size of padded key buffers")
2110. 997fb2ff88ec ("MLK-9710-5 Unregister Secure Memory platform device upon shutdown")
2211. 5316249198ee ("MLK-10897-1 ARM: imx7d: Add CAAM support for i.mx7d")
2312. 07566f42a4ec ("MLK-11103 Missing register in Secure memory configuration v1")
2413. 3004636304e1 ("MLK-12302 caam: Secure Memory platform device creation crashes")
2514. 0e6ed5a819f7 ("MLK-13779 crypto: caam - initialize kslock spinlock")
2615. b1254b6b5f52 ("Add missing NULL checks in CAAM sm")
2716. 61f57509bc9a ("MLK-17992: caam: sm: Fix compilation warnings")
2817. 41cf3d4c580c ("MLK-15473-1: crypto: caam: Add CAAM driver support for iMX8 soc family")
2918. bb8742481209 ("MLK-17253-1: crypto: caam: Fix computation of SM pages addresses")
3019. 308796dfae3b ("MLK-17253-2: crypto: caam: Use correct memory function for Secure Memory")
3120. ba2cb6b5fb10 ("MLK-17732-2: SM store: Support iMX8QX and iMX8QM")
3221. de710d376af6 ("MLK-17674-1: sm_store remove CONFIG_OF")
3322. cfcae647434e ("MLK-17674-2: CAAM SM : get base address from device tree")
3423. f49ebbd5eefa ("MLK-17992: caam: sm: Fix compilation warnings")
3524. 345ead4338b9 ("MLK-17841: crypto: caam: Correct bugs in Secure Memory")
3625. c17811f3fffc ("MLK-18082: crypto: caam: sm: Fix encap/decap function to handle errors")
3726. 41bcba1d4c9b ("MLK-18082: crypto: caam: sm: Fix descriptor running functions")
3827. b7385ab94784 ("MLK-20204: drivers: crypto: caam: sm: Remove deadcode")
3928. 1d749430cb63 ("MLK-20204: drivers: crypto: caam: sm: test: Dealloc keyslot properly")
4029. 6a5c2d9d358f ("crypto: caam - lower SM test verbosity")
4130. 1a6bc92c0c87 ("MLK-21617: crypto: caam - update SM test error handling")
42
43Signed-off-by: Dan Douglass <dan.douglass@nxp.com>
44Signed-off-by: Victoria Milhoan <vicki.milhoan@freescale.com>
45Signed-off-by: Steve Cornelius <steve.cornelius@nxp.com>
46Signed-off-by: Octavian Purdila <octavian.purdila@nxp.com>
47Signed-off-by: Radu Solea <radu.solea@nxp.com>
48Signed-off-by: Franck LENORMAND <franck.lenormand@nxp.com>
49Signed-off-by: Aymen Sghaier <aymen.sghaier@nxp.com>
50Signed-off-by: Silvano di Ninno <silvano.dininno@nxp.com>
51
52that have been reworked:
53
544.
55-make SM depend on JR
56-enable SM, SECVIO only on i.MX SoCs
57-fix resource leak - add off_node_put() where needed
58
59Split commit in three:
601 - SNVS/SECVIO driver
612 - Secure Memory driver
623 - DT changes
63
6411.
65Clock handling dropped - logic already upstream.
66
6717.
68Keep only Secure Memory related changes.
69Changes related to page 0 registers have been added previously.
70Other changes are dropped.
71
7221.
73Always use first jr in ctrlpriv->jr[] array to access registers
74in page 0 (aliased in jr page), irrespective of SCU presence.
75
76Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
77---
78 drivers/crypto/caam/Kconfig | 30 +
79 drivers/crypto/caam/Makefile | 2 +
80 drivers/crypto/caam/ctrl.c | 37 ++
81 drivers/crypto/caam/desc.h | 21 +
82 drivers/crypto/caam/intern.h | 4 +
83 drivers/crypto/caam/regs.h | 158 ++++-
84 drivers/crypto/caam/sm.h | 127 ++++
85 drivers/crypto/caam/sm_store.c | 1332 ++++++++++++++++++++++++++++++++++++++++
86 drivers/crypto/caam/sm_test.c | 571 +++++++++++++++++
87 9 files changed, 2279 insertions(+), 3 deletions(-)
88 create mode 100644 drivers/crypto/caam/sm.h
89 create mode 100644 drivers/crypto/caam/sm_store.c
90 create mode 100644 drivers/crypto/caam/sm_test.c
91
92--- a/drivers/crypto/caam/Kconfig
93+++ b/drivers/crypto/caam/Kconfig
94@@ -156,6 +156,36 @@ config CRYPTO_DEV_FSL_CAAM_RNG_TEST
95 caam RNG. This test is several minutes long and executes
96 just before the RNG is registered with the hw_random API.
97
98+config CRYPTO_DEV_FSL_CAAM_SM
99+ tristate "CAAM Secure Memory / Keystore API (EXPERIMENTAL)"
100+ help
101+ Enables use of a prototype kernel-level Keystore API with CAAM
102+ Secure Memory for insertion/extraction of bus-protected secrets.
103+
104+config CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE
105+ int "Size of each keystore slot in Secure Memory"
106+ depends on CRYPTO_DEV_FSL_CAAM_SM
107+ range 5 9
108+ default 7
109+ help
110+ Select size of allocation units to divide Secure Memory pages into
111+ (the size of a "slot" as referenced inside the API code).
112+ Established as powers of two.
113+ Examples:
114+ 5 => 32 bytes
115+ 6 => 64 bytes
116+ 7 => 128 bytes
117+ 8 => 256 bytes
118+ 9 => 512 bytes
119+
120+config CRYPTO_DEV_FSL_CAAM_SM_TEST
121+ tristate "CAAM Secure Memory - Keystore Test/Example (EXPERIMENTAL)"
122+ depends on CRYPTO_DEV_FSL_CAAM_SM
123+ help
124+ Example thread to exercise the Keystore API and to verify that
125+ stored and recovered secrets can be used for general purpose
126+ encryption/decryption.
127+
128 config CRYPTO_DEV_FSL_CAAM_SECVIO
129 tristate "CAAM/SNVS Security Violation Handler (EXPERIMENTAL)"
130 help
131--- a/drivers/crypto/caam/Makefile
132+++ b/drivers/crypto/caam/Makefile
133@@ -21,6 +21,8 @@ caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRY
134 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API) += caamhash.o
135 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API) += caamrng.o
136 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_PKC_API) += caampkc.o pkc_desc.o
137+caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM) += sm_store.o
138+caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST) += sm_test.o
139 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO) += secvio.o
140
141 caam-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API_QI) += qi.o
142--- a/drivers/crypto/caam/ctrl.c
143+++ b/drivers/crypto/caam/ctrl.c
144@@ -17,6 +17,7 @@
145 #include "jr.h"
146 #include "desc_constr.h"
147 #include "ctrl.h"
148+#include "sm.h"
149
150 bool caam_dpaa2;
151 EXPORT_SYMBOL(caam_dpaa2);
152@@ -573,6 +574,7 @@ static int caam_probe(struct platform_de
153 const struct soc_device_attribute *imx_soc_match;
154 struct device *dev;
155 struct device_node *nprop, *np;
156+ struct resource res_regs;
157 struct caam_ctrl __iomem *ctrl;
158 struct caam_drv_private *ctrlpriv;
159 struct caam_perfmon __iomem *perfmon;
160@@ -719,9 +721,44 @@ iomap_ctrl:
161 BLOCK_OFFSET * DECO_BLOCK_NUMBER
162 );
163
164+ /* Only i.MX SoCs have sm */
165+ if (!imx_soc_match)
166+ goto mc_fw;
167+
168+ /* Get CAAM-SM node and of_iomap() and save */
169+ np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm");
170+ if (!np)
171+ return -ENODEV;
172+
173+ /* Get CAAM SM registers base address from device tree */
174+ ret = of_address_to_resource(np, 0, &res_regs);
175+ if (ret) {
176+ dev_err(dev, "failed to retrieve registers base from device tree\n");
177+ of_node_put(np);
178+ return -ENODEV;
179+ }
180+
181+ ctrlpriv->sm_phy = res_regs.start;
182+ ctrlpriv->sm_base = devm_ioremap_resource(dev, &res_regs);
183+ if (IS_ERR(ctrlpriv->sm_base)) {
184+ of_node_put(np);
185+ return PTR_ERR(ctrlpriv->sm_base);
186+ }
187+
188+ if (!of_machine_is_compatible("fsl,imx8mn") &&
189+ !of_machine_is_compatible("fsl,imx8mm") &&
190+ !of_machine_is_compatible("fsl,imx8mq") &&
191+ !of_machine_is_compatible("fsl,imx8qm") &&
192+ !of_machine_is_compatible("fsl,imx8qxp"))
193+ ctrlpriv->sm_size = resource_size(&res_regs);
194+ else
195+ ctrlpriv->sm_size = PG_SIZE_64K;
196+ of_node_put(np);
197+
198 if (!reg_access)
199 goto set_dma_mask;
200
201+mc_fw:
202 /*
203 * Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
204 * long pointers in master configuration register.
