b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Just-In-Time compiler for eBPF filters on 32bit ARM |
| 4 | * |
| 5 | * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> |
| 6 | * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> |
| 7 | */ |
| 8 | |
| 9 | #include <linux/bpf.h> |
| 10 | #include <linux/bitops.h> |
| 11 | #include <linux/compiler.h> |
| 12 | #include <linux/errno.h> |
| 13 | #include <linux/filter.h> |
| 14 | #include <linux/netdevice.h> |
| 15 | #include <linux/string.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/if_vlan.h> |
| 18 | |
| 19 | #include <asm/cacheflush.h> |
| 20 | #include <asm/hwcap.h> |
| 21 | #include <asm/opcodes.h> |
| 22 | #include <asm/system_info.h> |
| 23 | |
| 24 | #include "bpf_jit_32.h" |
| 25 | |
| 26 | /* |
| 27 | * eBPF prog stack layout: |
| 28 | * |
| 29 | * high |
| 30 | * original ARM_SP => +-----+ |
| 31 | * | | callee saved registers |
| 32 | * +-----+ <= (BPF_FP + SCRATCH_SIZE) |
| 33 | * | ... | eBPF JIT scratch space |
| 34 | * eBPF fp register => +-----+ |
| 35 | * (BPF_FP) | ... | eBPF prog stack |
| 36 | * +-----+ |
| 37 | * |RSVD | JIT scratchpad |
| 38 | * current ARM_SP => +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE) |
| 39 | * | ... | caller-saved registers |
| 40 | * +-----+ |
| 41 | * | ... | arguments passed on stack |
| 42 | * ARM_SP during call => +-----| |
| 43 | * | | |
| 44 | * | ... | Function call stack |
| 45 | * | | |
| 46 | * +-----+ |
| 47 | * low |
| 48 | * |
| 49 | * The callee saved registers depends on whether frame pointers are enabled. |
| 50 | * With frame pointers (to be compliant with the ABI): |
| 51 | * |
| 52 | * high |
| 53 | * original ARM_SP => +--------------+ \ |
| 54 | * | pc | | |
| 55 | * current ARM_FP => +--------------+ } callee saved registers |
| 56 | * |r4-r9,fp,ip,lr| | |
| 57 | * +--------------+ / |
| 58 | * low |
| 59 | * |
| 60 | * Without frame pointers: |
| 61 | * |
| 62 | * high |
| 63 | * original ARM_SP => +--------------+ |
| 64 | * | r4-r9,fp,lr | callee saved registers |
| 65 | * current ARM_FP => +--------------+ |
| 66 | * low |
| 67 | * |
| 68 | * When popping registers off the stack at the end of a BPF function, we |
| 69 | * reference them via the current ARM_FP register. |
| 70 | * |
| 71 | * Some eBPF operations are implemented via a call to a helper function. |
| 72 | * Such calls are "invisible" in the eBPF code, so it is up to the calling |
| 73 | * program to preserve any caller-saved ARM registers during the call. The |
| 74 | * JIT emits code to push and pop those registers onto the stack, immediately |
| 75 | * above the callee stack frame. |
| 76 | */ |
| 77 | #define CALLEE_MASK (1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \ |
| 78 | 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \ |
| 79 | 1 << ARM_FP) |
| 80 | #define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR) |
| 81 | #define CALLEE_POP_MASK (CALLEE_MASK | 1 << ARM_PC) |
| 82 | |
| 83 | #define CALLER_MASK (1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3) |
| 84 | |
| 85 | enum { |
| 86 | /* Stack layout - these are offsets from (top of stack - 4) */ |
| 87 | BPF_R2_HI, |
| 88 | BPF_R2_LO, |
| 89 | BPF_R3_HI, |
| 90 | BPF_R3_LO, |
| 91 | BPF_R4_HI, |
| 92 | BPF_R4_LO, |
| 93 | BPF_R5_HI, |
| 94 | BPF_R5_LO, |
| 95 | BPF_R7_HI, |
| 96 | BPF_R7_LO, |
| 97 | BPF_R8_HI, |
| 98 | BPF_R8_LO, |
| 99 | BPF_R9_HI, |
| 100 | BPF_R9_LO, |
| 101 | BPF_FP_HI, |
| 102 | BPF_FP_LO, |
| 103 | BPF_TC_HI, |
| 104 | BPF_TC_LO, |
| 105 | BPF_AX_HI, |
| 106 | BPF_AX_LO, |
| 107 | /* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4, |
| 108 | * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9, |
| 109 | * BPF_REG_FP and Tail call counts. |
| 110 | */ |
| 111 | BPF_JIT_SCRATCH_REGS, |
| 112 | }; |
| 113 | |
| 114 | /* |
| 115 | * Negative "register" values indicate the register is stored on the stack |
| 116 | * and are the offset from the top of the eBPF JIT scratch space. |
| 117 | */ |
| 118 | #define STACK_OFFSET(k) (-4 - (k) * 4) |
| 119 | #define SCRATCH_SIZE (BPF_JIT_SCRATCH_REGS * 4) |
| 120 | |
| 121 | #ifdef CONFIG_FRAME_POINTER |
| 122 | #define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4) |
| 123 | #else |
| 124 | #define EBPF_SCRATCH_TO_ARM_FP(x) (x) |
| 125 | #endif |
| 126 | |
| 127 | #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) /* TEMP Register 1 */ |
| 128 | #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) /* TEMP Register 2 */ |
| 129 | #define TCALL_CNT (MAX_BPF_JIT_REG + 2) /* Tail Call Count */ |
| 130 | |
| 131 | #define FLAG_IMM_OVERFLOW (1 << 0) |
| 132 | |
| 133 | /* |
| 134 | * Map eBPF registers to ARM 32bit registers or stack scratch space. |
| 135 | * |
| 136 | * 1. First argument is passed using the arm 32bit registers and rest of the |
| 137 | * arguments are passed on stack scratch space. |
| 138 | * 2. First callee-saved argument is mapped to arm 32 bit registers and rest |
| 139 | * arguments are mapped to scratch space on stack. |
| 140 | * 3. We need two 64 bit temp registers to do complex operations on eBPF |
| 141 | * registers. |
| 142 | * |
| 143 | * As the eBPF registers are all 64 bit registers and arm has only 32 bit |
| 144 | * registers, we have to map each eBPF registers with two arm 32 bit regs or |
| 145 | * scratch memory space and we have to build eBPF 64 bit register from those. |
| 146 | * |
| 147 | */ |
| 148 | static const s8 bpf2a32[][2] = { |
| 149 | /* return value from in-kernel function, and exit value from eBPF */ |
| 150 | [BPF_REG_0] = {ARM_R1, ARM_R0}, |
| 151 | /* arguments from eBPF program to in-kernel function */ |
| 152 | [BPF_REG_1] = {ARM_R3, ARM_R2}, |
| 153 | /* Stored on stack scratch space */ |
| 154 | [BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)}, |
| 155 | [BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)}, |
| 156 | [BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)}, |
| 157 | [BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)}, |
| 158 | /* callee saved registers that in-kernel function will preserve */ |
| 159 | [BPF_REG_6] = {ARM_R5, ARM_R4}, |
| 160 | /* Stored on stack scratch space */ |
| 161 | [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, |
| 162 | [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, |
| 163 | [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, |
| 164 | /* Read only Frame Pointer to access Stack */ |
| 165 | [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, |
| 166 | /* Temporary Register for internal BPF JIT, can be used |
| 167 | * for constant blindings and others. |
| 168 | */ |
| 169 | [TMP_REG_1] = {ARM_R7, ARM_R6}, |
| 170 | [TMP_REG_2] = {ARM_R9, ARM_R8}, |
| 171 | /* Tail call count. Stored on stack scratch space. */ |
| 172 | [TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)}, |
| 173 | /* temporary register for blinding constants. |
| 174 | * Stored on stack scratch space. |
| 175 | */ |
| 176 | [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, |
| 177 | }; |
| 178 | |
| 179 | #define dst_lo dst[1] |
| 180 | #define dst_hi dst[0] |
| 181 | #define src_lo src[1] |
| 182 | #define src_hi src[0] |
| 183 | |
| 184 | /* |
| 185 | * JIT Context: |
| 186 | * |
| 187 | * prog : bpf_prog |
| 188 | * idx : index of current last JITed instruction. |
| 189 | * prologue_bytes : bytes used in prologue. |
| 190 | * epilogue_offset : offset of epilogue starting. |
| 191 | * offsets : array of eBPF instruction offsets in |
| 192 | * JITed code. |
| 193 | * target : final JITed code. |
| 194 | * epilogue_bytes : no of bytes used in epilogue. |
| 195 | * imm_count : no of immediate counts used for global |
| 196 | * variables. |
| 197 | * imms : array of global variable addresses. |
| 198 | */ |
| 199 | |
| 200 | struct jit_ctx { |
| 201 | const struct bpf_prog *prog; |
| 202 | unsigned int idx; |
| 203 | unsigned int prologue_bytes; |
| 204 | unsigned int epilogue_offset; |
| 205 | unsigned int cpu_architecture; |
| 206 | u32 flags; |
| 207 | u32 *offsets; |
| 208 | u32 *target; |
| 209 | u32 stack_size; |
| 210 | #if __LINUX_ARM_ARCH__ < 7 |
| 211 | u16 epilogue_bytes; |
