blob: 54662e8977c9d22e4346a9789d0574a29c04dbb3 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * arch/arm/include/asm/io.h
4 *
5 * Copyright (C) 1996-2000 Russell King
6 *
7 * Modifications:
8 * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both
9 * constant addresses and variable addresses.
10 * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture
11 * specific IO header files.
12 * 27-Mar-1999 PJB Second parameter of memcpy_toio is const..
13 * 04-Apr-1999 PJB Added check_signature.
14 * 12-Dec-1999 RMK More cleanups
15 * 18-Jun-2000 RMK Removed virt_to_* and friends definitions
16 * 05-Oct-2004 BJD Moved memory string functions to use void __iomem
17 */
18#ifndef __ASM_ARM_IO_H
19#define __ASM_ARM_IO_H
20
21#ifdef __KERNEL__
22
23#include <linux/string.h>
24#include <linux/types.h>
25#include <asm/byteorder.h>
26#include <asm/memory.h>
27#include <asm-generic/pci_iomap.h>
28
29/*
30 * ISA I/O bus memory addresses are 1:1 with the physical address.
31 */
32#define isa_virt_to_bus virt_to_phys
33#define isa_bus_to_virt phys_to_virt
34
35/*
36 * Atomic MMIO-wide IO modify
37 */
38extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
39extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
40
41/*
42 * Generic IO read/write. These perform native-endian accesses. Note
43 * that some architectures will want to re-define __raw_{read,write}w.
44 */
45void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
46void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
47void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
48
49void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
50void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
51void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
52
53#if __LINUX_ARM_ARCH__ < 6
54/*
55 * Half-word accesses are problematic with RiscPC due to limitations of
56 * the bus. Rather than special-case the machine, just let the compiler
57 * generate the access for CPUs prior to ARMv6.
58 */
59#define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
60#define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
61#else
62/*
63 * When running under a hypervisor, we want to avoid I/O accesses with
64 * writeback addressing modes as these incur a significant performance
65 * overhead (the address generation must be emulated in software).
66 */
67#define __raw_writew __raw_writew
68static inline void __raw_writew(u16 val, volatile void __iomem *addr)
69{
70 asm volatile("strh %1, %0"
71 : : "Q" (*(volatile u16 __force *)addr), "r" (val));
72}
73
74#define __raw_readw __raw_readw
75static inline u16 __raw_readw(const volatile void __iomem *addr)
76{
77 u16 val;
78 asm volatile("ldrh %0, %1"
79 : "=r" (val)
80 : "Q" (*(volatile u16 __force *)addr));
81 return val;
82}
83#endif
84
85#define __raw_writeb __raw_writeb
86static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
87{
88 asm volatile("strb %1, %0"
89 : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
90}
91
92#define __raw_writel __raw_writel
93static inline void __raw_writel(u32 val, volatile void __iomem *addr)
94{
95 asm volatile("str %1, %0"
96 : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
97}
98
99#define __raw_readb __raw_readb
100static inline u8 __raw_readb(const volatile void __iomem *addr)
101{
102 u8 val;
103 asm volatile("ldrb %0, %1"
104 : "=r" (val)
105 : "Qo" (*(volatile u8 __force *)addr));
106 return val;
107}
108
109#define __raw_readl __raw_readl
110static inline u32 __raw_readl(const volatile void __iomem *addr)
111{
112 u32 val;
113 asm volatile("ldr %0, %1"
114 : "=r" (val)
115 : "Qo" (*(volatile u32 __force *)addr));
116 return val;
117}
118
119/*
120 * Architecture ioremap implementation.
121 */
122#define MT_DEVICE 0
123#define MT_DEVICE_NONSHARED 1
124#define MT_DEVICE_CACHED 2
125#define MT_DEVICE_WC 3
126/*
127 * types 4 onwards can be found in asm/mach/map.h and are undefined
128 * for ioremap
129 */
130
131/*
132 * __arm_ioremap takes CPU physical address.
133 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
134 * The _caller variety takes a __builtin_return_address(0) value for
135 * /proc/vmalloc to use - and should only be used in non-inline functions.
136 */
137extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
138 void *);
139extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
140extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
141extern void __iounmap(volatile void __iomem *addr);
142
143extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
144 unsigned int, void *);
145extern void (*arch_iounmap)(volatile void __iomem *);
146
147/*
148 * Bad read/write accesses...