205--- a/drivers/crypto/caam/desc.h
206+++ b/drivers/crypto/caam/desc.h
207@@ -403,6 +403,10 @@
208 #define FIFOST_TYPE_PKHA_N (0x08 << FIFOST_TYPE_SHIFT)
209 #define FIFOST_TYPE_PKHA_A (0x0c << FIFOST_TYPE_SHIFT)
210 #define FIFOST_TYPE_PKHA_B (0x0d << FIFOST_TYPE_SHIFT)
211+#define FIFOST_TYPE_AF_SBOX_CCM_JKEK (0x10 << FIFOST_TYPE_SHIFT)
212+#define FIFOST_TYPE_AF_SBOX_CCM_TKEK (0x11 << FIFOST_TYPE_SHIFT)
213+#define FIFOST_TYPE_KEY_CCM_JKEK (0x14 << FIFOST_TYPE_SHIFT)
214+#define FIFOST_TYPE_KEY_CCM_TKEK (0x15 << FIFOST_TYPE_SHIFT)
215 #define FIFOST_TYPE_AF_SBOX_JKEK (0x20 << FIFOST_TYPE_SHIFT)
216 #define FIFOST_TYPE_AF_SBOX_TKEK (0x21 << FIFOST_TYPE_SHIFT)
217 #define FIFOST_TYPE_PKHA_E_JKEK (0x22 << FIFOST_TYPE_SHIFT)
218@@ -1136,6 +1140,23 @@
219 #define OP_PCL_PKPROT_ECC 0x0002
220 #define OP_PCL_PKPROT_F2M 0x0001
221
222+/* Blob protocol protinfo bits */
223+#define OP_PCL_BLOB_TK 0x0200
224+#define OP_PCL_BLOB_EKT 0x0100
225+
226+#define OP_PCL_BLOB_K2KR_MEM 0x0000
227+#define OP_PCL_BLOB_K2KR_C1KR 0x0010
228+#define OP_PCL_BLOB_K2KR_C2KR 0x0030
229+#define OP_PCL_BLOB_K2KR_AFHAS 0x0050
230+#define OP_PCL_BLOB_K2KR_C2KR_SPLIT 0x0070
231+
232+#define OP_PCL_BLOB_PTXT_SECMEM 0x0008
233+#define OP_PCL_BLOB_BLACK 0x0004
234+
235+#define OP_PCL_BLOB_FMT_NORMAL 0x0000
236+#define OP_PCL_BLOB_FMT_MSTR 0x0002
237+#define OP_PCL_BLOB_FMT_TEST 0x0003
238+
239 /* For non-protocol/alg-only op commands */
240 #define OP_ALG_TYPE_SHIFT 24
241 #define OP_ALG_TYPE_MASK (0x7 << OP_ALG_TYPE_SHIFT)
242--- a/drivers/crypto/caam/intern.h
243+++ b/drivers/crypto/caam/intern.h
244@@ -66,6 +66,7 @@ struct caam_drv_private_jr {
245 * Driver-private storage for a single CAAM block instance
246 */
247 struct caam_drv_private {
248+ struct device *smdev;
249
250 /* Physical-presence section */
251 struct caam_ctrl __iomem *ctrl; /* controller region */
252@@ -73,6 +74,9 @@ struct caam_drv_private {
253 struct caam_assurance __iomem *assure;
254 struct caam_queue_if __iomem *qi; /* QI control region */
255 struct caam_job_ring __iomem *jr[4]; /* JobR's register space */
256+ dma_addr_t __iomem *sm_base; /* Secure memory storage base */
257+ phys_addr_t sm_phy; /* Secure memory storage physical */
258+ u32 sm_size;
259
260 struct iommu_domain *domain;
261
262--- a/drivers/crypto/caam/regs.h
263+++ b/drivers/crypto/caam/regs.h
264@@ -385,6 +385,12 @@ struct version_regs {
265 #define CHA_VER_VID_MD_LP512 0x1ull
266 #define CHA_VER_VID_MD_HP 0x2ull
267
268+/*
269+ * caam_perfmon - Performance Monitor/Secure Memory Status/
270+ * CAAM Global Status/Component Version IDs
271+ *
272+ * Spans f00-fff wherever instantiated
273+ */
274 struct sec_vid {
275 u16 ip_id;
276 u8 maj_rev;
277@@ -415,17 +421,22 @@ struct caam_perfmon {
278 #define CTPR_MS_PG_SZ_SHIFT 4
279 u32 comp_parms_ms; /* CTPR - Compile Parameters Register */
280 u32 comp_parms_ls; /* CTPR - Compile Parameters Register */
281- u64 rsvd1[2];
282+ /* Secure Memory State Visibility */
283+ u32 rsvd1;
284+ u32 smstatus; /* Secure memory status */
285+ u32 rsvd2;
286+ u32 smpartown; /* Secure memory partition owner */
287
288 /* CAAM Global Status fc0-fdf */
289 u64 faultaddr; /* FAR - Fault Address */
290 u32 faultliodn; /* FALR - Fault Address LIODN */
291 u32 faultdetail; /* FADR - Fault Addr Detail */
292- u32 rsvd2;
293 #define CSTA_PLEND BIT(10)
294 #define CSTA_ALT_PLEND BIT(18)
295+ u32 rsvd3;
296 u32 status; /* CSTA - CAAM Status */
297- u64 rsvd3;
298+ u32 smpart; /* Secure Memory Partition Parameters */
299+ u32 smvid; /* Secure Memory Version ID */
300
301 /* Component Instantiation Parameters fe0-fff */
302 u32 rtic_id; /* RVID - RTIC Version ID */
303@@ -444,6 +455,62 @@ struct caam_perfmon {
304 u32 caam_id_ls; /* CAAMVID - CAAM Version ID LS */
305 };
306
307+#define SMSTATUS_PART_SHIFT 28
308+#define SMSTATUS_PART_MASK (0xf << SMSTATUS_PART_SHIFT)
309+#define SMSTATUS_PAGE_SHIFT 16
310+#define SMSTATUS_PAGE_MASK (0x7ff << SMSTATUS_PAGE_SHIFT)
311+#define SMSTATUS_MID_SHIFT 8
312+#define SMSTATUS_MID_MASK (0x3f << SMSTATUS_MID_SHIFT)
313+#define SMSTATUS_ACCERR_SHIFT 4
314+#define SMSTATUS_ACCERR_MASK (0xf << SMSTATUS_ACCERR_SHIFT)
315+#define SMSTATUS_ACCERR_NONE 0
316+#define SMSTATUS_ACCERR_ALLOC 1 /* Page not allocated */
317+#define SMSTATUS_ACCESS_ID 2 /* Not granted by ID */
318+#define SMSTATUS_ACCESS_WRITE 3 /* Writes not allowed */
319+#define SMSTATUS_ACCESS_READ 4 /* Reads not allowed */
320+#define SMSTATUS_ACCESS_NONKEY 6 /* Non-key reads not allowed */
321+#define SMSTATUS_ACCESS_BLOB 9 /* Blob access not allowed */
322+#define SMSTATUS_ACCESS_DESCB 10 /* Descriptor Blob access spans pages */
323+#define SMSTATUS_ACCESS_NON_SM 11 /* Outside Secure Memory range */
324+#define SMSTATUS_ACCESS_XPAGE 12 /* Access crosses pages */
325+#define SMSTATUS_ACCESS_INITPG 13 /* Page still initializing */
326+#define SMSTATUS_STATE_SHIFT 0
327+#define SMSTATUS_STATE_MASK (0xf << SMSTATUS_STATE_SHIFT)
328+#define SMSTATUS_STATE_RESET 0
329+#define SMSTATUS_STATE_INIT 1
330+#define SMSTATUS_STATE_NORMAL 2
331+#define SMSTATUS_STATE_FAIL 3
332+
333+/* up to 15 rings, 2 bits shifted by ring number */
334+#define SMPARTOWN_RING_SHIFT 2
335+#define SMPARTOWN_RING_MASK 3
336+#define SMPARTOWN_AVAILABLE 0
337+#define SMPARTOWN_NOEXIST 1
338+#define SMPARTOWN_UNAVAILABLE 2
339+#define SMPARTOWN_OURS 3
340+
341+/* Maximum number of pages possible */
342+#define SMPART_MAX_NUMPG_SHIFT 16
343+#define SMPART_MAX_NUMPG_MASK (0x3f << SMPART_MAX_NUMPG_SHIFT)
344+
345+/* Maximum partition number */
346+#define SMPART_MAX_PNUM_SHIFT 12
347+#define SMPART_MAX_PNUM_MASK (0xf << SMPART_MAX_PNUM_SHIFT)
348+
349+/* Highest possible page number */
350+#define SMPART_MAX_PG_SHIFT 0
351+#define SMPART_MAX_PG_MASK (0x3f << SMPART_MAX_PG_SHIFT)
352+
353+/* Max size of a page */
354+#define SMVID_PG_SIZE_SHIFT 16
355+#define SMVID_PG_SIZE_MASK (0x7 << SMVID_PG_SIZE_SHIFT)
356+
357+/* Major/Minor Version ID */
358+#define SMVID_MAJ_VERS_SHIFT 8
359+#define SMVID_MAJ_VERS (0xf << SMVID_MAJ_VERS_SHIFT)
360+#define SMVID_MIN_VERS_SHIFT 0
361+#define SMVID_MIN_VERS (0xf << SMVID_MIN_VERS_SHIFT)
362+
363 /* LIODN programming for DMA configuration */
364 #define MSTRID_LOCK_LIODN 0x80000000
365 #define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */
366@@ -648,6 +715,35 @@ struct caam_ctrl {
367 #define JRSTART_JR2_START 0x00000004 /* Start Job ring 2 */
368 #define JRSTART_JR3_START 0x00000008 /* Start Job ring 3 */
369
370+/* Secure Memory Configuration - if you have it */
371+/* Secure Memory Register Offset from JR Base Reg*/
372+#define SM_V1_OFFSET 0x0f4
373+#define SM_V2_OFFSET 0xa00
374+
375+/* Minimum SM Version ID requiring v2 SM register mapping */
376+#define SMVID_V2 0x20105
377+
378+struct caam_secure_mem_v1 {
379+ u32 sm_cmd; /* SMCJRx - Secure memory command */
380+ u32 rsvd1;
381+ u32 sm_status; /* SMCSJRx - Secure memory status */
382+ u32 rsvd2;
383+
384+ u32 sm_perm; /* SMAPJRx - Secure memory access perms */
385+ u32 sm_group2; /* SMAP2JRx - Secure memory access group 2 */
386+ u32 sm_group1; /* SMAP1JRx - Secure memory access group 1 */
387+};
388+
389+struct caam_secure_mem_v2 {
390+ u32 sm_perm; /* SMAPJRx - Secure memory access perms */
391+ u32 sm_group2; /* SMAP2JRx - Secure memory access group 2 */
392+ u32 sm_group1; /* SMAP1JRx - Secure memory access group 1 */
393+ u32 rsvd1[118];
394+ u32 sm_cmd; /* SMCJRx - Secure memory command */
395+ u32 rsvd2;
396+ u32 sm_status; /* SMCSJRx - Secure memory status */
397+};
398+
399 /*
400 * caam_job_ring - direct job ring setup
401 * 1-4 possible per instantiation, base + 1000/2000/3000/4000
402@@ -818,6 +914,62 @@ struct caam_job_ring {
403
404 #define JRCR_RESET 0x01
405
406+/* secure memory command */
407+#define SMC_PAGE_SHIFT 16
408+#define SMC_PAGE_MASK (0xffff << SMC_PAGE_SHIFT)
409+#define SMC_PART_SHIFT 8
410+#define SMC_PART_MASK (0x0f << SMC_PART_SHIFT)
411+#define SMC_CMD_SHIFT 0
412+#define SMC_CMD_MASK (0x0f << SMC_CMD_SHIFT)
413+
414+#define SMC_CMD_ALLOC_PAGE 0x01 /* allocate page to this partition */
415+#define SMC_CMD_DEALLOC_PAGE 0x02 /* deallocate page from partition */
416+#define SMC_CMD_DEALLOC_PART 0x03 /* deallocate partition */
417+#define SMC_CMD_PAGE_INQUIRY 0x05 /* find partition associate with page */
418+
419+/* secure memory (command) status */
420+#define SMCS_PAGE_SHIFT 16
421+#define SMCS_PAGE_MASK (0x0fff << SMCS_PAGE_SHIFT)
422+#define SMCS_CMDERR_SHIFT 14
423+#define SMCS_CMDERR_MASK (3 << SMCS_CMDERR_SHIFT)
424+#define SMCS_ALCERR_SHIFT 12
425+#define SMCS_ALCERR_MASK (3 << SMCS_ALCERR_SHIFT)
426+#define SMCS_PGOWN_SHIFT 6
427+#define SMCS_PGWON_MASK (3 << SMCS_PGOWN_SHIFT)
428+#define SMCS_PART_SHIFT 0
429+#define SMCS_PART_MASK (0xf << SMCS_PART_SHIFT)
430+
431+#define SMCS_CMDERR_NONE 0
432+#define SMCS_CMDERR_INCOMP 1 /* Command not yet complete */
433+#define SMCS_CMDERR_SECFAIL 2 /* Security failure occurred */
434+#define SMCS_CMDERR_OVERFLOW 3 /* Command overflow */
435+
436+#define SMCS_ALCERR_NONE 0
437+#define SMCS_ALCERR_PSPERR 1 /* Partion marked PSP (dealloc only) */
438+#define SMCS_ALCERR_PAGEAVAIL 2 /* Page not available */
439+#define SMCS_ALCERR_PARTOWN 3 /* Partition ownership error */
440+
441+#define SMCS_PGOWN_AVAIL 0 /* Page is available */
442+#define SMCS_PGOWN_NOEXIST 1 /* Page initializing or nonexistent */
443+#define SMCS_PGOWN_NOOWN 2 /* Page owned by another processor */
444+#define SMCS_PGOWN_OWNED 3 /* Page belongs to this processor */
445+
446+/* secure memory access permissions */
447+#define SMCS_PERM_KEYMOD_SHIFT 16
448+#define SMCA_PERM_KEYMOD_MASK (0xff << SMCS_PERM_KEYMOD_SHIFT)
449+#define SMCA_PERM_CSP_ZERO 0x8000 /* Zero when deallocated or released */
450+#define SMCA_PERM_PSP_LOCK 0x4000 /* Part./pages can't be deallocated */
451+#define SMCA_PERM_PERM_LOCK 0x2000 /* Lock permissions */
452+#define SMCA_PERM_GRP_LOCK 0x1000 /* Lock access groups */
453+#define SMCA_PERM_RINGID_SHIFT 10
454+#define SMCA_PERM_RINGID_MASK (3 << SMCA_PERM_RINGID_SHIFT)
455+#define SMCA_PERM_G2_BLOB 0x0080 /* Group 2 blob import/export */
456+#define SMCA_PERM_G2_WRITE 0x0020 /* Group 2 write */
457+#define SMCA_PERM_G2_READ 0x0010 /* Group 2 read */
458+#define SMCA_PERM_G1_BLOB 0x0008 /* Group 1... */
459+#define SMCA_PERM_G1_WRITE 0x0002
460+#define SMCA_PERM_G1_READ 0x0001
461+
462 /*
463 * caam_assurance - Assurance Controller View
464 * base + 0x6000 padded out to 0x1000
465--- /dev/null
466+++ b/drivers/crypto/caam/sm.h
467@@ -0,0 +1,127 @@
468+/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
469+/*
470+ * CAAM Secure Memory/Keywrap API Definitions
471+ *
472+ * Copyright 2008-2015 Freescale Semiconductor, Inc.