| 212 | u16 imm_count; |
| 213 | u32 *imms; |
| 214 | #endif |
| 215 | }; |
| 216 | |
| 217 | /* |
| 218 | * Wrappers which handle both OABI and EABI and assures Thumb2 interworking |
| 219 | * (where the assembly routines like __aeabi_uidiv could cause problems). |
| 220 | */ |
| 221 | static u32 jit_udiv32(u32 dividend, u32 divisor) |
| 222 | { |
| 223 | return dividend / divisor; |
| 224 | } |
| 225 | |
| 226 | static u32 jit_mod32(u32 dividend, u32 divisor) |
| 227 | { |
| 228 | return dividend % divisor; |
| 229 | } |
| 230 | |
| 231 | static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx) |
| 232 | { |
| 233 | inst |= (cond << 28); |
| 234 | inst = __opcode_to_mem_arm(inst); |
| 235 | |
| 236 | if (ctx->target != NULL) |
| 237 | ctx->target[ctx->idx] = inst; |
| 238 | |
| 239 | ctx->idx++; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * Emit an instruction that will be executed unconditionally. |
| 244 | */ |
| 245 | static inline void emit(u32 inst, struct jit_ctx *ctx) |
| 246 | { |
| 247 | _emit(ARM_COND_AL, inst, ctx); |
| 248 | } |
| 249 | |
| 250 | /* |
| 251 | * This is rather horrid, but necessary to convert an integer constant |
| 252 | * to an immediate operand for the opcodes, and be able to detect at |
| 253 | * build time whether the constant can't be converted (iow, usable in |
| 254 | * BUILD_BUG_ON()). |
| 255 | */ |
| 256 | #define imm12val(v, s) (rol32(v, (s)) | (s) << 7) |
| 257 | #define const_imm8m(x) \ |
| 258 | ({ int r; \ |
| 259 | u32 v = (x); \ |
| 260 | if (!(v & ~0x000000ff)) \ |
| 261 | r = imm12val(v, 0); \ |
| 262 | else if (!(v & ~0xc000003f)) \ |
| 263 | r = imm12val(v, 2); \ |
| 264 | else if (!(v & ~0xf000000f)) \ |
| 265 | r = imm12val(v, 4); \ |
| 266 | else if (!(v & ~0xfc000003)) \ |
| 267 | r = imm12val(v, 6); \ |
| 268 | else if (!(v & ~0xff000000)) \ |
| 269 | r = imm12val(v, 8); \ |
| 270 | else if (!(v & ~0x3fc00000)) \ |
| 271 | r = imm12val(v, 10); \ |
| 272 | else if (!(v & ~0x0ff00000)) \ |
| 273 | r = imm12val(v, 12); \ |
| 274 | else if (!(v & ~0x03fc0000)) \ |
| 275 | r = imm12val(v, 14); \ |
| 276 | else if (!(v & ~0x00ff0000)) \ |
| 277 | r = imm12val(v, 16); \ |
| 278 | else if (!(v & ~0x003fc000)) \ |
| 279 | r = imm12val(v, 18); \ |
| 280 | else if (!(v & ~0x000ff000)) \ |
| 281 | r = imm12val(v, 20); \ |
| 282 | else if (!(v & ~0x0003fc00)) \ |
| 283 | r = imm12val(v, 22); \ |
| 284 | else if (!(v & ~0x0000ff00)) \ |
| 285 | r = imm12val(v, 24); \ |
| 286 | else if (!(v & ~0x00003fc0)) \ |
| 287 | r = imm12val(v, 26); \ |
| 288 | else if (!(v & ~0x00000ff0)) \ |
| 289 | r = imm12val(v, 28); \ |
| 290 | else if (!(v & ~0x000003fc)) \ |
| 291 | r = imm12val(v, 30); \ |
| 292 | else \ |
| 293 | r = -1; \ |
| 294 | r; }) |
| 295 | |
| 296 | /* |
| 297 | * Checks if immediate value can be converted to imm12(12 bits) value. |
| 298 | */ |
| 299 | static int imm8m(u32 x) |
| 300 | { |
| 301 | u32 rot; |
| 302 | |
| 303 | for (rot = 0; rot < 16; rot++) |
| 304 | if ((x & ~ror32(0xff, 2 * rot)) == 0) |
| 305 | return rol32(x, 2 * rot) | (rot << 8); |
| 306 | return -1; |
| 307 | } |
| 308 | |
| 309 | #define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x)) |
| 310 | |
| 311 | static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12) |
| 312 | { |
| 313 | op |= rt << 12 | rn << 16; |
| 314 | if (imm12 >= 0) |
| 315 | op |= ARM_INST_LDST__U; |
| 316 | else |
| 317 | imm12 = -imm12; |
| 318 | return op | (imm12 & ARM_INST_LDST__IMM12); |
| 319 | } |
| 320 | |
| 321 | static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8) |
| 322 | { |
| 323 | op |= rt << 12 | rn << 16; |
| 324 | if (imm8 >= 0) |
| 325 | op |= ARM_INST_LDST__U; |
| 326 | else |
| 327 | imm8 = -imm8; |
| 328 | return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f); |
| 329 | } |
| 330 | |
| 331 | #define ARM_LDR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off) |
| 332 | #define ARM_LDRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off) |
| 333 | #define ARM_LDRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off) |
| 334 | #define ARM_LDRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off) |
| 335 | |
| 336 | #define ARM_STR_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off) |
| 337 | #define ARM_STRB_I(rt, rn, off) arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off) |
| 338 | #define ARM_STRD_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off) |
| 339 | #define ARM_STRH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off) |
| 340 | |
| 341 | /* |
| 342 | * Initializes the JIT space with undefined instructions. |
| 343 | */ |
| 344 | static void jit_fill_hole(void *area, unsigned int size) |
| 345 | { |
| 346 | u32 *ptr; |
| 347 | /* We are guaranteed to have aligned memory. */ |
| 348 | for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) |
| 349 | *ptr++ = __opcode_to_mem_arm(ARM_INST_UDF); |
| 350 | } |
| 351 | |
| 352 | #if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) |
| 353 | /* EABI requires the stack to be aligned to 64-bit boundaries */ |
| 354 | #define STACK_ALIGNMENT 8 |
| 355 | #else |
| 356 | /* Stack must be aligned to 32-bit boundaries */ |
| 357 | #define STACK_ALIGNMENT 4 |
| 358 | #endif |
| 359 | |
| 360 | /* total stack size used in JITed code */ |
| 361 | #define _STACK_SIZE (ctx->prog->aux->stack_depth + SCRATCH_SIZE) |
| 362 | #define STACK_SIZE ALIGN(_STACK_SIZE, STACK_ALIGNMENT) |
| 363 | |
| 364 | #if __LINUX_ARM_ARCH__ < 7 |
| 365 | |
| 366 | static u16 imm_offset(u32 k, struct jit_ctx *ctx) |
| 367 | { |
| 368 | unsigned int i = 0, offset; |
| 369 | u16 imm; |
| 370 | |
| 371 | /* on the "fake" run we just count them (duplicates included) */ |
| 372 | if (ctx->target == NULL) { |
| 373 | ctx->imm_count++; |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | while ((i < ctx->imm_count) && ctx->imms[i]) { |
| 378 | if (ctx->imms[i] == k) |
| 379 | break; |
| 380 | i++; |
| 381 | } |
| 382 | |
| 383 | if (ctx->imms[i] == 0) |
| 384 | ctx->imms[i] = k; |
| 385 | |
| 386 | /* constants go just after the epilogue */ |
| 387 | offset = ctx->offsets[ctx->prog->len - 1] * 4; |
| 388 | offset += ctx->prologue_bytes; |
| 389 | offset += ctx->epilogue_bytes; |
| 390 | offset += i * 4; |
| 391 | |
| 392 | ctx->target[offset / 4] = k; |
| 393 | |
| 394 | /* PC in ARM mode == address of the instruction + 8 */ |
| 395 | imm = offset - (8 + ctx->idx * 4); |
| 396 | |
| 397 | if (imm & ~0xfff) { |
| 398 | /* |
| 399 | * literal pool is too far, signal it into flags. we |
| 400 | * can only detect it on the second pass unfortunately. |
| 401 | */ |
| 402 | ctx->flags |= FLAG_IMM_OVERFLOW; |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | return imm; |
| 407 | } |
| 408 | |
| 409 | #endif /* __LINUX_ARM_ARCH__ */ |
| 410 | |
| 411 | static inline int bpf2a32_offset(int bpf_to, int bpf_from, |
| 412 | const struct jit_ctx *ctx) { |
| 413 | int to, from; |
| 414 | |
| 415 | if (ctx->target == NULL) |
| 416 | return 0; |
| 417 | to = ctx->offsets[bpf_to]; |
| 418 | from = ctx->offsets[bpf_from]; |
| 419 | |
| 420 | return to - from - 1; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * Move an immediate that's not an imm8m to a core register. |
| 425 | */ |
| 426 | static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx) |
| 427 | { |
| 428 | #if __LINUX_ARM_ARCH__ < 7 |
| 429 | emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx); |
| 430 | #else |
| 431 | emit(ARM_MOVW(rd, val & 0xffff), ctx); |
| 432 | if (val > 0xffff) |
| 433 | emit(ARM_MOVT(rd, val >> 16), ctx); |
| 434 | #endif |
| 435 | } |
| 436 | |
| 437 | static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx) |
| 438 | { |
| 439 | int imm12 = imm8m(val); |
| 440 | |
| 441 | if (imm12 >= 0) |
| 442 | emit(ARM_MOV_I(rd, imm12), ctx); |
| 443 | else |
| 444 | emit_mov_i_no8m(rd, val, ctx); |
| 445 | } |
| 446 | |
| 447 | static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx) |
| 448 | { |
| 449 | if (elf_hwcap & HWCAP_THUMB) |
| 450 | emit(ARM_BX(tgt_reg), ctx); |
| 451 | else |
| 452 | emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx); |
| 453 | } |
| 454 | |