149 */
150extern void __readwrite_bug(const char *fn);
151
152/*
153 * A typesafe __io() helper
154 */
155static inline void __iomem *__typesafe_io(unsigned long addr)
156{
157 return (void __iomem *)addr;
158}
159
160#define IOMEM(x) ((void __force __iomem *)(x))
161
162/* IO barriers */
163#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
164#include <asm/barrier.h>
165#define __iormb() rmb()
166#define __iowmb() wmb()
167#else
168#define __iormb() do { } while (0)
169#define __iowmb() do { } while (0)
170#endif
171
172/* PCI fixed i/o mapping */
173#define PCI_IO_VIRT_BASE 0xfee00000
174#define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE)
175
176#if defined(CONFIG_PCI)
177void pci_ioremap_set_mem_type(int mem_type);
178#else
179static inline void pci_ioremap_set_mem_type(int mem_type) {}
180#endif
181
182extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
183
184/* high-mem address map */
185extern unsigned mv_cp_virtual_to_physical(unsigned va);
186
187/*
188 * PCI configuration space mapping function.
189 *
190 * The PCI specification does not allow configuration write
191 * transactions to be posted. Add an arch specific
192 * pci_remap_cfgspace() definition that is implemented
193 * through strongly ordered memory mappings.
194 */
195#define pci_remap_cfgspace pci_remap_cfgspace
196void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
197/*
198 * Now, pick up the machine-defined IO definitions
199 */
200#ifdef CONFIG_NEED_MACH_IO_H
201#include <mach/io.h>
202#elif defined(CONFIG_PCI)
203#define IO_SPACE_LIMIT ((resource_size_t)0xfffff)
204#define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
205#else
206#define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT)
207#endif
208
209/*
210 * This is the limit of PC card/PCI/ISA IO space, which is by default
211 * 64K if we have PC card, PCI or ISA support. Otherwise, default to
212 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
213 * oopsing.)
214 *
215 * Only set this larger if you really need inb() et.al. to operate over
216 * a larger address space. Note that SOC_COMMON ioremaps each sockets
217 * IO space area, and so inb() et.al. must be defined to operate as per
218 * readb() et.al. on such platforms.
219 */
220#ifndef IO_SPACE_LIMIT
221#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
222#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
223#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
224#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
225#else
226#define IO_SPACE_LIMIT ((resource_size_t)0)
227#endif
228#endif
229
230/*
231 * IO port access primitives
232 * -------------------------
233 *
234 * The ARM doesn't have special IO access instructions; all IO is memory
235 * mapped. Note that these are defined to perform little endian accesses
236 * only. Their primary purpose is to access PCI and ISA peripherals.
237 *
238 * Note that for a big endian machine, this implies that the following
239 * big endian mode connectivity is in place, as described by numerous
240 * ARM documents:
241 *
242 * PCI: D0-D7 D8-D15 D16-D23 D24-D31
243 * ARM: D24-D31 D16-D23 D8-D15 D0-D7
244 *
245 * The machine specific io.h include defines __io to translate an "IO"
246 * address to a memory address.
247 *
248 * Note that we prevent GCC re-ordering or caching values in expressions
249 * by introducing sequence points into the in*() definitions. Note that
250 * __raw_* do not guarantee this behaviour.
251 *
252 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
253 */
254#ifdef __io
255#define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); })
256#define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \
257 cpu_to_le16(v),__io(p)); })
258#define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \
259 cpu_to_le32(v),__io(p)); })
260
261#define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
262#define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \
263 __raw_readw(__io(p))); __iormb(); __v; })
264#define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \
265 __raw_readl(__io(p))); __iormb(); __v; })
266
267#define outsb(p,d,l) __raw_writesb(__io(p),d,l)
268#define outsw(p,d,l) __raw_writesw(__io(p),d,l)
269#define outsl(p,d,l) __raw_writesl(__io(p),d,l)
270
271#define insb(p,d,l) __raw_readsb(__io(p),d,l)
272#define insw(p,d,l) __raw_readsw(__io(p),d,l)
273#define insl(p,d,l) __raw_readsl(__io(p),d,l)
274#endif
275
276/*
277 * String version of IO memory access ops:
278 */
279extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
280extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
281extern void _memset_io(volatile void __iomem *, int, size_t);
282
283/*
284 * Memory access primitives
285 * ------------------------
286 *
287 * These perform PCI memory accesses via an ioremap region. They don't
288 * take an address as such, but a cookie.
289 *
290 * Again, these are defined to perform little endian accesses. See the
291 * IO port primitives for more information.