473+ * Copyright 2016-2019 NXP
474+ */
475+
476+#ifndef SM_H
477+#define SM_H
478+
479+
480+/* Storage access permissions */
481+#define SM_PERM_READ 0x01
482+#define SM_PERM_WRITE 0x02
483+#define SM_PERM_BLOB 0x03
484+
485+/* Define treatment of secure memory vs. general memory blobs */
486+#define SM_SECMEM 0
487+#define SM_GENMEM 1
488+
489+/* Define treatment of red/black keys */
490+#define RED_KEY 0
491+#define BLACK_KEY 1
492+
493+/* Define key encryption/covering options */
494+#define KEY_COVER_ECB 0 /* cover key in AES-ECB */
495+#define KEY_COVER_CCM 1 /* cover key with AES-CCM */
496+
497+/*
498+ * Round a key size up to an AES blocksize boundary so to allow for
499+ * padding out to a full block
500+ */
501+#define AES_BLOCK_PAD(x) ((x % 16) ? ((x >> 4) + 1) << 4 : x)
502+
503+/* Define space required for BKEK + MAC tag storage in any blob */
504+#define BLOB_OVERHEAD (32 + 16)
505+
506+/* Keystore maintenance functions */
507+void sm_init_keystore(struct device *dev);
508+u32 sm_detect_keystore_units(struct device *dev);
509+int sm_establish_keystore(struct device *dev, u32 unit);
510+void sm_release_keystore(struct device *dev, u32 unit);
511+void caam_sm_shutdown(struct platform_device *pdev);
512+int caam_sm_example_init(struct platform_device *pdev);
513+
514+/* Keystore accessor functions */
515+extern int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size,
516+ u32 *slot);
517+extern int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot);
518+extern int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot,
519+ const u8 *key_data, u32 key_length);
520+extern int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot,
521+ u32 key_length, u8 *key_data);
522+extern int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot,
523+ u16 key_length, u8 keyauth);
524+extern int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot,
525+ u8 keycolor, u8 keyauth, u8 *outbuf,
526+ u16 keylen, u8 *keymod);
527+extern int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot,
528+ u8 keycolor, u8 keyauth, u8 *inbuf,
529+ u16 keylen, u8 *keymod);
530+
531+/* Prior functions from legacy API, deprecated */
532+extern int sm_keystore_slot_encapsulate(struct device *dev, u32 unit,
533+ u32 inslot, u32 outslot, u16 secretlen,
534+ u8 *keymod, u16 keymodlen);
535+extern int sm_keystore_slot_decapsulate(struct device *dev, u32 unit,
536+ u32 inslot, u32 outslot, u16 secretlen,
537+ u8 *keymod, u16 keymodlen);
538+
539+/* Data structure to hold per-slot information */
540+struct keystore_data_slot_info {
541+ u8 allocated; /* Track slot assignments */
542+ u32 key_length; /* Size of the key */
543+};
544+
545+/* Data structure to hold keystore information */
546+struct keystore_data {
547+ void *base_address; /* Virtual base of secure memory pages */
548+ void *phys_address; /* Physical base of secure memory pages */
549+ u32 slot_count; /* Number of slots in the keystore */
550+ struct keystore_data_slot_info *slot; /* Per-slot information */
551+};
552+
553+/* store the detected attributes of a secure memory page */
554+struct sm_page_descriptor {
555+ u16 phys_pagenum; /* may be discontiguous */
556+ u16 own_part; /* Owning partition */
557+ void *pg_base; /* Calculated virtual address */
558+ void *pg_phys; /* Calculated physical address */
559+ struct keystore_data *ksdata;
560+};
561+
562+struct caam_drv_private_sm {
563+ struct device *parentdev; /* this ends up as the controller */
564+ struct device *smringdev; /* ring that owns this instance */
565+ struct platform_device *sm_pdev; /* Secure Memory platform device */
566+ spinlock_t kslock ____cacheline_aligned;
567+
568+ /* SM Register offset from JR base address */
569+ u32 sm_reg_offset;
570+
571+ /* Default parameters for geometry */
572+ u32 max_pages; /* maximum pages this instance can support */
573+ u32 top_partition; /* highest partition number in this instance */
574+ u32 top_page; /* highest page number in this instance */
575+ u32 page_size; /* page size */
576+ u32 slot_size; /* selected size of each storage block */
577+
578+ /* Partition/Page Allocation Map */
579+ u32 localpages; /* Number of pages we can access */
580+ struct sm_page_descriptor *pagedesc; /* Allocated per-page */
581+
582+ /* Installed handlers for keystore access */
583+ int (*data_init)(struct device *dev, u32 unit);
584+ void (*data_cleanup)(struct device *dev, u32 unit);
585+ int (*slot_alloc)(struct device *dev, u32 unit, u32 size, u32 *slot);
586+ int (*slot_dealloc)(struct device *dev, u32 unit, u32 slot);
587+ void *(*slot_get_address)(struct device *dev, u32 unit, u32 handle);
588+ void *(*slot_get_physical)(struct device *dev, u32 unit, u32 handle);
589+ u32 (*slot_get_base)(struct device *dev, u32 unit, u32 handle);
590+ u32 (*slot_get_offset)(struct device *dev, u32 unit, u32 handle);
591+ u32 (*slot_get_slot_size)(struct device *dev, u32 unit, u32 handle);
592+};
593+
594+#endif /* SM_H */
595--- /dev/null
596+++ b/drivers/crypto/caam/sm_store.c
597@@ -0,0 +1,1332 @@
598+// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
599+/*
600+ * CAAM Secure Memory Storage Interface
601+ *
602+ * Copyright 2008-2015 Freescale Semiconductor, Inc.
603+ * Copyright 2016-2019 NXP
604+ *
605+ * Loosely based on the SHW Keystore API for SCC/SCC2
606+ * Experimental implementation and NOT intended for upstream use. Expect
607+ * this interface to be amended significantly in the future once it becomes
608+ * integrated into live applications.
609+ *
610+ * Known issues:
611+ *
612+ * - Executes one instance of an secure memory "driver". This is tied to the
613+ * fact that job rings can't run as standalone instances in the present
614+ * configuration.
615+ *
616+ * - It does not expose a userspace interface. The value of a userspace
617+ * interface for access to secrets is a point for further architectural
618+ * discussion.
619+ *
620+ * - Partition/permission management is not part of this interface. It
621+ * depends on some level of "knowledge" agreed upon between bootloader,
622+ * provisioning applications, and OS-hosted software (which uses this
623+ * driver).
624+ *
625+ * - No means of identifying the location or purpose of secrets managed by
626+ * this interface exists; "slot location" and format of a given secret
627+ * needs to be agreed upon between bootloader, provisioner, and OS-hosted
628+ * application.
629+ */
630+
631+#include "compat.h"
632+#include "regs.h"
633+#include "jr.h"
634+#include "desc.h"
635+#include "intern.h"
636+#include "error.h"
637+#include "sm.h"
638+#include <linux/of_address.h>
639+
640+#define SECMEM_KEYMOD_LEN 8
641+#define GENMEM_KEYMOD_LEN 16
642+
643+#ifdef SM_DEBUG_CONT
644+void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc)
645+{
646+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
647+ u32 i, *smdata;
648+
649+ dev_info(dev, "physical page %d content at 0x%08x\n",
650+ pgdesc->phys_pagenum, pgdesc->pg_base);
651+ smdata = pgdesc->pg_base;
652+ for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4)
653+ dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
654+ (u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2],
655+ smdata[i+3]);
656+}
657+#endif
658+
659+#define INITIAL_DESCSZ 16 /* size of tmp buffer for descriptor const. */
660+
661+static __always_inline u32 sm_send_cmd(struct caam_drv_private_sm *smpriv,
662+ struct caam_drv_private_jr *jrpriv,
663+ u32 cmd, u32 *status)
664+{
665+ void __iomem *write_address;
666+ void __iomem *read_address;
667+
668+ if (smpriv->sm_reg_offset == SM_V1_OFFSET) {
669+ struct caam_secure_mem_v1 *sm_regs_v1;
670+
671+ sm_regs_v1 = (struct caam_secure_mem_v1 *)
672+ ((void *)jrpriv->rregs + SM_V1_OFFSET);
673+ write_address = &sm_regs_v1->sm_cmd;
674+ read_address = &sm_regs_v1->sm_status;
675+
676+ } else if (smpriv->sm_reg_offset == SM_V2_OFFSET) {
677+ struct caam_secure_mem_v2 *sm_regs_v2;
678+
679+ sm_regs_v2 = (struct caam_secure_mem_v2 *)
680+ ((void *)jrpriv->rregs + SM_V2_OFFSET);
681+ write_address = &sm_regs_v2->sm_cmd;
682+ read_address = &sm_regs_v2->sm_status;
683+
684+ } else {
685+ return -EINVAL;
686+ }
687+
688+ wr_reg32(write_address, cmd);
689+
690+ udelay(10);
691+
692+ /* Read until the command has terminated and the status is correct */
693+ do {
694+ *status = rd_reg32(read_address);
695+ } while (((*status & SMCS_CMDERR_MASK) >> SMCS_CMDERR_SHIFT)
696+ == SMCS_CMDERR_INCOMP);
697+
698+ return 0;
699+}
700+
701+/*
702+ * Construct a black key conversion job descriptor
703+ *
704+ * This function constructs a job descriptor capable of performing
705+ * a key blackening operation on a plaintext secure memory resident object.
706+ *
707+ * - desc pointer to a pointer to the descriptor generated by this
708+ * function. Caller will be responsible to kfree() this
709+ * descriptor after execution.
710+ * - key physical pointer to the plaintext, which will also hold
711+ * the result. Since encryption occurs in place, caller must
712+ * ensure that the space is large enough to accommodate the
713+ * blackened key
714+ * - keysz size of the plaintext
715+ * - auth if a CCM-covered key is required, use KEY_COVER_CCM, else
716+ * use KEY_COVER_ECB.
717+ *
718+ * KEY to key1 from @key_addr LENGTH 16 BYTES;
719+ * FIFO STORE from key1[ecb] TO @key_addr LENGTH 16 BYTES;
720+ *
721+ * Note that this variant uses the JDKEK only; it does not accommodate the
722+ * trusted key encryption key at this time.
723+ *
724+ */
725+static int blacken_key_jobdesc(u32 **desc, void *key, u16 keysz, bool auth)
726+{
727+ u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
728+ u16 dsize, idx;
729+
730+ memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
731+ idx = 1;
732+
733+ /* Load key to class 1 key register */
734+ tmpdesc[idx++] = CMD_KEY | CLASS_1 | (keysz & KEY_LENGTH_MASK);
735+ tmpdesc[idx++] = (uintptr_t)key;
736+
737+ /* ...and write back out via FIFO store*/
738+ tmpdesc[idx] = CMD_FIFO_STORE | CLASS_1 | (keysz & KEY_LENGTH_MASK);
739+
740+ /* plus account for ECB/CCM option in FIFO_STORE */
741+ if (auth == KEY_COVER_ECB)
742+ tmpdesc[idx] |= FIFOST_TYPE_KEY_KEK;
743+ else
744+ tmpdesc[idx] |= FIFOST_TYPE_KEY_CCM_JKEK;
745+
746+ idx++;
747+ tmpdesc[idx++] = (uintptr_t)key;
748+
749+ /* finish off the job header */
750+ tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
751+ dsize = idx * sizeof(u32);
752+
753+ /* now allocate execution buffer and coat it with executable */
754+ tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
755+ if (tdesc == NULL)
756+ return 0;
757+
758+ memcpy(tdesc, tmpdesc, dsize);
759+ *desc = tdesc;
760+
761+ return dsize;
762+}
763+
764+/*
765+ * Construct a blob encapsulation job descriptor
766+ *
767+ * This function dynamically constructs a blob encapsulation job descriptor
768+ * from the following arguments:
769+ *
770+ * - desc pointer to a pointer to the descriptor generated by this
771+ * function. Caller will be responsible to kfree() this
772+ * descriptor after execution.
773+ * - keymod Physical pointer to a key modifier, which must reside in a
774+ * contiguous piece of memory. Modifier will be assumed to be
775+ * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
776+ * for a blob of type SM_GENMEM (see blobtype argument).
777+ * - secretbuf Physical pointer to a secret, normally a black or red key,
778+ * possibly residing within an accessible secure memory page,
779+ * of the secret to be encapsulated to an output blob.
780+ * - outbuf Physical pointer to the destination buffer to receive the
781+ * encapsulated output. This buffer will need to be 48 bytes
782+ * larger than the input because of the added encapsulation data.
783+ * The generated descriptor will account for the increase in size,
784+ * but the caller must also account for this increase in the
785+ * buffer allocator.
786+ * - secretsz Size of input secret, in bytes. This is limited to 65536
787+ * less the size of blob overhead, since the length embeds into
788+ * DECO pointer in/out instructions.
789+ * - keycolor Determines if the source data is covered (black key) or
790+ * plaintext (red key). RED_KEY or BLACK_KEY are defined in
791+ * for this purpose.
792+ * - blobtype Determine if encapsulated blob should be a secure memory
793+ * blob (SM_SECMEM), with partition data embedded with key
794+ * material, or a general memory blob (SM_GENMEM).
795+ * - auth If BLACK_KEY source is covered via AES-CCM, specify
796+ * KEY_COVER_CCM, else uses AES-ECB (KEY_COVER_ECB).
797+ *
798+ * Upon completion, desc points to a buffer containing a CAAM job
799+ * descriptor which encapsulates data into an externally-storable blob
800+ * suitable for use across power cycles.