| 455 | static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx) |
| 456 | { |
| 457 | #if __LINUX_ARM_ARCH__ < 5 |
| 458 | emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx); |
| 459 | emit_bx_r(tgt_reg, ctx); |
| 460 | #else |
| 461 | emit(ARM_BLX_R(tgt_reg), ctx); |
| 462 | #endif |
| 463 | } |
| 464 | |
| 465 | static inline int epilogue_offset(const struct jit_ctx *ctx) |
| 466 | { |
| 467 | int to, from; |
| 468 | /* No need for 1st dummy run */ |
| 469 | if (ctx->target == NULL) |
| 470 | return 0; |
| 471 | to = ctx->epilogue_offset; |
| 472 | from = ctx->idx; |
| 473 | |
| 474 | return to - from - 2; |
| 475 | } |
| 476 | |
| 477 | static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op) |
| 478 | { |
| 479 | const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1); |
| 480 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 481 | |
| 482 | #if __LINUX_ARM_ARCH__ == 7 |
| 483 | if (elf_hwcap & HWCAP_IDIVA) { |
| 484 | if (op == BPF_DIV) |
| 485 | emit(ARM_UDIV(rd, rm, rn), ctx); |
| 486 | else { |
| 487 | emit(ARM_UDIV(ARM_IP, rm, rn), ctx); |
| 488 | emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx); |
| 489 | } |
| 490 | return; |
| 491 | } |
| 492 | #endif |
| 493 | |
| 494 | /* |
| 495 | * For BPF_ALU | BPF_DIV | BPF_K instructions |
| 496 | * As ARM_R1 and ARM_R0 contains 1st argument of bpf |
| 497 | * function, we need to save it on caller side to save |
| 498 | * it from getting destroyed within callee. |
| 499 | * After the return from the callee, we restore ARM_R0 |
| 500 | * ARM_R1. |
| 501 | */ |
| 502 | if (rn != ARM_R1) { |
| 503 | emit(ARM_MOV_R(tmp[0], ARM_R1), ctx); |
| 504 | emit(ARM_MOV_R(ARM_R1, rn), ctx); |
| 505 | } |
| 506 | if (rm != ARM_R0) { |
| 507 | emit(ARM_MOV_R(tmp[1], ARM_R0), ctx); |
| 508 | emit(ARM_MOV_R(ARM_R0, rm), ctx); |
| 509 | } |
| 510 | |
| 511 | /* Push caller-saved registers on stack */ |
| 512 | emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx); |
| 513 | |
| 514 | /* Call appropriate function */ |
| 515 | emit_mov_i(ARM_IP, op == BPF_DIV ? |
| 516 | (u32)jit_udiv32 : (u32)jit_mod32, ctx); |
| 517 | emit_blx_r(ARM_IP, ctx); |
| 518 | |
| 519 | /* Restore caller-saved registers from stack */ |
| 520 | emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx); |
| 521 | |
| 522 | /* Save return value */ |
| 523 | if (rd != ARM_R0) |
| 524 | emit(ARM_MOV_R(rd, ARM_R0), ctx); |
| 525 | |
| 526 | /* Restore ARM_R0 and ARM_R1 */ |
| 527 | if (rn != ARM_R1) |
| 528 | emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx); |
| 529 | if (rm != ARM_R0) |
| 530 | emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx); |
| 531 | } |
| 532 | |
| 533 | /* Is the translated BPF register on stack? */ |
| 534 | static bool is_stacked(s8 reg) |
| 535 | { |
| 536 | return reg < 0; |
| 537 | } |
| 538 | |
| 539 | /* If a BPF register is on the stack (stk is true), load it to the |
| 540 | * supplied temporary register and return the temporary register |
| 541 | * for subsequent operations, otherwise just use the CPU register. |
| 542 | */ |
| 543 | static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx) |
| 544 | { |
| 545 | if (is_stacked(reg)) { |
| 546 | emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); |
| 547 | reg = tmp; |
| 548 | } |
| 549 | return reg; |
| 550 | } |
| 551 | |
| 552 | static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp, |
| 553 | struct jit_ctx *ctx) |
| 554 | { |
| 555 | if (is_stacked(reg[1])) { |
| 556 | if (__LINUX_ARM_ARCH__ >= 6 || |
| 557 | ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { |
| 558 | emit(ARM_LDRD_I(tmp[1], ARM_FP, |
| 559 | EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| 560 | } else { |
| 561 | emit(ARM_LDR_I(tmp[1], ARM_FP, |
| 562 | EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| 563 | emit(ARM_LDR_I(tmp[0], ARM_FP, |
| 564 | EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); |
| 565 | } |
| 566 | reg = tmp; |
| 567 | } |
| 568 | return reg; |
| 569 | } |
| 570 | |
| 571 | /* If a BPF register is on the stack (stk is true), save the register |
| 572 | * back to the stack. If the source register is not the same, then |
| 573 | * move it into the correct register. |
| 574 | */ |
| 575 | static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx) |
| 576 | { |
| 577 | if (is_stacked(reg)) |
| 578 | emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx); |
| 579 | else if (reg != src) |
| 580 | emit(ARM_MOV_R(reg, src), ctx); |
| 581 | } |
| 582 | |
| 583 | static void arm_bpf_put_reg64(const s8 *reg, const s8 *src, |
| 584 | struct jit_ctx *ctx) |
| 585 | { |
| 586 | if (is_stacked(reg[1])) { |
| 587 | if (__LINUX_ARM_ARCH__ >= 6 || |
| 588 | ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) { |
| 589 | emit(ARM_STRD_I(src[1], ARM_FP, |
| 590 | EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| 591 | } else { |
| 592 | emit(ARM_STR_I(src[1], ARM_FP, |
| 593 | EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx); |
| 594 | emit(ARM_STR_I(src[0], ARM_FP, |
| 595 | EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx); |
| 596 | } |
| 597 | } else { |
| 598 | if (reg[1] != src[1]) |
| 599 | emit(ARM_MOV_R(reg[1], src[1]), ctx); |
| 600 | if (reg[0] != src[0]) |
| 601 | emit(ARM_MOV_R(reg[0], src[0]), ctx); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | static inline void emit_a32_mov_i(const s8 dst, const u32 val, |
| 606 | struct jit_ctx *ctx) |
| 607 | { |
| 608 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 609 | |
| 610 | if (is_stacked(dst)) { |
| 611 | emit_mov_i(tmp[1], val, ctx); |
| 612 | arm_bpf_put_reg32(dst, tmp[1], ctx); |
| 613 | } else { |
| 614 | emit_mov_i(dst, val, ctx); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx) |
| 619 | { |
| 620 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 621 | const s8 *rd = is_stacked(dst_lo) ? tmp : dst; |
| 622 | |
| 623 | emit_mov_i(rd[1], (u32)val, ctx); |
| 624 | emit_mov_i(rd[0], val >> 32, ctx); |
| 625 | |
| 626 | arm_bpf_put_reg64(dst, rd, ctx); |
| 627 | } |
| 628 | |
| 629 | /* Sign extended move */ |
| 630 | static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[], |
| 631 | const u32 val, struct jit_ctx *ctx) { |
| 632 | u64 val64 = val; |
| 633 | |
| 634 | if (is64 && (val & (1<<31))) |
| 635 | val64 |= 0xffffffff00000000ULL; |
| 636 | emit_a32_mov_i64(dst, val64, ctx); |
| 637 | } |
| 638 | |
| 639 | static inline void emit_a32_add_r(const u8 dst, const u8 src, |
| 640 | const bool is64, const bool hi, |
| 641 | struct jit_ctx *ctx) { |
| 642 | /* 64 bit : |
| 643 | * adds dst_lo, dst_lo, src_lo |
| 644 | * adc dst_hi, dst_hi, src_hi |
| 645 | * 32 bit : |
| 646 | * add dst_lo, dst_lo, src_lo |
| 647 | */ |
| 648 | if (!hi && is64) |
| 649 | emit(ARM_ADDS_R(dst, dst, src), ctx); |
| 650 | else if (hi && is64) |
| 651 | emit(ARM_ADC_R(dst, dst, src), ctx); |
| 652 | else |
| 653 | emit(ARM_ADD_R(dst, dst, src), ctx); |
| 654 | } |
| 655 | |
| 656 | static inline void emit_a32_sub_r(const u8 dst, const u8 src, |
| 657 | const bool is64, const bool hi, |
| 658 | struct jit_ctx *ctx) { |
| 659 | /* 64 bit : |
| 660 | * subs dst_lo, dst_lo, src_lo |
| 661 | * sbc dst_hi, dst_hi, src_hi |
| 662 | * 32 bit : |
| 663 | * sub dst_lo, dst_lo, src_lo |
| 664 | */ |
| 665 | if (!hi && is64) |
| 666 | emit(ARM_SUBS_R(dst, dst, src), ctx); |
| 667 | else if (hi && is64) |
| 668 | emit(ARM_SBC_R(dst, dst, src), ctx); |
| 669 | else |
| 670 | emit(ARM_SUB_R(dst, dst, src), ctx); |
| 671 | } |
| 672 | |
| 673 | static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64, |
| 674 | const bool hi, const u8 op, struct jit_ctx *ctx){ |
| 675 | switch (BPF_OP(op)) { |
| 676 | /* dst = dst + src */ |
| 677 | case BPF_ADD: |
| 678 | emit_a32_add_r(dst, src, is64, hi, ctx); |
| 679 | break; |
| 680 | /* dst = dst - src */ |
| 681 | case BPF_SUB: |
| 682 | emit_a32_sub_r(dst, src, is64, hi, ctx); |
| 683 | break; |
| 684 | /* dst = dst | src */ |
| 685 | case BPF_OR: |
| 686 | emit(ARM_ORR_R(dst, dst, src), ctx); |
| 687 | break; |
| 688 | /* dst = dst & src */ |
| 689 | case BPF_AND: |
| 690 | emit(ARM_AND_R(dst, dst, src), ctx); |
| 691 | break; |