292 */
293#ifndef readl
294#define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; })
295#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
296 __raw_readw(c)); __r; })
297#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
298 __raw_readl(c)); __r; })
299
300#define writeb_relaxed(v,c) __raw_writeb(v,c)
301#define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c)
302#define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c)
303
304#define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; })
305#define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; })
306#define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; })
307
308#define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); })
309#define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); })
310#define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); })
311
312#define readsb(p,d,l) __raw_readsb(p,d,l)
313#define readsw(p,d,l) __raw_readsw(p,d,l)
314#define readsl(p,d,l) __raw_readsl(p,d,l)
315
316#define writesb(p,d,l) __raw_writesb(p,d,l)
317#define writesw(p,d,l) __raw_writesw(p,d,l)
318#define writesl(p,d,l) __raw_writesl(p,d,l)
319
320#ifndef __ARMBE__
321static inline void memset_io(volatile void __iomem *dst, unsigned c,
322 size_t count)
323{
324 extern void mmioset(void *, unsigned int, size_t);
325 mmioset((void __force *)dst, c, count);
326}
327#define memset_io(dst,c,count) memset_io(dst,c,count)
328
329static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
330 size_t count)
331{
332 extern void mmiocpy(void *, const void *, size_t);
333 mmiocpy(to, (const void __force *)from, count);
334}
335#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
336
337static inline void memcpy_toio(volatile void __iomem *to, const void *from,
338 size_t count)
339{
340 extern void mmiocpy(void *, const void *, size_t);
341 mmiocpy((void __force *)to, from, count);
342}
343#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
344
345#else
346#define memset_io(c,v,l) _memset_io(c,(v),(l))
347#define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l))
348#define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l))
349#endif
350
351#endif /* readl */
352
353/*
354 * ioremap() and friends.
355 *
356 * ioremap() takes a resource address, and size. Due to the ARM memory
357 * types, it is important to use the correct ioremap() function as each
358 * mapping has specific properties.
359 *
360 * Function Memory type Cacheability Cache hint
361 * ioremap() Device n/a n/a
362 * ioremap_nocache() Device n/a n/a
363 * ioremap_cache() Normal Writeback Read allocate
364 * ioremap_wc() Normal Non-cacheable n/a
365 * ioremap_wt() Normal Non-cacheable n/a
366 *
367 * All device mappings have the following properties:
368 * - no access speculation
369 * - no repetition (eg, on return from an exception)
370 * - number, order and size of accesses are maintained
371 * - unaligned accesses are "unpredictable"
372 * - writes may be delayed before they hit the endpoint device
373 *
374 * ioremap_nocache() is the same as ioremap() as there are too many device
375 * drivers using this for device registers, and documentation which tells
376 * people to use it for such for this to be any different. This is not a
377 * safe fallback for memory-like mappings, or memory regions where the
378 * compiler may generate unaligned accesses - eg, via inlining its own
379 * memcpy.
380 *
381 * All normal memory mappings have the following properties:
382 * - reads can be repeated with no side effects
383 * - repeated reads return the last value written
384 * - reads can fetch additional locations without side effects
385 * - writes can be repeated (in certain cases) with no side effects
386 * - writes can be merged before accessing the target
387 * - unaligned accesses can be supported
388 * - ordering is not guaranteed without explicit dependencies or barrier
389 * instructions
390 * - writes may be delayed before they hit the endpoint memory
391 *
392 * The cache hint is only a performance hint: CPUs may alias these hints.
393 * Eg, a CPU not implementing read allocate but implementing write allocate
394 * will provide a write allocate mapping instead.
395 */
396void __iomem *ioremap(resource_size_t res_cookie, size_t size);
397#define ioremap ioremap
398#define ioremap_nocache ioremap
399
400/*
401 * Do not use ioremap_cache for mapping memory. Use memremap instead.
402 */
403void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
404#define ioremap_cache ioremap_cache
405
406/*
407 * Do not use ioremap_cached in new code. Provided for the benefit of
408 * the pxa2xx-flash MTD driver only.
409 */
410void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
411
412void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
413#define ioremap_wc ioremap_wc
414#define ioremap_wt ioremap_wc
415
416void iounmap(volatile void __iomem *iomem_cookie);
417#define iounmap iounmap
418
419void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
420#define arch_memremap_wb arch_memremap_wb
421
422/*
423 * io{read,write}{16,32}be() macros
424 */
425#define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
426#define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
427
428#define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
429#define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
430
431#ifndef ioport_map
432#define ioport_map ioport_map
433extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
434#endif
435#ifndef ioport_unmap
436#define ioport_unmap ioport_unmap
437extern void ioport_unmap(void __iomem *addr);
438#endif
439
440struct pci_dev;
441
442#define pci_iounmap pci_iounmap
443extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
444
445/*
446 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
447 * access
448 */
449#define xlate_dev_mem_ptr(p) __va(p)
450
451/*
452 * Convert a virtual cached pointer to an uncached pointer
453 */
454#define xlate_dev_kmem_ptr(p) p
455
456#include <asm-generic/io.h>
457
458#ifdef CONFIG_MMU
459#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
460extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
461extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
462extern int devmem_is_allowed(unsigned long pfn);
463extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
464 unsigned long flags);
465#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap
466#endif
467
468/*
469 * Register ISA memory and port locations for glibc iopl/inb/outb
470 * emulation.
471 */
472extern void register_isa_ports(unsigned int mmio, unsigned int io,
473 unsigned int io_shift);
474
475#endif /* __KERNEL__ */
476#endif /* __ASM_ARM_IO_H */