801+ *
802+ * This is an example of a black key encapsulation job into a general memory
803+ * blob. Notice the 16-byte key modifier in the LOAD instruction. Also note
804+ * the output 48 bytes longer than the input:
805+ *
806+ * [00] B0800008 jobhdr: stidx=0 len=8
807+ * [01] 14400010 ld: ccb2-key len=16 offs=0
808+ * [02] 08144891 ptr->@0x08144891
809+ * [03] F800003A seqoutptr: len=58
810+ * [04] 01000000 out_ptr->@0x01000000
811+ * [05] F000000A seqinptr: len=10
812+ * [06] 09745090 in_ptr->@0x09745090
813+ * [07] 870D0004 operation: encap blob reg=memory, black, format=normal
814+ *
815+ * This is an example of a red key encapsulation job for storing a red key
816+ * into a secure memory blob. Note the 8 byte modifier on the 12 byte offset
817+ * in the LOAD instruction; this accounts for blob permission storage:
818+ *
819+ * [00] B0800008 jobhdr: stidx=0 len=8
820+ * [01] 14400C08 ld: ccb2-key len=8 offs=12
821+ * [02] 087D0784 ptr->@0x087d0784
822+ * [03] F8000050 seqoutptr: len=80
823+ * [04] 09251BB2 out_ptr->@0x09251bb2
824+ * [05] F0000020 seqinptr: len=32
825+ * [06] 40000F31 in_ptr->@0x40000f31
826+ * [07] 870D0008 operation: encap blob reg=memory, red, sec_mem,
827+ * format=normal
828+ *
829+ * Note: this function only generates 32-bit pointers at present, and should
830+ * be refactored using a scheme that allows both 32 and 64 bit addressing
831+ */
832+
833+static int blob_encap_jobdesc(u32 **desc, dma_addr_t keymod,
834+ void *secretbuf, dma_addr_t outbuf,
835+ u16 secretsz, u8 keycolor, u8 blobtype, u8 auth)
836+{
837+ u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
838+ u16 dsize, idx;
839+
840+ memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
841+ idx = 1;
842+
843+ /*
844+ * Key modifier works differently for secure/general memory blobs
845+ * This accounts for the permission/protection data encapsulated
846+ * within the blob if a secure memory blob is requested
847+ */
848+ if (blobtype == SM_SECMEM)
849+ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
850+ LDST_SRCDST_BYTE_KEY |
851+ ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
852+ | (8 & LDST_LEN_MASK);
853+ else /* is general memory blob */
854+ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
855+ LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
856+
857+ tmpdesc[idx++] = (u32)keymod;
858+
859+ /*
860+ * Encapsulation output must include space for blob key encryption
861+ * key and MAC tag
862+ */
863+ tmpdesc[idx++] = CMD_SEQ_OUT_PTR | (secretsz + BLOB_OVERHEAD);
864+ tmpdesc[idx++] = (u32)outbuf;
865+
866+ /* Input data, should be somewhere in secure memory */
867+ tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz;
868+ tmpdesc[idx++] = (uintptr_t)secretbuf;
869+
870+ /* Set blob encap, then color */
871+ tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB;
872+
873+ if (blobtype == SM_SECMEM)
874+ tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
875+
876+ if (auth == KEY_COVER_CCM)
877+ tmpdesc[idx] |= OP_PCL_BLOB_EKT;
878+
879+ if (keycolor == BLACK_KEY)
880+ tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
881+
882+ idx++;
883+ tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
884+ dsize = idx * sizeof(u32);
885+
886+ tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
887+ if (tdesc == NULL)
888+ return 0;
889+
890+ memcpy(tdesc, tmpdesc, dsize);
891+ *desc = tdesc;
892+ return dsize;
893+}
894+
895+/*
896+ * Construct a blob decapsulation job descriptor
897+ *
898+ * This function dynamically constructs a blob decapsulation job descriptor
899+ * from the following arguments:
900+ *
901+ * - desc pointer to a pointer to the descriptor generated by this
902+ * function. Caller will be responsible to kfree() this
903+ * descriptor after execution.
904+ * - keymod Physical pointer to a key modifier, which must reside in a
905+ * contiguous piece of memory. Modifier will be assumed to be
906+ * 8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
907+ * for a blob of type SM_GENMEM (see blobtype argument).
908+ * - blobbuf Physical pointer (into external memory) of the blob to
909+ * be decapsulated. Blob must reside in a contiguous memory
910+ * segment.
911+ * - outbuf Physical pointer of the decapsulated output, possibly into
912+ * a location within a secure memory page. Must be contiguous.
913+ * - secretsz Size of encapsulated secret in bytes (not the size of the
914+ * input blob).
915+ * - keycolor Determines if decapsulated content is encrypted (BLACK_KEY)
916+ * or left as plaintext (RED_KEY).
917+ * - blobtype Determine if encapsulated blob should be a secure memory
918+ * blob (SM_SECMEM), with partition data embedded with key
919+ * material, or a general memory blob (SM_GENMEM).
920+ * - auth If decapsulation path is specified by BLACK_KEY, then if
921+ * AES-CCM is requested for key covering use KEY_COVER_CCM, else
922+ * use AES-ECB (KEY_COVER_ECB).
923+ *
924+ * Upon completion, desc points to a buffer containing a CAAM job descriptor
925+ * that decapsulates a key blob from external memory into a black (encrypted)
926+ * key or red (plaintext) content.
927+ *
928+ * This is an example of a black key decapsulation job from a general memory
929+ * blob. Notice the 16-byte key modifier in the LOAD instruction.
930+ *
931+ * [00] B0800008 jobhdr: stidx=0 len=8
932+ * [01] 14400010 ld: ccb2-key len=16 offs=0
933+ * [02] 08A63B7F ptr->@0x08a63b7f
934+ * [03] F8000010 seqoutptr: len=16
935+ * [04] 01000000 out_ptr->@0x01000000
936+ * [05] F000003A seqinptr: len=58
937+ * [06] 01000010 in_ptr->@0x01000010
938+ * [07] 860D0004 operation: decap blob reg=memory, black, format=normal
939+ *
940+ * This is an example of a red key decapsulation job for restoring a red key
941+ * from a secure memory blob. Note the 8 byte modifier on the 12 byte offset
942+ * in the LOAD instruction:
943+ *
944+ * [00] B0800008 jobhdr: stidx=0 len=8
945+ * [01] 14400C08 ld: ccb2-key len=8 offs=12
946+ * [02] 01000000 ptr->@0x01000000
947+ * [03] F8000020 seqoutptr: len=32
948+ * [04] 400000E6 out_ptr->@0x400000e6
949+ * [05] F0000050 seqinptr: len=80
950+ * [06] 08F0C0EA in_ptr->@0x08f0c0ea
951+ * [07] 860D0008 operation: decap blob reg=memory, red, sec_mem,
952+ * format=normal
953+ *
954+ * Note: this function only generates 32-bit pointers at present, and should
955+ * be refactored using a scheme that allows both 32 and 64 bit addressing
956+ */
957+
958+static int blob_decap_jobdesc(u32 **desc, dma_addr_t keymod, dma_addr_t blobbuf,
959+ u8 *outbuf, u16 secretsz, u8 keycolor,
960+ u8 blobtype, u8 auth)
961+{
962+ u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
963+ u16 dsize, idx;
964+
965+ memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
966+ idx = 1;
967+
968+ /* Load key modifier */
969+ if (blobtype == SM_SECMEM)
970+ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
971+ LDST_SRCDST_BYTE_KEY |
972+ ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
973+ | (8 & LDST_LEN_MASK);
974+ else /* is general memory blob */
975+ tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
976+ LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
977+
978+ tmpdesc[idx++] = (u32)keymod;
979+
980+ /* Compensate BKEK + MAC tag over size of encapsulated secret */
981+ tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + BLOB_OVERHEAD);
982+ tmpdesc[idx++] = (u32)blobbuf;
983+ tmpdesc[idx++] = CMD_SEQ_OUT_PTR | secretsz;
984+ tmpdesc[idx++] = (uintptr_t)outbuf;
985+
986+ /* Decapsulate from secure memory partition to black blob */
987+ tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB;
988+
989+ if (blobtype == SM_SECMEM)
990+ tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
991+
992+ if (auth == KEY_COVER_CCM)
993+ tmpdesc[idx] |= OP_PCL_BLOB_EKT;
994+
995+ if (keycolor == BLACK_KEY)
996+ tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
997+
998+ idx++;
999+ tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
1000+ dsize = idx * sizeof(u32);
1001+
1002+ tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
1003+ if (tdesc == NULL)
1004+ return 0;
1005+
1006+ memcpy(tdesc, tmpdesc, dsize);
1007+ *desc = tdesc;
1008+ return dsize;
1009+}
1010+
1011+/*
1012+ * Pseudo-synchronous ring access functions for carrying out key
1013+ * encapsulation and decapsulation
1014+ */
1015+
1016+struct sm_key_job_result {
1017+ int error;
1018+ struct completion completion;
1019+};
1020+
1021+void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context)
1022+{
1023+ struct sm_key_job_result *res = context;
1024+
1025+ if (err)
1026+ caam_jr_strstatus(dev, err);
1027+
1028+ res->error = err; /* save off the error for postprocessing */
1029+
1030+ complete(&res->completion); /* mark us complete */
1031+}
1032+
1033+static int sm_key_job(struct device *ksdev, u32 *jobdesc)
1034+{
1035+ struct sm_key_job_result testres = {0};
1036+ struct caam_drv_private_sm *kspriv;
1037+ int rtn = 0;
1038+
1039+ kspriv = dev_get_drvdata(ksdev);
1040+
1041+ init_completion(&testres.completion);
1042+
1043+ rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done,
1044+ &testres);
1045+ if (rtn)
1046+ goto exit;
1047+
1048+ wait_for_completion_interruptible(&testres.completion);
1049+ rtn = testres.error;
1050+
1051+exit:
1052+ return rtn;
1053+}
1054+
1055+/*
1056+ * Following section establishes the default methods for keystore access
1057+ * They are NOT intended for use external to this module
1058+ *
1059+ * In the present version, these are the only means for the higher-level
1060+ * interface to deal with the mechanics of accessing the phyiscal keystore
1061+ */
1062+
1063+
1064+int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
1065+{
1066+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1067+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1068+ u32 i;
1069+#ifdef SM_DEBUG
1070+ dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size);
1071+#endif
1072+
1073+ if (size > smpriv->slot_size)
1074+ return -EKEYREJECTED;
1075+
1076+ for (i = 0; i < ksdata->slot_count; i++) {
1077+ if (ksdata->slot[i].allocated == 0) {
1078+ ksdata->slot[i].allocated = 1;
1079+ (*slot) = i;
1080+#ifdef SM_DEBUG
1081+ dev_info(dev, "slot_alloc(): new slot %d allocated\n",
1082+ *slot);
1083+#endif
1084+ return 0;
1085+ }
1086+ }
1087+
1088+ return -ENOSPC;
1089+}
1090+EXPORT_SYMBOL(slot_alloc);
1091+
1092+int slot_dealloc(struct device *dev, u32 unit, u32 slot)
1093+{
1094+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1095+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1096+ u8 __iomem *slotdata;
1097+
1098+#ifdef SM_DEBUG
1099+ dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot);
1100+#endif
1101+ if (slot >= ksdata->slot_count)
1102+ return -EINVAL;
1103+ slotdata = ksdata->base_address + slot * smpriv->slot_size;
1104+
1105+ if (ksdata->slot[slot].allocated == 1) {
1106+ /* Forcibly overwrite the data from the keystore */
1107+ memset_io(ksdata->base_address + slot * smpriv->slot_size, 0,
1108+ smpriv->slot_size);
1109+
1110+ ksdata->slot[slot].allocated = 0;
1111+#ifdef SM_DEBUG
1112+ dev_info(dev, "slot_dealloc(): slot %d released\n", slot);
1113+#endif
1114+ return 0;
1115+ }
1116+
1117+ return -EINVAL;
1118+}
1119+EXPORT_SYMBOL(slot_dealloc);
1120+
1121+void *slot_get_address(struct device *dev, u32 unit, u32 slot)
1122+{
1123+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1124+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1125+
1126+ if (slot >= ksdata->slot_count)
1127+ return NULL;
1128+
1129+#ifdef SM_DEBUG
1130+ dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot,
1131+ (u32)ksdata->base_address + slot * smpriv->slot_size);
1132+#endif
1133+
1134+ return ksdata->base_address + slot * smpriv->slot_size;
1135+}
1136+
1137+void *slot_get_physical(struct device *dev, u32 unit, u32 slot)
1138+{
1139+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1140+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1141+
1142+ if (slot >= ksdata->slot_count)
1143+ return NULL;
1144+
1145+#ifdef SM_DEBUG
1146+ dev_info(dev, "%s: slot %d is 0x%08x\n", __func__, slot,
1147+ (u32)ksdata->phys_address + slot * smpriv->slot_size);
1148+#endif
1149+
1150+ return ksdata->phys_address + slot * smpriv->slot_size;
1151+}
1152+
1153+u32 slot_get_base(struct device *dev, u32 unit, u32 slot)
1154+{
1155+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1156+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1157+
1158+ /*
1159+ * There could potentially be more than one secure partition object
1160+ * associated with this keystore. For now, there is just one.