| 692 | /* dst = dst ^ src */ |
| 693 | case BPF_XOR: |
| 694 | emit(ARM_EOR_R(dst, dst, src), ctx); |
| 695 | break; |
| 696 | /* dst = dst * src */ |
| 697 | case BPF_MUL: |
| 698 | emit(ARM_MUL(dst, dst, src), ctx); |
| 699 | break; |
| 700 | /* dst = dst << src */ |
| 701 | case BPF_LSH: |
| 702 | emit(ARM_LSL_R(dst, dst, src), ctx); |
| 703 | break; |
| 704 | /* dst = dst >> src */ |
| 705 | case BPF_RSH: |
| 706 | emit(ARM_LSR_R(dst, dst, src), ctx); |
| 707 | break; |
| 708 | /* dst = dst >> src (signed)*/ |
| 709 | case BPF_ARSH: |
| 710 | emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx); |
| 711 | break; |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | /* ALU operation (32 bit) |
| 716 | * dst = dst (op) src |
| 717 | */ |
| 718 | static inline void emit_a32_alu_r(const s8 dst, const s8 src, |
| 719 | struct jit_ctx *ctx, const bool is64, |
| 720 | const bool hi, const u8 op) { |
| 721 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 722 | s8 rn, rd; |
| 723 | |
| 724 | rn = arm_bpf_get_reg32(src, tmp[1], ctx); |
| 725 | rd = arm_bpf_get_reg32(dst, tmp[0], ctx); |
| 726 | /* ALU operation */ |
| 727 | emit_alu_r(rd, rn, is64, hi, op, ctx); |
| 728 | arm_bpf_put_reg32(dst, rd, ctx); |
| 729 | } |
| 730 | |
| 731 | /* ALU operation (64 bit) */ |
| 732 | static inline void emit_a32_alu_r64(const bool is64, const s8 dst[], |
| 733 | const s8 src[], struct jit_ctx *ctx, |
| 734 | const u8 op) { |
| 735 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 736 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 737 | const s8 *rd; |
| 738 | |
| 739 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 740 | if (is64) { |
| 741 | const s8 *rs; |
| 742 | |
| 743 | rs = arm_bpf_get_reg64(src, tmp2, ctx); |
| 744 | |
| 745 | /* ALU operation */ |
| 746 | emit_alu_r(rd[1], rs[1], true, false, op, ctx); |
| 747 | emit_alu_r(rd[0], rs[0], true, true, op, ctx); |
| 748 | } else { |
| 749 | s8 rs; |
| 750 | |
| 751 | rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 752 | |
| 753 | /* ALU operation */ |
| 754 | emit_alu_r(rd[1], rs, true, false, op, ctx); |
| 755 | if (!ctx->prog->aux->verifier_zext) |
| 756 | emit_a32_mov_i(rd[0], 0, ctx); |
| 757 | } |
| 758 | |
| 759 | arm_bpf_put_reg64(dst, rd, ctx); |
| 760 | } |
| 761 | |
| 762 | /* dst = src (4 bytes)*/ |
| 763 | static inline void emit_a32_mov_r(const s8 dst, const s8 src, |
| 764 | struct jit_ctx *ctx) { |
| 765 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 766 | s8 rt; |
| 767 | |
| 768 | rt = arm_bpf_get_reg32(src, tmp[0], ctx); |
| 769 | arm_bpf_put_reg32(dst, rt, ctx); |
| 770 | } |
| 771 | |
| 772 | /* dst = src */ |
| 773 | static inline void emit_a32_mov_r64(const bool is64, const s8 dst[], |
| 774 | const s8 src[], |
| 775 | struct jit_ctx *ctx) { |
| 776 | if (!is64) { |
| 777 | emit_a32_mov_r(dst_lo, src_lo, ctx); |
| 778 | if (!ctx->prog->aux->verifier_zext) |
| 779 | /* Zero out high 4 bytes */ |
| 780 | emit_a32_mov_i(dst_hi, 0, ctx); |
| 781 | } else if (__LINUX_ARM_ARCH__ < 6 && |
| 782 | ctx->cpu_architecture < CPU_ARCH_ARMv5TE) { |
| 783 | /* complete 8 byte move */ |
| 784 | emit_a32_mov_r(dst_lo, src_lo, ctx); |
| 785 | emit_a32_mov_r(dst_hi, src_hi, ctx); |
| 786 | } else if (is_stacked(src_lo) && is_stacked(dst_lo)) { |
| 787 | const u8 *tmp = bpf2a32[TMP_REG_1]; |
| 788 | |
| 789 | emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); |
| 790 | emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); |
| 791 | } else if (is_stacked(src_lo)) { |
| 792 | emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx); |
| 793 | } else if (is_stacked(dst_lo)) { |
| 794 | emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx); |
| 795 | } else { |
| 796 | emit(ARM_MOV_R(dst[0], src[0]), ctx); |
| 797 | emit(ARM_MOV_R(dst[1], src[1]), ctx); |
| 798 | } |
| 799 | } |
| 800 | |
| 801 | /* Shift operations */ |
| 802 | static inline void emit_a32_alu_i(const s8 dst, const u32 val, |
| 803 | struct jit_ctx *ctx, const u8 op) { |
| 804 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 805 | s8 rd; |
| 806 | |
| 807 | rd = arm_bpf_get_reg32(dst, tmp[0], ctx); |
| 808 | |
| 809 | /* Do shift operation */ |
| 810 | switch (op) { |
| 811 | case BPF_LSH: |
| 812 | emit(ARM_LSL_I(rd, rd, val), ctx); |
| 813 | break; |
| 814 | case BPF_RSH: |
| 815 | emit(ARM_LSR_I(rd, rd, val), ctx); |
| 816 | break; |
| 817 | case BPF_NEG: |
| 818 | emit(ARM_RSB_I(rd, rd, val), ctx); |
| 819 | break; |
| 820 | } |
| 821 | |
| 822 | arm_bpf_put_reg32(dst, rd, ctx); |
| 823 | } |
| 824 | |
| 825 | /* dst = ~dst (64 bit) */ |
| 826 | static inline void emit_a32_neg64(const s8 dst[], |
| 827 | struct jit_ctx *ctx){ |
| 828 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 829 | const s8 *rd; |
| 830 | |
| 831 | /* Setup Operand */ |
| 832 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 833 | |
| 834 | /* Do Negate Operation */ |
| 835 | emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx); |
| 836 | emit(ARM_RSC_I(rd[0], rd[0], 0), ctx); |
| 837 | |
| 838 | arm_bpf_put_reg64(dst, rd, ctx); |
| 839 | } |
| 840 | |
| 841 | /* dst = dst << src */ |
| 842 | static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[], |
| 843 | struct jit_ctx *ctx) { |
| 844 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 845 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 846 | const s8 *rd; |
| 847 | s8 rt; |
| 848 | |
| 849 | /* Setup Operands */ |
| 850 | rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 851 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 852 | |
| 853 | /* Do LSH operation */ |
| 854 | emit(ARM_SUB_I(ARM_IP, rt, 32), ctx); |
| 855 | emit(ARM_RSB_I(tmp2[0], rt, 32), ctx); |
| 856 | emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx); |
| 857 | emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx); |
| 858 | emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx); |
| 859 | emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx); |
| 860 | |
| 861 | arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| 862 | arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| 863 | } |
| 864 | |
| 865 | /* dst = dst >> src (signed)*/ |
| 866 | static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[], |
| 867 | struct jit_ctx *ctx) { |
| 868 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 869 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 870 | const s8 *rd; |
| 871 | s8 rt; |
| 872 | |
| 873 | /* Setup Operands */ |
| 874 | rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 875 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 876 | |
| 877 | /* Do the ARSH operation */ |
| 878 | emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); |
| 879 | emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); |
| 880 | emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); |
| 881 | emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); |
| 882 | _emit(ARM_COND_MI, ARM_B(0), ctx); |
| 883 | emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx); |
| 884 | emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx); |
| 885 | |
| 886 | arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| 887 | arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| 888 | } |
| 889 | |
| 890 | /* dst = dst >> src */ |
| 891 | static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[], |
| 892 | struct jit_ctx *ctx) { |
| 893 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 894 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 895 | const s8 *rd; |
| 896 | s8 rt; |
| 897 | |
| 898 | /* Setup Operands */ |
| 899 | rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 900 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 901 | |
| 902 | /* Do RSH operation */ |
| 903 | emit(ARM_RSB_I(ARM_IP, rt, 32), ctx); |
| 904 | emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx); |
| 905 | emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx); |
| 906 | emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx); |
| 907 | emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx); |
| 908 | emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx); |