1161+ */
1162+
1163+ (void)slot;
1164+
1165+#ifdef SM_DEBUG
1166+ dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n",
1167+ slot, (u32)ksdata->base_address);
1168+#endif
1169+
1170+ return (uintptr_t)(ksdata->base_address);
1171+}
1172+
1173+u32 slot_get_offset(struct device *dev, u32 unit, u32 slot)
1174+{
1175+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1176+ struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
1177+
1178+ if (slot >= ksdata->slot_count)
1179+ return -EINVAL;
1180+
1181+#ifdef SM_DEBUG
1182+ dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot,
1183+ slot * smpriv->slot_size);
1184+#endif
1185+
1186+ return slot * smpriv->slot_size;
1187+}
1188+
1189+u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot)
1190+{
1191+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1192+
1193+
1194+#ifdef SM_DEBUG
1195+ dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot,
1196+ smpriv->slot_size);
1197+#endif
1198+ /* All slots are the same size in the default implementation */
1199+ return smpriv->slot_size;
1200+}
1201+
1202+
1203+
1204+int kso_init_data(struct device *dev, u32 unit)
1205+{
1206+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1207+ struct keystore_data *keystore_data = NULL;
1208+ u32 slot_count;
1209+ u32 keystore_data_size;
1210+
1211+ /*
1212+ * Calculate the required size of the keystore data structure, based
1213+ * on the number of keys that can fit in the partition.
1214+ */
1215+ slot_count = smpriv->page_size / smpriv->slot_size;
1216+#ifdef SM_DEBUG
1217+ dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count);
1218+#endif
1219+
1220+ keystore_data_size = sizeof(struct keystore_data) +
1221+ slot_count *
1222+ sizeof(struct keystore_data_slot_info);
1223+
1224+ keystore_data = kzalloc(keystore_data_size, GFP_KERNEL);
1225+
1226+ if (!keystore_data)
1227+ return -ENOMEM;
1228+
1229+#ifdef SM_DEBUG
1230+ dev_info(dev, "kso_init_data: keystore data size = %d\n",
1231+ keystore_data_size);
1232+#endif
1233+
1234+ /*
1235+ * Place the slot information structure directly after the keystore data
1236+ * structure.
1237+ */
1238+ keystore_data->slot = (struct keystore_data_slot_info *)
1239+ (keystore_data + 1);
1240+ keystore_data->slot_count = slot_count;
1241+
1242+ smpriv->pagedesc[unit].ksdata = keystore_data;
1243+ smpriv->pagedesc[unit].ksdata->base_address =
1244+ smpriv->pagedesc[unit].pg_base;
1245+ smpriv->pagedesc[unit].ksdata->phys_address =
1246+ smpriv->pagedesc[unit].pg_phys;
1247+
1248+ return 0;
1249+}
1250+
1251+void kso_cleanup_data(struct device *dev, u32 unit)
1252+{
1253+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1254+ struct keystore_data *keystore_data = NULL;
1255+
1256+ if (smpriv->pagedesc[unit].ksdata != NULL)
1257+ keystore_data = smpriv->pagedesc[unit].ksdata;
1258+
1259+ /* Release the allocated keystore management data */
1260+ kfree(smpriv->pagedesc[unit].ksdata);
1261+
1262+ return;
1263+}
1264+
1265+
1266+
1267+/*
1268+ * Keystore management section
1269+ */
1270+
1271+void sm_init_keystore(struct device *dev)
1272+{
1273+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1274+
1275+ smpriv->data_init = kso_init_data;
1276+ smpriv->data_cleanup = kso_cleanup_data;
1277+ smpriv->slot_alloc = slot_alloc;
1278+ smpriv->slot_dealloc = slot_dealloc;
1279+ smpriv->slot_get_address = slot_get_address;
1280+ smpriv->slot_get_physical = slot_get_physical;
1281+ smpriv->slot_get_base = slot_get_base;
1282+ smpriv->slot_get_offset = slot_get_offset;
1283+ smpriv->slot_get_slot_size = slot_get_slot_size;
1284+#ifdef SM_DEBUG
1285+ dev_info(dev, "sm_init_keystore(): handlers installed\n");
1286+#endif
1287+}
1288+EXPORT_SYMBOL(sm_init_keystore);
1289+
1290+/* Return available pages/units */
1291+u32 sm_detect_keystore_units(struct device *dev)
1292+{
1293+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1294+
1295+ return smpriv->localpages;
1296+}
1297+EXPORT_SYMBOL(sm_detect_keystore_units);
1298+
1299+/*
1300+ * Do any keystore specific initializations
1301+ */
1302+int sm_establish_keystore(struct device *dev, u32 unit)
1303+{
1304+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1305+
1306+#ifdef SM_DEBUG
1307+ dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit);
1308+#endif
1309+
1310+ if (smpriv->data_init == NULL)
1311+ return -EINVAL;
1312+
1313+ /* Call the data_init function for any user setup */
1314+ return smpriv->data_init(dev, unit);
1315+}
1316+EXPORT_SYMBOL(sm_establish_keystore);
1317+
1318+void sm_release_keystore(struct device *dev, u32 unit)
1319+{
1320+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1321+
1322+#ifdef SM_DEBUG
1323+ dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit);
1324+#endif
1325+ if ((smpriv != NULL) && (smpriv->data_cleanup != NULL))
1326+ smpriv->data_cleanup(dev, unit);
1327+
1328+ return;
1329+}
1330+EXPORT_SYMBOL(sm_release_keystore);
1331+
1332+/*
1333+ * Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to
1334+ * the keystore
1335+ */
1336+int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
1337+{
1338+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1339+ int retval = -EINVAL;
1340+
1341+ spin_lock(&smpriv->kslock);
1342+
1343+ if ((smpriv->slot_alloc == NULL) ||
1344+ (smpriv->pagedesc[unit].ksdata == NULL))
1345+ goto out;
1346+
1347+ retval = smpriv->slot_alloc(dev, unit, size, slot);
1348+
1349+out:
1350+ spin_unlock(&smpriv->kslock);
1351+ return retval;
1352+}
1353+EXPORT_SYMBOL(sm_keystore_slot_alloc);
1354+
1355+int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot)
1356+{
1357+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1358+ int retval = -EINVAL;
1359+
1360+ spin_lock(&smpriv->kslock);
1361+
1362+ if ((smpriv->slot_alloc == NULL) ||
1363+ (smpriv->pagedesc[unit].ksdata == NULL))
1364+ goto out;
1365+
1366+ retval = smpriv->slot_dealloc(dev, unit, slot);
1367+out:
1368+ spin_unlock(&smpriv->kslock);
1369+ return retval;
1370+}
1371+EXPORT_SYMBOL(sm_keystore_slot_dealloc);
1372+
1373+int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot,
1374+ const u8 *key_data, u32 key_length)
1375+{
1376+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1377+ int retval = -EINVAL;
1378+ u32 slot_size;
1379+ u8 __iomem *slot_location;
1380+
1381+ spin_lock(&smpriv->kslock);
1382+
1383+ slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
1384+
1385+ if (key_length > slot_size) {
1386+ retval = -EFBIG;
1387+ goto out;
1388+ }
1389+
1390+ slot_location = smpriv->slot_get_address(dev, unit, slot);
1391+
1392+ memcpy_toio(slot_location, key_data, key_length);
1393+
1394+ retval = 0;
1395+
1396+out:
1397+ spin_unlock(&smpriv->kslock);
1398+ return retval;
1399+}
1400+EXPORT_SYMBOL(sm_keystore_slot_load);
1401+
1402+int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot,
1403+ u32 key_length, u8 *key_data)
1404+{
1405+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1406+ int retval = -EINVAL;
1407+ u8 __iomem *slot_addr;
1408+ u32 slot_size;
1409+
1410+ spin_lock(&smpriv->kslock);
1411+
1412+ slot_addr = smpriv->slot_get_address(dev, unit, slot);
1413+ slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
1414+
1415+ if (key_length > slot_size) {
1416+ retval = -EKEYREJECTED;
1417+ goto out;
1418+ }
1419+
1420+ memcpy_fromio(key_data, slot_addr, key_length);
1421+ retval = 0;
1422+
1423+out:
1424+ spin_unlock(&smpriv->kslock);
1425+ return retval;
1426+}
1427+EXPORT_SYMBOL(sm_keystore_slot_read);
1428+
1429+/*
1430+ * Blacken a clear key in a slot. Operates "in place".
1431+ * Limited to class 1 keys at the present time
1432+ */
1433+int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot,
1434+ u16 key_length, u8 keyauth)
1435+{
1436+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1437+ int retval = 0;
1438+ u8 __iomem *slotaddr;
1439+ void *slotphys;
1440+ u32 dsize, jstat;
1441+ u32 __iomem *coverdesc = NULL;
1442+
1443+ /* Get the address of the object in the slot */
1444+ slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
1445+ slotphys = (u8 *)smpriv->slot_get_physical(dev, unit, slot);
1446+
1447+ dsize = blacken_key_jobdesc(&coverdesc, slotphys, key_length, keyauth);
1448+ if (!dsize)
1449+ return -ENOMEM;
1450+ jstat = sm_key_job(dev, coverdesc);
1451+ if (jstat)
1452+ retval = -EIO;
1453+
1454+ kfree(coverdesc);
1455+ return retval;
1456+}
1457+EXPORT_SYMBOL(sm_keystore_cover_key);
1458+
1459+/* Export a black/red key to a blob in external memory */
1460+int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, u8 keycolor,
1461+ u8 keyauth, u8 *outbuf, u16 keylen, u8 *keymod)
1462+{
1463+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1464+ int retval = 0;
1465+ u8 __iomem *slotaddr, *lkeymod;
1466+ u8 __iomem *slotphys;
1467+ dma_addr_t keymod_dma, outbuf_dma;
1468+ u32 dsize, jstat;
1469+ u32 __iomem *encapdesc = NULL;
1470+ struct device *dev_for_dma_op;
1471+
1472+ /* Use the ring as device for DMA operations */
1473+ dev_for_dma_op = smpriv->smringdev;
1474+
1475+ /* Get the base address(es) of the specified slot */
1476+ slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
1477+ slotphys = smpriv->slot_get_physical(dev, unit, slot);
1478+
1479+ /* Allocate memory for key modifier compatible with DMA */
1480+ lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
1481+ if (!lkeymod) {
1482+ retval = (-ENOMEM);
1483+ goto exit;
1484+ }
1485+
1486+ /* Get DMA address for the key modifier */
1487+ keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
1488+ SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
1489+ if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
1490+ dev_err(dev, "unable to map keymod: %p\n", lkeymod);
1491+ retval = (-ENOMEM);
1492+ goto free_keymod;
1493+ }
1494+
1495+ /* Copy the keymod and synchronize the DMA */
1496+ memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
1497+ dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
1498+ SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
1499+
1500+ /* Get DMA address for the destination */
1501+ outbuf_dma = dma_map_single(dev_for_dma_op, outbuf,
1502+ keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
1503+ if (dma_mapping_error(dev_for_dma_op, outbuf_dma)) {
1504+ dev_err(dev, "unable to map outbuf: %p\n", outbuf);
1505+ retval = (-ENOMEM);
1506+ goto unmap_keymod;
1507+ }
1508+
1509+ /* Build the encapsulation job descriptor */
1510+ dsize = blob_encap_jobdesc(&encapdesc, keymod_dma, slotphys, outbuf_dma,
1511+ keylen, keycolor, SM_SECMEM, keyauth);
1512+ if (!dsize) {
1513+ dev_err(dev, "can't alloc an encapsulation descriptor\n");
1514+ retval = -ENOMEM;
1515+ goto unmap_outbuf;
1516+ }
1517+
1518+ /* Run the job */
1519+ jstat = sm_key_job(dev, encapdesc);
1520+ if (jstat) {
1521+ retval = (-EIO);
1522+ goto free_desc;
1523+ }
1524+
1525+ /* Synchronize the data received */
1526+ dma_sync_single_for_cpu(dev_for_dma_op, outbuf_dma,
1527+ keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
1528+
1529+free_desc:
1530+ kfree(encapdesc);
1531+
1532+unmap_outbuf:
1533+ dma_unmap_single(dev_for_dma_op, outbuf_dma, keylen + BLOB_OVERHEAD,
1534+ DMA_FROM_DEVICE);
1535+
1536+unmap_keymod:
1537+ dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
1538+ DMA_TO_DEVICE);
1539+
1540+free_keymod:
1541+ kfree(lkeymod);
1542+
1543+exit:
1544+ return retval;
1545+}
1546+EXPORT_SYMBOL(sm_keystore_slot_export);
1547+
1548+/* Import a black/red key from a blob residing in external memory */
1549+int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, u8 keycolor,
1550+ u8 keyauth, u8 *inbuf, u16 keylen, u8 *keymod)
1551+{
1552+ struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
1553+ int retval = 0;
1554+ u8 __iomem *slotaddr, *lkeymod;
1555+ u8 __iomem *slotphys;
1556+ dma_addr_t keymod_dma, inbuf_dma;
1557+ u32 dsize, jstat;
1558+ u32 __iomem *decapdesc = NULL;
1559+ struct device *dev_for_dma_op;
1560+
1561+ /* Use the ring as device for DMA operations */
1562+ dev_for_dma_op = smpriv->smringdev;
1563+
1564+ /* Get the base address(es) of the specified slot */
1565+ slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
1566+ slotphys = smpriv->slot_get_physical(dev, unit, slot);
1567+
1568+ /* Allocate memory for key modifier compatible with DMA */
1569+ lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
1570+ if (!lkeymod) {
1571+ retval = (-ENOMEM);
1572+ goto exit;
1573+ }
1574+
1575+ /* Get DMA address for the key modifier */
1576+ keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
1577+ SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
1578+ if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
1579+ dev_err(dev, "unable to map keymod: %p\n", lkeymod);
1580+ retval = (-ENOMEM);
1581+ goto free_keymod;
1582+ }
1583+
1584+ /* Copy the keymod and synchronize the DMA */
1585+ memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
1586+ dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
1587+ SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
1588+
1589+ /* Get DMA address for the input */
1590+ inbuf_dma = dma_map_single(dev_for_dma_op, inbuf,
1591+ keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
1592+ if (dma_mapping_error(dev_for_dma_op, inbuf_dma)) {
1593+ dev_err(dev, "unable to map inbuf: %p\n", (void *)inbuf_dma);
1594+ retval = (-ENOMEM);
1595+ goto unmap_keymod;
1596+ }
1597+
1598+ /* synchronize the DMA */
1599+ dma_sync_single_for_device(dev_for_dma_op, inbuf_dma,
1600+ keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
1601+
1602+ /* Build the encapsulation job descriptor */
1603+ dsize = blob_decap_jobdesc(&decapdesc, keymod_dma, inbuf_dma, slotphys,
1604+ keylen, keycolor, SM_SECMEM, keyauth);
1605+ if (!dsize) {
1606+ dev_err(dev, "can't alloc a decapsulation descriptor\n");
1607+ retval = -ENOMEM;
1608+ goto unmap_inbuf;
1609+ }
1610+
1611+ /* Run the job */
1612+ jstat = sm_key_job(dev, decapdesc);
1613+
1614+ /*
1615+ * May want to expand upon error meanings a bit. Any CAAM status
1616+ * is reported as EIO, but we might want to look for something more
1617+ * meaningful for something like an ICV error on restore, otherwise
1618+ * the caller is left guessing.