| 909 | |
| 910 | arm_bpf_put_reg32(dst_lo, ARM_LR, ctx); |
| 911 | arm_bpf_put_reg32(dst_hi, ARM_IP, ctx); |
| 912 | } |
| 913 | |
| 914 | /* dst = dst << val */ |
| 915 | static inline void emit_a32_lsh_i64(const s8 dst[], |
| 916 | const u32 val, struct jit_ctx *ctx){ |
| 917 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 918 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 919 | const s8 *rd; |
| 920 | |
| 921 | /* Setup operands */ |
| 922 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 923 | |
| 924 | /* Do LSH operation */ |
| 925 | if (val < 32) { |
| 926 | emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx); |
| 927 | emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx); |
| 928 | emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx); |
| 929 | } else { |
| 930 | if (val == 32) |
| 931 | emit(ARM_MOV_R(rd[0], rd[1]), ctx); |
| 932 | else |
| 933 | emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx); |
| 934 | emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx); |
| 935 | } |
| 936 | |
| 937 | arm_bpf_put_reg64(dst, rd, ctx); |
| 938 | } |
| 939 | |
| 940 | /* dst = dst >> val */ |
| 941 | static inline void emit_a32_rsh_i64(const s8 dst[], |
| 942 | const u32 val, struct jit_ctx *ctx) { |
| 943 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 944 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 945 | const s8 *rd; |
| 946 | |
| 947 | /* Setup operands */ |
| 948 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 949 | |
| 950 | /* Do LSR operation */ |
| 951 | if (val == 0) { |
| 952 | /* An immediate value of 0 encodes a shift amount of 32 |
| 953 | * for LSR. To shift by 0, don't do anything. |
| 954 | */ |
| 955 | } else if (val < 32) { |
| 956 | emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); |
| 957 | emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); |
| 958 | emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx); |
| 959 | } else if (val == 32) { |
| 960 | emit(ARM_MOV_R(rd[1], rd[0]), ctx); |
| 961 | emit(ARM_MOV_I(rd[0], 0), ctx); |
| 962 | } else { |
| 963 | emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx); |
| 964 | emit(ARM_MOV_I(rd[0], 0), ctx); |
| 965 | } |
| 966 | |
| 967 | arm_bpf_put_reg64(dst, rd, ctx); |
| 968 | } |
| 969 | |
| 970 | /* dst = dst >> val (signed) */ |
| 971 | static inline void emit_a32_arsh_i64(const s8 dst[], |
| 972 | const u32 val, struct jit_ctx *ctx){ |
| 973 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 974 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 975 | const s8 *rd; |
| 976 | |
| 977 | /* Setup operands */ |
| 978 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 979 | |
| 980 | /* Do ARSH operation */ |
| 981 | if (val == 0) { |
| 982 | /* An immediate value of 0 encodes a shift amount of 32 |
| 983 | * for ASR. To shift by 0, don't do anything. |
| 984 | */ |
| 985 | } else if (val < 32) { |
| 986 | emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx); |
| 987 | emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx); |
| 988 | emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx); |
| 989 | } else if (val == 32) { |
| 990 | emit(ARM_MOV_R(rd[1], rd[0]), ctx); |
| 991 | emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); |
| 992 | } else { |
| 993 | emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx); |
| 994 | emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx); |
| 995 | } |
| 996 | |
| 997 | arm_bpf_put_reg64(dst, rd, ctx); |
| 998 | } |
| 999 | |
| 1000 | static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[], |
| 1001 | struct jit_ctx *ctx) { |
| 1002 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 1003 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1004 | const s8 *rd, *rt; |
| 1005 | |
| 1006 | /* Setup operands for multiplication */ |
| 1007 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 1008 | rt = arm_bpf_get_reg64(src, tmp2, ctx); |
| 1009 | |
| 1010 | /* Do Multiplication */ |
| 1011 | emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx); |
| 1012 | emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx); |
| 1013 | emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx); |
| 1014 | |
| 1015 | emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx); |
| 1016 | emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx); |
| 1017 | |
| 1018 | arm_bpf_put_reg32(dst_lo, ARM_IP, ctx); |
| 1019 | arm_bpf_put_reg32(dst_hi, rd[0], ctx); |
| 1020 | } |
| 1021 | |
| 1022 | static bool is_ldst_imm(s16 off, const u8 size) |
| 1023 | { |
| 1024 | s16 off_max = 0; |
| 1025 | |
| 1026 | switch (size) { |
| 1027 | case BPF_B: |
| 1028 | case BPF_W: |
| 1029 | off_max = 0xfff; |
| 1030 | break; |
| 1031 | case BPF_H: |
| 1032 | off_max = 0xff; |
| 1033 | break; |
| 1034 | case BPF_DW: |
| 1035 | /* Need to make sure off+4 does not overflow. */ |
| 1036 | off_max = 0xfff - 4; |
| 1037 | break; |
| 1038 | } |
| 1039 | return -off_max <= off && off <= off_max; |
| 1040 | } |
| 1041 | |
| 1042 | /* *(size *)(dst + off) = src */ |
| 1043 | static inline void emit_str_r(const s8 dst, const s8 src[], |
| 1044 | s16 off, struct jit_ctx *ctx, const u8 sz){ |
| 1045 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 1046 | s8 rd; |
| 1047 | |
| 1048 | rd = arm_bpf_get_reg32(dst, tmp[1], ctx); |
| 1049 | |
| 1050 | if (!is_ldst_imm(off, sz)) { |
| 1051 | emit_a32_mov_i(tmp[0], off, ctx); |
| 1052 | emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx); |
| 1053 | rd = tmp[0]; |
| 1054 | off = 0; |
| 1055 | } |
| 1056 | switch (sz) { |
| 1057 | case BPF_B: |
| 1058 | /* Store a Byte */ |
| 1059 | emit(ARM_STRB_I(src_lo, rd, off), ctx); |
| 1060 | break; |
| 1061 | case BPF_H: |
| 1062 | /* Store a HalfWord */ |
| 1063 | emit(ARM_STRH_I(src_lo, rd, off), ctx); |
| 1064 | break; |
| 1065 | case BPF_W: |
| 1066 | /* Store a Word */ |
| 1067 | emit(ARM_STR_I(src_lo, rd, off), ctx); |
| 1068 | break; |
| 1069 | case BPF_DW: |
| 1070 | /* Store a Double Word */ |
| 1071 | emit(ARM_STR_I(src_lo, rd, off), ctx); |
| 1072 | emit(ARM_STR_I(src_hi, rd, off + 4), ctx); |
| 1073 | break; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /* dst = *(size*)(src + off) */ |
| 1078 | static inline void emit_ldx_r(const s8 dst[], const s8 src, |
| 1079 | s16 off, struct jit_ctx *ctx, const u8 sz){ |
| 1080 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 1081 | const s8 *rd = is_stacked(dst_lo) ? tmp : dst; |
| 1082 | s8 rm = src; |
| 1083 | |
| 1084 | if (!is_ldst_imm(off, sz)) { |
| 1085 | emit_a32_mov_i(tmp[0], off, ctx); |
| 1086 | emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx); |
| 1087 | rm = tmp[0]; |
| 1088 | off = 0; |
| 1089 | } else if (rd[1] == rm) { |
| 1090 | emit(ARM_MOV_R(tmp[0], rm), ctx); |
| 1091 | rm = tmp[0]; |
| 1092 | } |
| 1093 | switch (sz) { |
| 1094 | case BPF_B: |
| 1095 | /* Load a Byte */ |
| 1096 | emit(ARM_LDRB_I(rd[1], rm, off), ctx); |
| 1097 | if (!ctx->prog->aux->verifier_zext) |
| 1098 | emit_a32_mov_i(rd[0], 0, ctx); |
| 1099 | break; |
| 1100 | case BPF_H: |
| 1101 | /* Load a HalfWord */ |
| 1102 | emit(ARM_LDRH_I(rd[1], rm, off), ctx); |
| 1103 | if (!ctx->prog->aux->verifier_zext) |
| 1104 | emit_a32_mov_i(rd[0], 0, ctx); |
| 1105 | break; |
| 1106 | case BPF_W: |
| 1107 | /* Load a Word */ |
| 1108 | emit(ARM_LDR_I(rd[1], rm, off), ctx); |
| 1109 | if (!ctx->prog->aux->verifier_zext) |
| 1110 | emit_a32_mov_i(rd[0], 0, ctx); |
| 1111 | break; |
| 1112 | case BPF_DW: |
| 1113 | /* Load a Double Word */ |
| 1114 | emit(ARM_LDR_I(rd[1], rm, off), ctx); |
| 1115 | emit(ARM_LDR_I(rd[0], rm, off + 4), ctx); |
| 1116 | break; |
| 1117 | } |
| 1118 | arm_bpf_put_reg64(dst, rd, ctx); |
| 1119 | } |
| 1120 | |
| 1121 | /* Arithmatic Operation */ |
| 1122 | static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm, |
| 1123 | const u8 rn, struct jit_ctx *ctx, u8 op, |
| 1124 | bool is_jmp64) { |
| 1125 | switch (op) { |
| 1126 | case BPF_JSET: |
| 1127 | if (is_jmp64) { |
| 1128 | emit(ARM_AND_R(ARM_IP, rt, rn), ctx); |
| 1129 | emit(ARM_AND_R(ARM_LR, rd, rm), ctx); |
| 1130 | emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx); |
| 1131 | } else { |
| 1132 | emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx); |
| 1133 | } |
| 1134 | break; |
| 1135 | case BPF_JEQ: |
| 1136 | case BPF_JNE: |
| 1137 | case BPF_JGT: |
| 1138 | case BPF_JGE: |
| 1139 | case BPF_JLE: |
| 1140 | case BPF_JLT: |
| 1141 | if (is_jmp64) { |
| 1142 | emit(ARM_CMP_R(rd, rm), ctx); |
| 1143 | /* Only compare low halve if high halve are equal. */ |
| 1144 | _emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx); |
| 1145 | } else { |
| 1146 | emit(ARM_CMP_R(rt, rn), ctx); |
| 1147 | } |
| 1148 | break; |
| 1149 | case BPF_JSLE: |
| 1150 | case BPF_JSGT: |
| 1151 | emit(ARM_CMP_R(rn, rt), ctx); |
| 1152 | if (is_jmp64) |
| 1153 | emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx); |
| 1154 | break; |
| 1155 | case BPF_JSLT: |
| 1156 | case BPF_JSGE: |
| 1157 | emit(ARM_CMP_R(rt, rn), ctx); |
| 1158 | if (is_jmp64) |
| 1159 | emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx); |
| 1160 | break; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | static int out_offset = -1; /* initialized on the first pass of build_body() */ |
| 1165 | static int emit_bpf_tail_call(struct jit_ctx *ctx) |
| 1166 | { |
| 1167 | |
| 1168 | /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ |
| 1169 | const s8 *r2 = bpf2a32[BPF_REG_2]; |
| 1170 | const s8 *r3 = bpf2a32[BPF_REG_3]; |
| 1171 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 1172 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1173 | const s8 *tcc = bpf2a32[TCALL_CNT]; |
| 1174 | const s8 *tc; |
| 1175 | const int idx0 = ctx->idx; |
| 1176 | #define cur_offset (ctx->idx - idx0) |
| 1177 | #define jmp_offset (out_offset - (cur_offset) - 2) |
| 1178 | u32 lo, hi; |
| 1179 | s8 r_array, r_index; |
| 1180 | int off; |
| 1181 | |
| 1182 | /* if (index >= array->map.max_entries) |
| 1183 | * goto out; |
| 1184 | */ |
| 1185 | BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) > |
| 1186 | ARM_INST_LDST__IMM12); |
| 1187 | off = offsetof(struct bpf_array, map.max_entries); |
| 1188 | r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx); |
| 1189 | /* index is 32-bit for arrays */ |
| 1190 | r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx); |
| 1191 | /* array->map.max_entries */ |
| 1192 | emit(ARM_LDR_I(tmp[1], r_array, off), ctx); |
| 1193 | /* index >= array->map.max_entries */ |
| 1194 | emit(ARM_CMP_R(r_index, tmp[1]), ctx); |
| 1195 | _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); |
| 1196 | |
| 1197 | /* tmp2[0] = array, tmp2[1] = index */ |
| 1198 | |
| 1199 | /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) |
| 1200 | * goto out; |
| 1201 | * tail_call_cnt++; |
| 1202 | */ |
| 1203 | lo = (u32)MAX_TAIL_CALL_CNT; |
| 1204 | hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32); |
| 1205 | tc = arm_bpf_get_reg64(tcc, tmp, ctx); |
| 1206 | emit(ARM_CMP_I(tc[0], hi), ctx); |
| 1207 | _emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx); |
| 1208 | _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); |
| 1209 | emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx); |
| 1210 | emit(ARM_ADC_I(tc[0], tc[0], 0), ctx); |
| 1211 | arm_bpf_put_reg64(tcc, tmp, ctx); |
| 1212 | |
| 1213 | /* prog = array->ptrs[index] |
| 1214 | * if (prog == NULL) |
| 1215 | * goto out; |
| 1216 | */ |
| 1217 | BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0); |
| 1218 | off = imm8m(offsetof(struct bpf_array, ptrs)); |
| 1219 | emit(ARM_ADD_I(tmp[1], r_array, off), ctx); |
| 1220 | emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx); |
| 1221 | emit(ARM_CMP_I(tmp[1], 0), ctx); |
| 1222 | _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); |
| 1223 | |
| 1224 | /* goto *(prog->bpf_func + prologue_size); */ |
| 1225 | BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) > |
| 1226 | ARM_INST_LDST__IMM12); |
| 1227 | off = offsetof(struct bpf_prog, bpf_func); |
| 1228 | emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx); |
| 1229 | emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx); |
| 1230 | emit_bx_r(tmp[1], ctx); |
| 1231 | |
| 1232 | /* out: */ |
| 1233 | if (out_offset == -1) |
| 1234 | out_offset = cur_offset; |
| 1235 | if (cur_offset != out_offset) { |
| 1236 | pr_err_once("tail_call out_offset = %d, expected %d!\n", |
| 1237 | cur_offset, out_offset); |
| 1238 | return -1; |
| 1239 | } |
| 1240 | return 0; |
| 1241 | #undef cur_offset |
| 1242 | #undef jmp_offset |
| 1243 | } |
| 1244 | |
| 1245 | /* 0xabcd => 0xcdab */ |
| 1246 | static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx) |
| 1247 | { |
| 1248 | #if __LINUX_ARM_ARCH__ < 6 |
| 1249 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1250 | |
| 1251 | emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); |
| 1252 | emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx); |
| 1253 | emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); |
| 1254 | emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx); |
| 1255 | #else /* ARMv6+ */ |
| 1256 | emit(ARM_REV16(rd, rn), ctx); |
| 1257 | #endif |
| 1258 | } |
| 1259 | |
| 1260 | /* 0xabcdefgh => 0xghefcdab */ |
| 1261 | static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx) |
| 1262 | { |
| 1263 | #if __LINUX_ARM_ARCH__ < 6 |
| 1264 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1265 | |
| 1266 | emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx); |
| 1267 | emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx); |
| 1268 | emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx); |
| 1269 | |
| 1270 | emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx); |
| 1271 | emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx); |
| 1272 | emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx); |
| 1273 | emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx); |
| 1274 | emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx); |
| 1275 | emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx); |
| 1276 | emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx); |
| 1277 | |
| 1278 | #else /* ARMv6+ */ |
| 1279 | emit(ARM_REV(rd, rn), ctx); |
| 1280 | #endif |
| 1281 | } |
| 1282 | |
| 1283 | // push the scratch stack register on top of the stack |
| 1284 | static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx) |
| 1285 | { |
| 1286 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1287 | const s8 *rt; |
| 1288 | u16 reg_set = 0; |
| 1289 | |
| 1290 | rt = arm_bpf_get_reg64(src, tmp2, ctx); |
| 1291 | |
| 1292 | reg_set = (1 << rt[1]) | (1 << rt[0]); |
| 1293 | emit(ARM_PUSH(reg_set), ctx); |
| 1294 | } |
| 1295 | |
| 1296 | static void build_prologue(struct jit_ctx *ctx) |
| 1297 | { |
| 1298 | const s8 r0 = bpf2a32[BPF_REG_0][1]; |
| 1299 | const s8 r2 = bpf2a32[BPF_REG_1][1]; |
| 1300 | const s8 r3 = bpf2a32[BPF_REG_1][0]; |
| 1301 | const s8 r4 = bpf2a32[BPF_REG_6][1]; |
| 1302 | const s8 fplo = bpf2a32[BPF_REG_FP][1]; |
| 1303 | const s8 fphi = bpf2a32[BPF_REG_FP][0]; |
| 1304 | const s8 *tcc = bpf2a32[TCALL_CNT]; |
| 1305 | |
| 1306 | /* Save callee saved registers. */ |
| 1307 | #ifdef CONFIG_FRAME_POINTER |
| 1308 | u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC; |
| 1309 | emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx); |
| 1310 | emit(ARM_PUSH(reg_set), ctx); |
| 1311 | emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx); |
| 1312 | #else |
| 1313 | emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx); |
| 1314 | emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx); |
| 1315 | #endif |
| 1316 | /* Save frame pointer for later */ |
| 1317 | emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx); |
| 1318 | |
| 1319 | ctx->stack_size = imm8m(STACK_SIZE); |
| 1320 | |
| 1321 | /* Set up function call stack */ |
| 1322 | emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx); |
| 1323 | |
| 1324 | /* Set up BPF prog stack base register */ |
| 1325 | emit_a32_mov_r(fplo, ARM_IP, ctx); |
| 1326 | emit_a32_mov_i(fphi, 0, ctx); |
| 1327 | |
| 1328 | /* mov r4, 0 */ |
| 1329 | emit(ARM_MOV_I(r4, 0), ctx); |
| 1330 | |
| 1331 | /* Move BPF_CTX to BPF_R1 */ |
| 1332 | emit(ARM_MOV_R(r3, r4), ctx); |