1619+ */
1620+ if (jstat) {
1621+ retval = (-EIO);
1622+ goto free_desc;
1623+ }
1624+
1625+free_desc:
1626+ kfree(decapdesc);
1627+
1628+unmap_inbuf:
1629+ dma_unmap_single(dev_for_dma_op, inbuf_dma, keylen + BLOB_OVERHEAD,
1630+ DMA_TO_DEVICE);
1631+
1632+unmap_keymod:
1633+ dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
1634+ DMA_TO_DEVICE);
1635+
1636+free_keymod:
1637+ kfree(lkeymod);
1638+
1639+exit:
1640+ return retval;
1641+}
1642+EXPORT_SYMBOL(sm_keystore_slot_import);
1643+
1644+/*
1645+ * Initialization/shutdown subsystem
1646+ * Assumes statically-invoked startup/shutdown from the controller driver
1647+ * for the present time, to be reworked when a device tree becomes
1648+ * available. This code will not modularize in present form.
1649+ *
1650+ * Also, simply uses ring 0 for execution at the present
1651+ */
1652+
1653+int caam_sm_startup(struct platform_device *pdev)
1654+{
1655+ struct device *ctrldev, *smdev;
1656+ struct caam_drv_private *ctrlpriv;
1657+ struct caam_drv_private_sm *smpriv;
1658+ struct caam_drv_private_jr *jrpriv; /* need this for reg page */
1659+ struct platform_device *sm_pdev;
1660+ struct sm_page_descriptor *lpagedesc;
1661+ u32 page, pgstat, lpagect, detectedpage, smvid, smpart;
1662+ int ret = 0;
1663+
1664+ struct device_node *np;
1665+ ctrldev = &pdev->dev;
1666+ ctrlpriv = dev_get_drvdata(ctrldev);
1667+
1668+ /*
1669+ * If ctrlpriv is NULL, it's probably because the caam driver wasn't
1670+ * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
1671+ */
1672+ if (!ctrlpriv) {
1673+ ret = -ENODEV;
1674+ goto exit;
1675+ }
1676+
1677+ /*
1678+ * Set up the private block for secure memory
1679+ * Only one instance is possible
1680+ */
1681+ smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL);
1682+ if (smpriv == NULL) {
1683+ dev_err(ctrldev, "can't alloc private mem for secure memory\n");
1684+ ret = -ENOMEM;
1685+ goto exit;
1686+ }
1687+ smpriv->parentdev = ctrldev; /* copy of parent dev is handy */
1688+ spin_lock_init(&smpriv->kslock);
1689+
1690+ /* Create the dev */
1691+ np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm");
1692+ if (np)
1693+ of_node_clear_flag(np, OF_POPULATED);
1694+ sm_pdev = of_platform_device_create(np, "caam_sm", ctrldev);
1695+
1696+ if (sm_pdev == NULL) {
1697+ ret = -EINVAL;
1698+ goto free_smpriv;
1699+ }
1700+
1701+ /* Save a pointer to the platform device for Secure Memory */
1702+ smpriv->sm_pdev = sm_pdev;
1703+ smdev = &sm_pdev->dev;
1704+ dev_set_drvdata(smdev, smpriv);
1705+ ctrlpriv->smdev = smdev;
1706+
1707+ /* Set the Secure Memory Register Map Version */
1708+ smvid = rd_reg32(&ctrlpriv->jr[0]->perfmon.smvid);
1709+ smpart = rd_reg32(&ctrlpriv->jr[0]->perfmon.smpart);
1710+
1711+ if (smvid < SMVID_V2)
1712+ smpriv->sm_reg_offset = SM_V1_OFFSET;
1713+ else
1714+ smpriv->sm_reg_offset = SM_V2_OFFSET;
1715+
1716+ /*
1717+ * Collect configuration limit data for reference
1718+ * This batch comes from the partition data/vid registers in perfmon
1719+ */
1720+ smpriv->max_pages = ((smpart & SMPART_MAX_NUMPG_MASK) >>
1721+ SMPART_MAX_NUMPG_SHIFT) + 1;
1722+ smpriv->top_partition = ((smpart & SMPART_MAX_PNUM_MASK) >>
1723+ SMPART_MAX_PNUM_SHIFT) + 1;
1724+ smpriv->top_page = ((smpart & SMPART_MAX_PG_MASK) >>
1725+ SMPART_MAX_PG_SHIFT) + 1;
1726+ smpriv->page_size = 1024 << ((smvid & SMVID_PG_SIZE_MASK) >>
1727+ SMVID_PG_SIZE_SHIFT);
1728+ smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE;
1729+
1730+#ifdef SM_DEBUG
1731+ dev_info(smdev, "max pages = %d, top partition = %d\n",
1732+ smpriv->max_pages, smpriv->top_partition);
1733+ dev_info(smdev, "top page = %d, page size = %d (total = %d)\n",
1734+ smpriv->top_page, smpriv->page_size,
1735+ smpriv->top_page * smpriv->page_size);
1736+ dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size);
1737+#endif
1738+
1739+ /*
1740+ * Now probe for partitions/pages to which we have access. Note that
1741+ * these have likely been set up by a bootloader or platform
1742+ * provisioning application, so we have to assume that we "inherit"
1743+ * a configuration and work within the constraints of what it might be.
1744+ *
1745+ * Assume use of the zeroth ring in the present iteration (until
1746+ * we can divorce the controller and ring drivers, and then assign
1747+ * an SM instance to any ring instance).
1748+ */
1749+ smpriv->smringdev = caam_jr_alloc();
1750+ if (!smpriv->smringdev) {
1751+ dev_err(smdev, "Device for job ring not created\n");
1752+ ret = -ENODEV;
1753+ goto unregister_smpdev;
1754+ }
1755+
1756+ jrpriv = dev_get_drvdata(smpriv->smringdev);
1757+ lpagect = 0;
1758+ pgstat = 0;
1759+ lpagedesc = kzalloc(sizeof(struct sm_page_descriptor)
1760+ * smpriv->max_pages, GFP_KERNEL);
1761+ if (lpagedesc == NULL) {
1762+ ret = -ENOMEM;
1763+ goto free_smringdev;
1764+ }
1765+
1766+ for (page = 0; page < smpriv->max_pages; page++) {
1767+ u32 page_ownership;
1768+
1769+ if (sm_send_cmd(smpriv, jrpriv,
1770+ ((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) |
1771+ (SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK),
1772+ &pgstat)) {
1773+ ret = -EINVAL;
1774+ goto free_lpagedesc;
1775+ }
1776+
1777+ page_ownership = (pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT;
1778+ if ((page_ownership == SMCS_PGOWN_OWNED)
1779+ || (page_ownership == SMCS_PGOWN_NOOWN)) {
1780+ /* page allocated */
1781+ lpagedesc[page].phys_pagenum =
1782+ (pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT;
1783+ lpagedesc[page].own_part =
1784+ (pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK;
1785+ lpagedesc[page].pg_base = (u8 *)ctrlpriv->sm_base +
1786+ (smpriv->page_size * page);
1787+ if (ctrlpriv->scu_en) {
1788+/* FIXME: get different addresses viewed by CPU and CAAM from
1789+ * platform property
1790+ */
1791+ lpagedesc[page].pg_phys = (u8 *)0x20800000 +
1792+ (smpriv->page_size * page);
1793+ } else {
1794+ lpagedesc[page].pg_phys =
1795+ (u8 *) ctrlpriv->sm_phy +
1796+ (smpriv->page_size * page);
1797+ }
1798+ lpagect++;
1799+#ifdef SM_DEBUG
1800+ dev_info(smdev,
1801+ "physical page %d, owning partition = %d\n",
1802+ lpagedesc[page].phys_pagenum,
1803+ lpagedesc[page].own_part);
1804+#endif
1805+ }
1806+ }
1807+
1808+ smpriv->pagedesc = kzalloc(sizeof(struct sm_page_descriptor) * lpagect,
1809+ GFP_KERNEL);
1810+ if (smpriv->pagedesc == NULL) {
1811+ ret = -ENOMEM;
1812+ goto free_lpagedesc;
1813+ }
1814+ smpriv->localpages = lpagect;
1815+
1816+ detectedpage = 0;
1817+ for (page = 0; page < smpriv->max_pages; page++) {
1818+ if (lpagedesc[page].pg_base != NULL) { /* e.g. live entry */
1819+ memcpy(&smpriv->pagedesc[detectedpage],
1820+ &lpagedesc[page],
1821+ sizeof(struct sm_page_descriptor));
1822+#ifdef SM_DEBUG_CONT
1823+ sm_show_page(smdev, &smpriv->pagedesc[detectedpage]);
1824+#endif
1825+ detectedpage++;
1826+ }
1827+ }
1828+
1829+ kfree(lpagedesc);
1830+
1831+ sm_init_keystore(smdev);
1832+
1833+ goto exit;
1834+
1835+free_lpagedesc:
1836+ kfree(lpagedesc);
1837+free_smringdev:
1838+ caam_jr_free(smpriv->smringdev);
1839+unregister_smpdev:
1840+ of_device_unregister(smpriv->sm_pdev);
1841+free_smpriv:
1842+ kfree(smpriv);
1843+
1844+exit:
1845+ return ret;
1846+}
1847+
1848+void caam_sm_shutdown(struct platform_device *pdev)
1849+{
1850+ struct device *ctrldev, *smdev;
1851+ struct caam_drv_private *priv;
1852+ struct caam_drv_private_sm *smpriv;
1853+
1854+ ctrldev = &pdev->dev;
1855+ priv = dev_get_drvdata(ctrldev);
1856+ smdev = priv->smdev;
1857+
1858+ /* Return if resource not initialized by startup */
1859+ if (smdev == NULL)
1860+ return;
1861+
1862+ smpriv = dev_get_drvdata(smdev);
1863+
1864+ caam_jr_free(smpriv->smringdev);
1865+
1866+ /* Remove Secure Memory Platform Device */
1867+ of_device_unregister(smpriv->sm_pdev);
1868+
1869+ kfree(smpriv->pagedesc);
1870+ kfree(smpriv);
1871+}
1872+EXPORT_SYMBOL(caam_sm_shutdown);
1873+
1874+static void __exit caam_sm_exit(void)
1875+{
1876+ struct device_node *dev_node;
1877+ struct platform_device *pdev;
1878+
1879+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1880+ if (!dev_node) {
1881+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
1882+ if (!dev_node)
1883+ return;
1884+ }
1885+
1886+ pdev = of_find_device_by_node(dev_node);
1887+ if (!pdev)
1888+ return;
1889+
1890+ of_node_put(dev_node);
1891+
1892+ caam_sm_shutdown(pdev);
1893+
1894+ return;
1895+}
1896+
1897+static int __init caam_sm_init(void)
1898+{
1899+ struct device_node *dev_node;
1900+ struct platform_device *pdev;
1901+
1902+ /*
1903+ * Do of_find_compatible_node() then of_find_device_by_node()
1904+ * once a functional device tree is available
1905+ */
1906+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
1907+ if (!dev_node) {
1908+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
1909+ if (!dev_node)
1910+ return -ENODEV;
1911+ }
1912+
1913+ pdev = of_find_device_by_node(dev_node);
1914+ if (!pdev)
1915+ return -ENODEV;
1916+
1917+ of_node_get(dev_node);
1918+
1919+ caam_sm_startup(pdev);
1920+
1921+ return 0;
1922+}
1923+
1924+module_init(caam_sm_init);
1925+module_exit(caam_sm_exit);
1926+
1927+MODULE_LICENSE("Dual BSD/GPL");
1928+MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore");
1929+MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");
1930--- /dev/null
1931+++ b/drivers/crypto/caam/sm_test.c
1932@@ -0,0 +1,571 @@
1933+// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
1934+/*
1935+ * Secure Memory / Keystore Exemplification Module
1936+ *
1937+ * Copyright 2012-2015 Freescale Semiconductor, Inc.
1938+ * Copyright 2016-2019 NXP
1939+ *
1940+ * This module has been overloaded as an example to show:
1941+ * - Secure memory subsystem initialization/shutdown
1942+ * - Allocation/deallocation of "slots" in a secure memory page
1943+ * - Loading and unloading of key material into slots
1944+ * - Covering of secure memory objects into "black keys" (ECB only at present)
1945+ * - Verification of key covering (by differentiation only)
1946+ * - Exportation of keys into secure memory blobs (with display of result)
1947+ * - Importation of keys from secure memory blobs (with display of result)
1948+ * - Verification of re-imported keys where possible.
1949+ *
1950+ * The module does not show the use of key objects as working key register
1951+ * source material at this time.
1952+ *
1953+ * This module can use a substantial amount of refactoring, which may occur
1954+ * after the API gets some mileage. Furthermore, expect this module to
1955+ * eventually disappear once the API is integrated into "real" software.
1956+ */
1957+
1958+#include "compat.h"
1959+#include "regs.h"
1960+#include "intern.h"
1961+#include "desc.h"
1962+#include "error.h"
1963+#include "jr.h"
1964+#include "sm.h"
1965+
1966+/* Fixed known pattern for a key modifier */
1967+static u8 skeymod[] = {
1968+ 0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
1969+ 0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00
1970+};
1971+
1972+/* Fixed known pattern for a key */
1973+static u8 clrkey[] = {
1974+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x0f, 0x06, 0x07,
1975+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
1976+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
1977+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
1978+ 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
1979+ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
1980+ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
1981+ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
1982+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
1983+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
1984+ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
1985+ 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
1986+ 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
1987+ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
1988+ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
1989+ 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
1990+ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
1991+ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
1992+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
1993+ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
1994+ 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
1995+ 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
1996+ 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
1997+ 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
1998+ 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
1999+ 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
2000+ 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
2001+ 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
2002+ 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
2003+ 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
2004+ 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
2005+ 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
2006+};
2007+
2008+static void key_display(struct device *dev, const char *label, u16 size,
2009+ u8 *key)
2010+{
2011+ unsigned i;
2012+
2013+ dev_dbg(dev, "%s", label);
2014+ for (i = 0; i < size; i += 8)
2015+ dev_dbg(dev,
2016+ "[%04d] %02x %02x %02x %02x %02x %02x %02x %02x\n",
2017+ i, key[i], key[i + 1], key[i + 2], key[i + 3],
2018+ key[i + 4], key[i + 5], key[i + 6], key[i + 7]);
2019+}
2020+
2021+int caam_sm_example_init(struct platform_device *pdev)
2022+{
2023+ struct device *ctrldev, *ksdev;
2024+ struct caam_drv_private *ctrlpriv;
2025+ struct caam_drv_private_sm *kspriv;
2026+ u32 unit, units;
2027+ int rtnval;
2028+ u8 clrkey8[8], clrkey16[16], clrkey24[24], clrkey32[32];
2029+ u8 blkkey8[AES_BLOCK_PAD(8)], blkkey16[AES_BLOCK_PAD(16)];
2030+ u8 blkkey24[AES_BLOCK_PAD(24)], blkkey32[AES_BLOCK_PAD(32)];
2031+ u8 rstkey8[AES_BLOCK_PAD(8)], rstkey16[AES_BLOCK_PAD(16)];
2032+ u8 rstkey24[AES_BLOCK_PAD(24)], rstkey32[AES_BLOCK_PAD(32)];
2033+ u8 __iomem *blob8, *blob16, *blob24, *blob32;
2034+ u32 keyslot8, keyslot16, keyslot24, keyslot32 = 0;
2035+
2036+ blob8 = blob16 = blob24 = blob32 = NULL;
2037+
2038+ /*
2039+ * 3.5.x and later revs for MX6 should be able to ditch this
2040+ * and detect via dts property
2041+ */
2042+ ctrldev = &pdev->dev;
2043+ ctrlpriv = dev_get_drvdata(ctrldev);
2044+
2045+ /*
2046+ * If ctrlpriv is NULL, it's probably because the caam driver wasn't
2047+ * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
2048+ */
2049+ if (!ctrlpriv)
2050+ return -ENODEV;
2051+
2052+ ksdev = ctrlpriv->smdev;
2053+ kspriv = dev_get_drvdata(ksdev);
2054+ if (kspriv == NULL)
2055+ return -ENODEV;
2056+
2057+ /* What keystores are available ? */
2058+ units = sm_detect_keystore_units(ksdev);
2059+ if (!units)
2060+ dev_err(ksdev, "blkkey_ex: no keystore units available\n");
2061+
2062+ /*
2063+ * MX6 bootloader stores some stuff in unit 0, so let's
2064+ * use 1 or above
2065+ */
2066+ if (units < 2) {
2067+ dev_err(ksdev, "blkkey_ex: insufficient keystore units\n");
2068+ return -ENODEV;
2069+ }
2070+ unit = 1;
2071+
2072+ dev_info(ksdev, "blkkey_ex: %d keystore units available\n", units);
2073+
2074+ /* Initialize/Establish Keystore */
2075+ sm_establish_keystore(ksdev, unit); /* Initalize store in #1 */
2076+
2077+ /*
2078+ * Now let's set up buffers for blobs in DMA-able memory. All are
2079+ * larger than need to be so that blob size can be seen.
2080+ */
2081+ blob8 = kzalloc(128, GFP_KERNEL | GFP_DMA);
2082+ blob16 = kzalloc(128, GFP_KERNEL | GFP_DMA);
2083+ blob24 = kzalloc(128, GFP_KERNEL | GFP_DMA);
2084+ blob32 = kzalloc(128, GFP_KERNEL | GFP_DMA);
2085+
2086+ if ((blob8 == NULL) || (blob16 == NULL) || (blob24 == NULL) ||
2087+ (blob32 == NULL)) {
2088+ rtnval = -ENOMEM;
2089+ dev_err(ksdev, "blkkey_ex: can't get blob buffers\n");
2090+ goto freemem;
2091+ }
2092+
2093+ /* Initialize clear keys with a known and recognizable pattern */
2094+ memcpy(clrkey8, clrkey, 8);
2095+ memcpy(clrkey16, clrkey, 16);
2096+ memcpy(clrkey24, clrkey, 24);
2097+ memcpy(clrkey32, clrkey, 32);
2098+
2099+ memset(blkkey8, 0, AES_BLOCK_PAD(8));
2100+ memset(blkkey16, 0, AES_BLOCK_PAD(16));
2101+ memset(blkkey24, 0, AES_BLOCK_PAD(24));
2102+ memset(blkkey32, 0, AES_BLOCK_PAD(32));
2103+
2104+ memset(rstkey8, 0, AES_BLOCK_PAD(8));
2105+ memset(rstkey16, 0, AES_BLOCK_PAD(16));
2106+ memset(rstkey24, 0, AES_BLOCK_PAD(24));
2107+ memset(rstkey32, 0, AES_BLOCK_PAD(32));
2108+
2109+ /*
2110+ * Allocate keyslots. Since we're going to blacken keys in-place,
2111+ * we want slots big enough to pad out to the next larger AES blocksize
2112+ * so pad them out.
2113+ */
2114+ rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(8),
2115+ &keyslot8);
2116+ if (rtnval)
2117+ goto freemem;
2118+
2119+ rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(16),
2120+ &keyslot16);
2121+ if (rtnval)
2122+ goto dealloc_slot8;
2123+
2124+ rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(24),
2125+ &keyslot24);
2126+ if (rtnval)
2127+ goto dealloc_slot16;
2128+
2129+ rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(32),
2130+ &keyslot32);
2131+ if (rtnval)
2132+ goto dealloc_slot24;
2133+
2134+
2135+ /* Now load clear key data into the newly allocated slots */
2136+ rtnval = sm_keystore_slot_load(ksdev, unit, keyslot8, clrkey8, 8);
2137+ if (rtnval)
2138+ goto dealloc;
2139+
2140+ rtnval = sm_keystore_slot_load(ksdev, unit, keyslot16, clrkey16, 16);
2141+ if (rtnval)
2142+ goto dealloc;
2143+
2144+ rtnval = sm_keystore_slot_load(ksdev, unit, keyslot24, clrkey24, 24);
2145+ if (rtnval)
2146+ goto dealloc;
2147+
2148+ rtnval = sm_keystore_slot_load(ksdev, unit, keyslot32, clrkey32, 32);
2149+ if (rtnval)
2150+ goto dealloc;
2151+
2152+ /*
2153+ * All cleartext keys are loaded into slots (in an unprotected
2154+ * partition at this time)
2155+ *
2156+ * Cover keys in-place
2157+ */
2158+ rtnval = sm_keystore_cover_key(ksdev, unit, keyslot8, 8, KEY_COVER_ECB);
2159+ if (rtnval) {
2160+ dev_err(ksdev, "blkkey_ex: can't cover 64-bit key\n");
2161+ goto dealloc;
2162+ }
2163+
2164+ rtnval = sm_keystore_cover_key(ksdev, unit, keyslot16, 16,
2165+ KEY_COVER_ECB);
2166+ if (rtnval) {
2167+ dev_err(ksdev, "blkkey_ex: can't cover 128-bit key\n");
2168+ goto dealloc;
2169+ }
2170+
2171+ rtnval = sm_keystore_cover_key(ksdev, unit, keyslot24, 24,
2172+ KEY_COVER_ECB);
2173+ if (rtnval) {
2174+ dev_err(ksdev, "blkkey_ex: can't cover 192-bit key\n");
2175+ goto dealloc;
2176+ }
2177+
2178+ rtnval = sm_keystore_cover_key(ksdev, unit, keyslot32, 32,
2179+ KEY_COVER_ECB);
2180+ if (rtnval) {
2181+ dev_err(ksdev, "blkkey_ex: can't cover 256-bit key\n");
2182+ goto dealloc;
2183+ }
2184+
2185+ /*
2186+ * Keys should be covered and appear sufficiently "random"
2187+ * as a result of the covering (blackening) process. Assuming
2188+ * non-secure mode, read them back out for examination; they should
2189+ * appear as random data, completely differing from the clear
2190+ * inputs. So, this will read them back from secure memory and
2191+ * compare them. If they match the clear key, then the covering
2192+ * operation didn't occur.