| 1333 | emit(ARM_MOV_R(r2, r0), ctx); |
| 1334 | /* Initialize Tail Count */ |
| 1335 | emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx); |
| 1336 | emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx); |
| 1337 | /* end of prologue */ |
| 1338 | } |
| 1339 | |
| 1340 | /* restore callee saved registers. */ |
| 1341 | static void build_epilogue(struct jit_ctx *ctx) |
| 1342 | { |
| 1343 | #ifdef CONFIG_FRAME_POINTER |
| 1344 | /* When using frame pointers, some additional registers need to |
| 1345 | * be loaded. */ |
| 1346 | u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP; |
| 1347 | emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx); |
| 1348 | emit(ARM_LDM(ARM_SP, reg_set), ctx); |
| 1349 | #else |
| 1350 | /* Restore callee saved registers. */ |
| 1351 | emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx); |
| 1352 | emit(ARM_POP(CALLEE_POP_MASK), ctx); |
| 1353 | #endif |
| 1354 | } |
| 1355 | |
| 1356 | /* |
| 1357 | * Convert an eBPF instruction to native instruction, i.e |
| 1358 | * JITs an eBPF instruction. |
| 1359 | * Returns : |
| 1360 | * 0 - Successfully JITed an 8-byte eBPF instruction |
| 1361 | * >0 - Successfully JITed a 16-byte eBPF instruction |
| 1362 | * <0 - Failed to JIT. |
| 1363 | */ |
| 1364 | static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) |
| 1365 | { |
| 1366 | const u8 code = insn->code; |
| 1367 | const s8 *dst = bpf2a32[insn->dst_reg]; |
| 1368 | const s8 *src = bpf2a32[insn->src_reg]; |
| 1369 | const s8 *tmp = bpf2a32[TMP_REG_1]; |
| 1370 | const s8 *tmp2 = bpf2a32[TMP_REG_2]; |
| 1371 | const s16 off = insn->off; |
| 1372 | const s32 imm = insn->imm; |
| 1373 | const int i = insn - ctx->prog->insnsi; |
| 1374 | const bool is64 = BPF_CLASS(code) == BPF_ALU64; |
| 1375 | const s8 *rd, *rs; |
| 1376 | s8 rd_lo, rt, rm, rn; |
| 1377 | s32 jmp_offset; |
| 1378 | |
| 1379 | #define check_imm(bits, imm) do { \ |
| 1380 | if ((imm) >= (1 << ((bits) - 1)) || \ |
| 1381 | (imm) < -(1 << ((bits) - 1))) { \ |
| 1382 | pr_info("[%2d] imm=%d(0x%x) out of range\n", \ |
| 1383 | i, imm, imm); \ |
| 1384 | return -EINVAL; \ |
| 1385 | } \ |
| 1386 | } while (0) |
| 1387 | #define check_imm24(imm) check_imm(24, imm) |
| 1388 | |
| 1389 | switch (code) { |
| 1390 | /* ALU operations */ |
| 1391 | |
| 1392 | /* dst = src */ |
| 1393 | case BPF_ALU | BPF_MOV | BPF_K: |
| 1394 | case BPF_ALU | BPF_MOV | BPF_X: |
| 1395 | case BPF_ALU64 | BPF_MOV | BPF_K: |
| 1396 | case BPF_ALU64 | BPF_MOV | BPF_X: |
| 1397 | switch (BPF_SRC(code)) { |
| 1398 | case BPF_X: |
| 1399 | if (imm == 1) { |
| 1400 | /* Special mov32 for zext */ |
| 1401 | emit_a32_mov_i(dst_hi, 0, ctx); |
| 1402 | break; |
| 1403 | } |
| 1404 | emit_a32_mov_r64(is64, dst, src, ctx); |
| 1405 | break; |
| 1406 | case BPF_K: |
| 1407 | /* Sign-extend immediate value to destination reg */ |
| 1408 | emit_a32_mov_se_i64(is64, dst, imm, ctx); |
| 1409 | break; |
| 1410 | } |
| 1411 | break; |
| 1412 | /* dst = dst + src/imm */ |
| 1413 | /* dst = dst - src/imm */ |
| 1414 | /* dst = dst | src/imm */ |
| 1415 | /* dst = dst & src/imm */ |
| 1416 | /* dst = dst ^ src/imm */ |
| 1417 | /* dst = dst * src/imm */ |
| 1418 | /* dst = dst << src */ |
| 1419 | /* dst = dst >> src */ |
| 1420 | case BPF_ALU | BPF_ADD | BPF_K: |
| 1421 | case BPF_ALU | BPF_ADD | BPF_X: |
| 1422 | case BPF_ALU | BPF_SUB | BPF_K: |
| 1423 | case BPF_ALU | BPF_SUB | BPF_X: |
| 1424 | case BPF_ALU | BPF_OR | BPF_K: |
| 1425 | case BPF_ALU | BPF_OR | BPF_X: |
| 1426 | case BPF_ALU | BPF_AND | BPF_K: |
| 1427 | case BPF_ALU | BPF_AND | BPF_X: |
| 1428 | case BPF_ALU | BPF_XOR | BPF_K: |
| 1429 | case BPF_ALU | BPF_XOR | BPF_X: |
| 1430 | case BPF_ALU | BPF_MUL | BPF_K: |
| 1431 | case BPF_ALU | BPF_MUL | BPF_X: |
| 1432 | case BPF_ALU | BPF_LSH | BPF_X: |
| 1433 | case BPF_ALU | BPF_RSH | BPF_X: |
| 1434 | case BPF_ALU | BPF_ARSH | BPF_K: |
| 1435 | case BPF_ALU | BPF_ARSH | BPF_X: |
| 1436 | case BPF_ALU64 | BPF_ADD | BPF_K: |
| 1437 | case BPF_ALU64 | BPF_ADD | BPF_X: |
| 1438 | case BPF_ALU64 | BPF_SUB | BPF_K: |
| 1439 | case BPF_ALU64 | BPF_SUB | BPF_X: |
| 1440 | case BPF_ALU64 | BPF_OR | BPF_K: |
| 1441 | case BPF_ALU64 | BPF_OR | BPF_X: |
| 1442 | case BPF_ALU64 | BPF_AND | BPF_K: |
| 1443 | case BPF_ALU64 | BPF_AND | BPF_X: |
| 1444 | case BPF_ALU64 | BPF_XOR | BPF_K: |
| 1445 | case BPF_ALU64 | BPF_XOR | BPF_X: |
| 1446 | switch (BPF_SRC(code)) { |
| 1447 | case BPF_X: |
| 1448 | emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code)); |
| 1449 | break; |
| 1450 | case BPF_K: |
| 1451 | /* Move immediate value to the temporary register |
| 1452 | * and then do the ALU operation on the temporary |
| 1453 | * register as this will sign-extend the immediate |
| 1454 | * value into temporary reg and then it would be |
| 1455 | * safe to do the operation on it. |
| 1456 | */ |
| 1457 | emit_a32_mov_se_i64(is64, tmp2, imm, ctx); |
| 1458 | emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code)); |
| 1459 | break; |
| 1460 | } |
| 1461 | break; |
| 1462 | /* dst = dst / src(imm) */ |
| 1463 | /* dst = dst % src(imm) */ |
| 1464 | case BPF_ALU | BPF_DIV | BPF_K: |
| 1465 | case BPF_ALU | BPF_DIV | BPF_X: |
| 1466 | case BPF_ALU | BPF_MOD | BPF_K: |
| 1467 | case BPF_ALU | BPF_MOD | BPF_X: |
| 1468 | rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx); |
| 1469 | switch (BPF_SRC(code)) { |
| 1470 | case BPF_X: |
| 1471 | rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx); |
| 1472 | break; |
| 1473 | case BPF_K: |
| 1474 | rt = tmp2[0]; |
| 1475 | emit_a32_mov_i(rt, imm, ctx); |
| 1476 | break; |
| 1477 | default: |
| 1478 | rt = src_lo; |
| 1479 | break; |
| 1480 | } |
| 1481 | emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code)); |
| 1482 | arm_bpf_put_reg32(dst_lo, rd_lo, ctx); |
| 1483 | if (!ctx->prog->aux->verifier_zext) |
| 1484 | emit_a32_mov_i(dst_hi, 0, ctx); |
| 1485 | break; |
| 1486 | case BPF_ALU64 | BPF_DIV | BPF_K: |
| 1487 | case BPF_ALU64 | BPF_DIV | BPF_X: |
| 1488 | case BPF_ALU64 | BPF_MOD | BPF_K: |
| 1489 | case BPF_ALU64 | BPF_MOD | BPF_X: |
| 1490 | goto notyet; |
| 1491 | /* dst = dst >> imm */ |
| 1492 | /* dst = dst << imm */ |
| 1493 | case BPF_ALU | BPF_RSH | BPF_K: |
| 1494 | case BPF_ALU | BPF_LSH | BPF_K: |
| 1495 | if (unlikely(imm > 31)) |
| 1496 | return -EINVAL; |
| 1497 | if (imm) |
| 1498 | emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code)); |
| 1499 | if (!ctx->prog->aux->verifier_zext) |
| 1500 | emit_a32_mov_i(dst_hi, 0, ctx); |
| 1501 | break; |
| 1502 | /* dst = dst << imm */ |
| 1503 | case BPF_ALU64 | BPF_LSH | BPF_K: |
| 1504 | if (unlikely(imm > 63)) |
| 1505 | return -EINVAL; |
| 1506 | emit_a32_lsh_i64(dst, imm, ctx); |
| 1507 | break; |
| 1508 | /* dst = dst >> imm */ |
| 1509 | case BPF_ALU64 | BPF_RSH | BPF_K: |
| 1510 | if (unlikely(imm > 63)) |
| 1511 | return -EINVAL; |
| 1512 | emit_a32_rsh_i64(dst, imm, ctx); |
| 1513 | break; |
| 1514 | /* dst = dst << src */ |
| 1515 | case BPF_ALU64 | BPF_LSH | BPF_X: |
| 1516 | emit_a32_lsh_r64(dst, src, ctx); |
| 1517 | break; |
| 1518 | /* dst = dst >> src */ |
| 1519 | case BPF_ALU64 | BPF_RSH | BPF_X: |
| 1520 | emit_a32_rsh_r64(dst, src, ctx); |
| 1521 | break; |
| 1522 | /* dst = dst >> src (signed) */ |
| 1523 | case BPF_ALU64 | BPF_ARSH | BPF_X: |
| 1524 | emit_a32_arsh_r64(dst, src, ctx); |
| 1525 | break; |
| 1526 | /* dst = dst >> imm (signed) */ |
| 1527 | case BPF_ALU64 | BPF_ARSH | BPF_K: |
| 1528 | if (unlikely(imm > 63)) |
| 1529 | return -EINVAL; |
| 1530 | emit_a32_arsh_i64(dst, imm, ctx); |
| 1531 | break; |
| 1532 | /* dst = ~dst */ |
| 1533 | case BPF_ALU | BPF_NEG: |
| 1534 | emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code)); |
| 1535 | if (!ctx->prog->aux->verifier_zext) |
| 1536 | emit_a32_mov_i(dst_hi, 0, ctx); |
| 1537 | break; |
| 1538 | /* dst = ~dst (64 bit) */ |
| 1539 | case BPF_ALU64 | BPF_NEG: |
| 1540 | emit_a32_neg64(dst, ctx); |
| 1541 | break; |
| 1542 | /* dst = dst * src/imm */ |
| 1543 | case BPF_ALU64 | BPF_MUL | BPF_X: |
| 1544 | case BPF_ALU64 | BPF_MUL | BPF_K: |
| 1545 | switch (BPF_SRC(code)) { |
| 1546 | case BPF_X: |