2193+ */
2194+
2195+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
2196+ blkkey8);
2197+ if (rtnval) {
2198+ dev_err(ksdev, "blkkey_ex: can't read 64-bit black key\n");
2199+ goto dealloc;
2200+ }
2201+
2202+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16,
2203+ AES_BLOCK_PAD(16), blkkey16);
2204+ if (rtnval) {
2205+ dev_err(ksdev, "blkkey_ex: can't read 128-bit black key\n");
2206+ goto dealloc;
2207+ }
2208+
2209+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24,
2210+ AES_BLOCK_PAD(24), blkkey24);
2211+ if (rtnval) {
2212+ dev_err(ksdev, "blkkey_ex: can't read 192-bit black key\n");
2213+ goto dealloc;
2214+ }
2215+
2216+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32,
2217+ AES_BLOCK_PAD(32), blkkey32);
2218+ if (rtnval) {
2219+ dev_err(ksdev, "blkkey_ex: can't read 256-bit black key\n");
2220+ goto dealloc;
2221+ }
2222+
2223+ rtnval = -EINVAL;
2224+ if (!memcmp(blkkey8, clrkey8, 8)) {
2225+ dev_err(ksdev, "blkkey_ex: 64-bit key cover failed\n");
2226+ goto dealloc;
2227+ }
2228+
2229+ if (!memcmp(blkkey16, clrkey16, 16)) {
2230+ dev_err(ksdev, "blkkey_ex: 128-bit key cover failed\n");
2231+ goto dealloc;
2232+ }
2233+
2234+ if (!memcmp(blkkey24, clrkey24, 24)) {
2235+ dev_err(ksdev, "blkkey_ex: 192-bit key cover failed\n");
2236+ goto dealloc;
2237+ }
2238+
2239+ if (!memcmp(blkkey32, clrkey32, 32)) {
2240+ dev_err(ksdev, "blkkey_ex: 256-bit key cover failed\n");
2241+ goto dealloc;
2242+ }
2243+
2244+
2245+ key_display(ksdev, "64-bit clear key:", 8, clrkey8);
2246+ key_display(ksdev, "64-bit black key:", AES_BLOCK_PAD(8), blkkey8);
2247+
2248+ key_display(ksdev, "128-bit clear key:", 16, clrkey16);
2249+ key_display(ksdev, "128-bit black key:", AES_BLOCK_PAD(16), blkkey16);
2250+
2251+ key_display(ksdev, "192-bit clear key:", 24, clrkey24);
2252+ key_display(ksdev, "192-bit black key:", AES_BLOCK_PAD(24), blkkey24);
2253+
2254+ key_display(ksdev, "256-bit clear key:", 32, clrkey32);
2255+ key_display(ksdev, "256-bit black key:", AES_BLOCK_PAD(32), blkkey32);
2256+
2257+ /*
2258+ * Now encapsulate all keys as SM blobs out to external memory
2259+ * Blobs will appear as random-looking blocks of data different
2260+ * from the original source key, and 48 bytes longer than the
2261+ * original key, to account for the extra data encapsulated within.
2262+ */
2263+ key_display(ksdev, "64-bit unwritten blob:", 96, blob8);
2264+ key_display(ksdev, "128-bit unwritten blob:", 96, blob16);
2265+ key_display(ksdev, "196-bit unwritten blob:", 96, blob24);
2266+ key_display(ksdev, "256-bit unwritten blob:", 96, blob32);
2267+
2268+ rtnval = sm_keystore_slot_export(ksdev, unit, keyslot8, BLACK_KEY,
2269+ KEY_COVER_ECB, blob8, 8, skeymod);
2270+ if (rtnval) {
2271+ dev_err(ksdev, "blkkey_ex: can't encapsulate 64-bit key\n");
2272+ goto dealloc;
2273+ }
2274+
2275+ rtnval = sm_keystore_slot_export(ksdev, unit, keyslot16, BLACK_KEY,
2276+ KEY_COVER_ECB, blob16, 16, skeymod);
2277+ if (rtnval) {
2278+ dev_err(ksdev, "blkkey_ex: can't encapsulate 128-bit key\n");
2279+ goto dealloc;
2280+ }
2281+
2282+ rtnval = sm_keystore_slot_export(ksdev, unit, keyslot24, BLACK_KEY,
2283+ KEY_COVER_ECB, blob24, 24, skeymod);
2284+ if (rtnval) {
2285+ dev_err(ksdev, "blkkey_ex: can't encapsulate 192-bit key\n");
2286+ goto dealloc;
2287+ }
2288+
2289+ rtnval = sm_keystore_slot_export(ksdev, unit, keyslot32, BLACK_KEY,
2290+ KEY_COVER_ECB, blob32, 32, skeymod);
2291+ if (rtnval) {
2292+ dev_err(ksdev, "blkkey_ex: can't encapsulate 256-bit key\n");
2293+ goto dealloc;
2294+ }
2295+
2296+ key_display(ksdev, "64-bit black key in blob:", 96, blob8);
2297+ key_display(ksdev, "128-bit black key in blob:", 96, blob16);
2298+ key_display(ksdev, "192-bit black key in blob:", 96, blob24);
2299+ key_display(ksdev, "256-bit black key in blob:", 96, blob32);
2300+
2301+ /*
2302+ * Now re-import black keys from secure-memory blobs stored
2303+ * in general memory from the previous operation. Since we are
2304+ * working with black keys, and since power has not cycled, the
2305+ * restored black keys should match the original blackened keys
2306+ * (this would not be true if the blobs were save in some non-volatile
2307+ * store, and power was cycled between the save and restore)
2308+ */
2309+ rtnval = sm_keystore_slot_import(ksdev, unit, keyslot8, BLACK_KEY,
2310+ KEY_COVER_ECB, blob8, 8, skeymod);
2311+ if (rtnval) {
2312+ dev_err(ksdev, "blkkey_ex: can't decapsulate 64-bit blob\n");
2313+ goto dealloc;
2314+ }
2315+
2316+ rtnval = sm_keystore_slot_import(ksdev, unit, keyslot16, BLACK_KEY,
2317+ KEY_COVER_ECB, blob16, 16, skeymod);
2318+ if (rtnval) {
2319+ dev_err(ksdev, "blkkey_ex: can't decapsulate 128-bit blob\n");
2320+ goto dealloc;
2321+ }
2322+
2323+ rtnval = sm_keystore_slot_import(ksdev, unit, keyslot24, BLACK_KEY,
2324+ KEY_COVER_ECB, blob24, 24, skeymod);
2325+ if (rtnval) {
2326+ dev_err(ksdev, "blkkey_ex: can't decapsulate 196-bit blob\n");
2327+ goto dealloc;
2328+ }
2329+
2330+ rtnval = sm_keystore_slot_import(ksdev, unit, keyslot32, BLACK_KEY,
2331+ KEY_COVER_ECB, blob32, 32, skeymod);
2332+ if (rtnval) {
2333+ dev_err(ksdev, "blkkey_ex: can't decapsulate 256-bit blob\n");
2334+ goto dealloc;
2335+ }
2336+
2337+
2338+ /*
2339+ * Blobs are now restored as black keys. Read those black keys back
2340+ * for a comparison with the original black key, they should match
2341+ */
2342+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
2343+ rstkey8);
2344+ if (rtnval) {
2345+ dev_err(ksdev,
2346+ "blkkey_ex: can't read restored 64-bit black key\n");
2347+ goto dealloc;
2348+ }
2349+
2350+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16,
2351+ AES_BLOCK_PAD(16), rstkey16);
2352+ if (rtnval) {
2353+ dev_err(ksdev,
2354+ "blkkey_ex: can't read restored 128-bit black key\n");
2355+ goto dealloc;
2356+ }
2357+
2358+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24,
2359+ AES_BLOCK_PAD(24), rstkey24);
2360+ if (rtnval) {
2361+ dev_err(ksdev,
2362+ "blkkey_ex: can't read restored 196-bit black key\n");
2363+ goto dealloc;
2364+ }
2365+
2366+ rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32,
2367+ AES_BLOCK_PAD(32), rstkey32);
2368+ if (rtnval) {
2369+ dev_err(ksdev,
2370+ "blkkey_ex: can't read restored 256-bit black key\n");
2371+ goto dealloc;
2372+ }
2373+
2374+ key_display(ksdev, "restored 64-bit black key:", AES_BLOCK_PAD(8),
2375+ rstkey8);
2376+ key_display(ksdev, "restored 128-bit black key:", AES_BLOCK_PAD(16),
2377+ rstkey16);
2378+ key_display(ksdev, "restored 192-bit black key:", AES_BLOCK_PAD(24),
2379+ rstkey24);
2380+ key_display(ksdev, "restored 256-bit black key:", AES_BLOCK_PAD(32),
2381+ rstkey32);
2382+
2383+ /*
2384+ * Compare the restored black keys with the original blackened keys
2385+ * As long as we're operating within the same power cycle, a black key
2386+ * restored from a blob should match the original black key IF the
2387+ * key happens to be of a size that matches a multiple of the AES
2388+ * blocksize. Any key that is padded to fill the block size will not
2389+ * match, excepting a key that exceeds a block; only the first full
2390+ * blocks will match (assuming ECB).
2391+ *
2392+ * Therefore, compare the 16 and 32 bit keys, they should match.
2393+ * The 24 bit key can only match within the first 16 byte block.
2394+ */
2395+
2396+ if (memcmp(rstkey16, blkkey16, AES_BLOCK_PAD(16))) {
2397+ dev_err(ksdev, "blkkey_ex: 128-bit restored key mismatch\n");
2398+ rtnval = -EINVAL;
2399+ }
2400+
2401+ /* Only first AES block will match, remainder subject to padding */
2402+ if (memcmp(rstkey24, blkkey24, 16)) {
2403+ dev_err(ksdev, "blkkey_ex: 192-bit restored key mismatch\n");
2404+ rtnval = -EINVAL;
2405+ }
2406+
2407+ if (memcmp(rstkey32, blkkey32, AES_BLOCK_PAD(32))) {
2408+ dev_err(ksdev, "blkkey_ex: 256-bit restored key mismatch\n");
2409+ rtnval = -EINVAL;
2410+ }
2411+
2412+
2413+ /* Remove keys from keystore */
2414+dealloc:
2415+ sm_keystore_slot_dealloc(ksdev, unit, keyslot32);
2416+dealloc_slot24:
2417+ sm_keystore_slot_dealloc(ksdev, unit, keyslot24);
2418+dealloc_slot16:
2419+ sm_keystore_slot_dealloc(ksdev, unit, keyslot16);
2420+dealloc_slot8:
2421+ sm_keystore_slot_dealloc(ksdev, unit, keyslot8);
2422+
2423+ /* Free resources */
2424+freemem:
2425+ kfree(blob8);
2426+ kfree(blob16);
2427+ kfree(blob24);
2428+ kfree(blob32);
2429+
2430+ /* Disconnect from keystore and leave */
2431+ sm_release_keystore(ksdev, unit);
2432+
2433+ return rtnval;
2434+}
2435+EXPORT_SYMBOL(caam_sm_example_init);
2436+
2437+void caam_sm_example_shutdown(void)
2438+{
2439+ /* unused in present version */
2440+ struct device_node *dev_node;
2441+ struct platform_device *pdev;
2442+
2443+ /*
2444+ * Do of_find_compatible_node() then of_find_device_by_node()
2445+ * once a functional device tree is available
2446+ */
2447+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
2448+ if (!dev_node) {
2449+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
2450+ if (!dev_node)
2451+ return;
2452+ }
2453+
2454+ pdev = of_find_device_by_node(dev_node);
2455+ if (!pdev)
2456+ return;
2457+
2458+ of_node_get(dev_node);
2459+
2460+}
2461+
2462+static int __init caam_sm_test_init(void)
2463+{
2464+ struct device_node *dev_node;
2465+ struct platform_device *pdev;
2466+ int ret;
2467+
2468+ /*
2469+ * Do of_find_compatible_node() then of_find_device_by_node()
2470+ * once a functional device tree is available
2471+ */
2472+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
2473+ if (!dev_node) {
2474+ dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
2475+ if (!dev_node)
2476+ return -ENODEV;
2477+ }
2478+
2479+ pdev = of_find_device_by_node(dev_node);
2480+ if (!pdev)
2481+ return -ENODEV;
2482+
2483+ of_node_put(dev_node);
2484+
2485+ ret = caam_sm_example_init(pdev);
2486+ if (ret)
2487+ dev_err(&pdev->dev, "SM test failed: %d\n", ret);
2488+ else
2489+ dev_info(&pdev->dev, "SM test passed\n");
2490+
2491+ return ret;
2492+}
2493+
2494+
2495+/* Module-based initialization needs to wait for dev tree */
2496+#ifdef CONFIG_OF
2497+module_init(caam_sm_test_init);
2498+module_exit(caam_sm_example_shutdown);
2499+
2500+MODULE_LICENSE("Dual BSD/GPL");
2501+MODULE_DESCRIPTION("FSL CAAM Black Key Usage Example");
2502+MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");
2503+#endif