| 1547 | emit_a32_mul_r64(dst, src, ctx); |
| 1548 | break; |
| 1549 | case BPF_K: |
| 1550 | /* Move immediate value to the temporary register |
| 1551 | * and then do the multiplication on it as this |
| 1552 | * will sign-extend the immediate value into temp |
| 1553 | * reg then it would be safe to do the operation |
| 1554 | * on it. |
| 1555 | */ |
| 1556 | emit_a32_mov_se_i64(is64, tmp2, imm, ctx); |
| 1557 | emit_a32_mul_r64(dst, tmp2, ctx); |
| 1558 | break; |
| 1559 | } |
| 1560 | break; |
| 1561 | /* dst = htole(dst) */ |
| 1562 | /* dst = htobe(dst) */ |
| 1563 | case BPF_ALU | BPF_END | BPF_FROM_LE: |
| 1564 | case BPF_ALU | BPF_END | BPF_FROM_BE: |
| 1565 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 1566 | if (BPF_SRC(code) == BPF_FROM_LE) |
| 1567 | goto emit_bswap_uxt; |
| 1568 | switch (imm) { |
| 1569 | case 16: |
| 1570 | emit_rev16(rd[1], rd[1], ctx); |
| 1571 | goto emit_bswap_uxt; |
| 1572 | case 32: |
| 1573 | emit_rev32(rd[1], rd[1], ctx); |
| 1574 | goto emit_bswap_uxt; |
| 1575 | case 64: |
| 1576 | emit_rev32(ARM_LR, rd[1], ctx); |
| 1577 | emit_rev32(rd[1], rd[0], ctx); |
| 1578 | emit(ARM_MOV_R(rd[0], ARM_LR), ctx); |
| 1579 | break; |
| 1580 | } |
| 1581 | goto exit; |
| 1582 | emit_bswap_uxt: |
| 1583 | switch (imm) { |
| 1584 | case 16: |
| 1585 | /* zero-extend 16 bits into 64 bits */ |
| 1586 | #if __LINUX_ARM_ARCH__ < 6 |
| 1587 | emit_a32_mov_i(tmp2[1], 0xffff, ctx); |
| 1588 | emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx); |
| 1589 | #else /* ARMv6+ */ |
| 1590 | emit(ARM_UXTH(rd[1], rd[1]), ctx); |
| 1591 | #endif |
| 1592 | if (!ctx->prog->aux->verifier_zext) |
| 1593 | emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); |
| 1594 | break; |
| 1595 | case 32: |
| 1596 | /* zero-extend 32 bits into 64 bits */ |
| 1597 | if (!ctx->prog->aux->verifier_zext) |
| 1598 | emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx); |
| 1599 | break; |
| 1600 | case 64: |
| 1601 | /* nop */ |
| 1602 | break; |
| 1603 | } |
| 1604 | exit: |
| 1605 | arm_bpf_put_reg64(dst, rd, ctx); |
| 1606 | break; |
| 1607 | /* dst = imm64 */ |
| 1608 | case BPF_LD | BPF_IMM | BPF_DW: |
| 1609 | { |
| 1610 | u64 val = (u32)imm | (u64)insn[1].imm << 32; |
| 1611 | |
| 1612 | emit_a32_mov_i64(dst, val, ctx); |
| 1613 | |
| 1614 | return 1; |
| 1615 | } |
| 1616 | /* LDX: dst = *(size *)(src + off) */ |
| 1617 | case BPF_LDX | BPF_MEM | BPF_W: |
| 1618 | case BPF_LDX | BPF_MEM | BPF_H: |
| 1619 | case BPF_LDX | BPF_MEM | BPF_B: |
| 1620 | case BPF_LDX | BPF_MEM | BPF_DW: |
| 1621 | rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 1622 | emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code)); |
| 1623 | break; |
| 1624 | /* speculation barrier */ |
| 1625 | case BPF_ST | BPF_NOSPEC: |
| 1626 | break; |
| 1627 | /* ST: *(size *)(dst + off) = imm */ |
| 1628 | case BPF_ST | BPF_MEM | BPF_W: |
| 1629 | case BPF_ST | BPF_MEM | BPF_H: |
| 1630 | case BPF_ST | BPF_MEM | BPF_B: |
| 1631 | case BPF_ST | BPF_MEM | BPF_DW: |
| 1632 | switch (BPF_SIZE(code)) { |
| 1633 | case BPF_DW: |
| 1634 | /* Sign-extend immediate value into temp reg */ |
| 1635 | emit_a32_mov_se_i64(true, tmp2, imm, ctx); |
| 1636 | break; |
| 1637 | case BPF_W: |
| 1638 | case BPF_H: |
| 1639 | case BPF_B: |
| 1640 | emit_a32_mov_i(tmp2[1], imm, ctx); |
| 1641 | break; |
| 1642 | } |
| 1643 | emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code)); |
| 1644 | break; |
| 1645 | /* STX XADD: lock *(u32 *)(dst + off) += src */ |
| 1646 | case BPF_STX | BPF_XADD | BPF_W: |
| 1647 | /* STX XADD: lock *(u64 *)(dst + off) += src */ |
| 1648 | case BPF_STX | BPF_XADD | BPF_DW: |
| 1649 | goto notyet; |
| 1650 | /* STX: *(size *)(dst + off) = src */ |
| 1651 | case BPF_STX | BPF_MEM | BPF_W: |
| 1652 | case BPF_STX | BPF_MEM | BPF_H: |
| 1653 | case BPF_STX | BPF_MEM | BPF_B: |
| 1654 | case BPF_STX | BPF_MEM | BPF_DW: |
| 1655 | rs = arm_bpf_get_reg64(src, tmp2, ctx); |
| 1656 | emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code)); |
| 1657 | break; |
| 1658 | /* PC += off if dst == src */ |
| 1659 | /* PC += off if dst > src */ |
| 1660 | /* PC += off if dst >= src */ |
| 1661 | /* PC += off if dst < src */ |
| 1662 | /* PC += off if dst <= src */ |
| 1663 | /* PC += off if dst != src */ |
| 1664 | /* PC += off if dst > src (signed) */ |
| 1665 | /* PC += off if dst >= src (signed) */ |
| 1666 | /* PC += off if dst < src (signed) */ |
| 1667 | /* PC += off if dst <= src (signed) */ |
| 1668 | /* PC += off if dst & src */ |
| 1669 | case BPF_JMP | BPF_JEQ | BPF_X: |
| 1670 | case BPF_JMP | BPF_JGT | BPF_X: |
| 1671 | case BPF_JMP | BPF_JGE | BPF_X: |
| 1672 | case BPF_JMP | BPF_JNE | BPF_X: |
| 1673 | case BPF_JMP | BPF_JSGT | BPF_X: |
| 1674 | case BPF_JMP | BPF_JSGE | BPF_X: |
| 1675 | case BPF_JMP | BPF_JSET | BPF_X: |
| 1676 | case BPF_JMP | BPF_JLE | BPF_X: |
| 1677 | case BPF_JMP | BPF_JLT | BPF_X: |
| 1678 | case BPF_JMP | BPF_JSLT | BPF_X: |
| 1679 | case BPF_JMP | BPF_JSLE | BPF_X: |
| 1680 | case BPF_JMP32 | BPF_JEQ | BPF_X: |
| 1681 | case BPF_JMP32 | BPF_JGT | BPF_X: |
| 1682 | case BPF_JMP32 | BPF_JGE | BPF_X: |
| 1683 | case BPF_JMP32 | BPF_JNE | BPF_X: |
| 1684 | case BPF_JMP32 | BPF_JSGT | BPF_X: |
| 1685 | case BPF_JMP32 | BPF_JSGE | BPF_X: |
| 1686 | case BPF_JMP32 | BPF_JSET | BPF_X: |
| 1687 | case BPF_JMP32 | BPF_JLE | BPF_X: |
| 1688 | case BPF_JMP32 | BPF_JLT | BPF_X: |
| 1689 | case BPF_JMP32 | BPF_JSLT | BPF_X: |
| 1690 | case BPF_JMP32 | BPF_JSLE | BPF_X: |
| 1691 | /* Setup source registers */ |
| 1692 | rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx); |
| 1693 | rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx); |
| 1694 | goto go_jmp; |
| 1695 | /* PC += off if dst == imm */ |
| 1696 | /* PC += off if dst > imm */ |
| 1697 | /* PC += off if dst >= imm */ |
| 1698 | /* PC += off if dst < imm */ |
| 1699 | /* PC += off if dst <= imm */ |
| 1700 | /* PC += off if dst != imm */ |
| 1701 | /* PC += off if dst > imm (signed) */ |
| 1702 | /* PC += off if dst >= imm (signed) */ |
| 1703 | /* PC += off if dst < imm (signed) */ |
| 1704 | /* PC += off if dst <= imm (signed) */ |
| 1705 | /* PC += off if dst & imm */ |
| 1706 | case BPF_JMP | BPF_JEQ | BPF_K: |
| 1707 | case BPF_JMP | BPF_JGT | BPF_K: |
| 1708 | case BPF_JMP | BPF_JGE | BPF_K: |
| 1709 | case BPF_JMP | BPF_JNE | BPF_K: |
| 1710 | case BPF_JMP | BPF_JSGT | BPF_K: |
| 1711 | case BPF_JMP | BPF_JSGE | BPF_K: |
| 1712 | case BPF_JMP | BPF_JSET | BPF_K: |
| 1713 | case BPF_JMP | BPF_JLT | BPF_K: |
| 1714 | case BPF_JMP | BPF_JLE | BPF_K: |
| 1715 | case BPF_JMP | BPF_JSLT | BPF_K: |
| 1716 | case BPF_JMP | BPF_JSLE | BPF_K: |
| 1717 | case BPF_JMP32 | BPF_JEQ | BPF_K: |
| 1718 | case BPF_JMP32 | BPF_JGT | BPF_K: |
| 1719 | case BPF_JMP32 | BPF_JGE | BPF_K: |
| 1720 | case BPF_JMP32 | BPF_JNE | BPF_K: |
| 1721 | case BPF_JMP32 | BPF_JSGT | BPF_K: |
| 1722 | case BPF_JMP32 | BPF_JSGE | BPF_K: |
| 1723 | case BPF_JMP32 | BPF_JSET | BPF_K: |
| 1724 | case BPF_JMP32 | BPF_JLT | BPF_K: |
| 1725 | case BPF_JMP32 | BPF_JLE | BPF_K: |
| 1726 | case BPF_JMP32 | BPF_JSLT | BPF_K: |
| 1727 | case BPF_JMP32 | BPF_JSLE | BPF_K: |
| 1728 | if (off == 0) |
| 1729 | break; |
| 1730 | rm = tmp2[0]; |
| 1731 | rn = tmp2[1]; |
| 1732 | /* Sign-extend immediate value */ |
| 1733 | emit_a32_mov_se_i64(true, tmp2, imm, ctx); |
| 1734 | go_jmp: |
| 1735 | /* Setup destination register */ |
| 1736 | rd = arm_bpf_get_reg64(dst, tmp, ctx); |
| 1737 | |
| 1738 | /* Check for the condition */ |
| 1739 | emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code), |
| 1740 | BPF_CLASS(code) == BPF_JMP); |
| 1741 | |
| 1742 | /* Setup JUMP instruction */ |
| 1743 | jmp_offset = bpf2a32_offset(i+off, i, ctx); |
| 1744 | switch (BPF_OP(code)) { |
| 1745 | case BPF_JNE: |
| 1746 | case BPF_JSET: |
| 1747 | _emit(ARM_COND_NE, ARM_B(jmp_offset), ctx); |
| 1748 | break; |
| 1749 | case BPF_JEQ: |
| 1750 | _emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx); |
| 1751 | break; |
| 1752 | case BPF_JGT: |
| 1753 | _emit(ARM_COND_HI, ARM_B(jmp_offset), ctx); |
| 1754 | break; |
| 1755 | case BPF_JGE: |
| 1756 | _emit(ARM_COND_CS, ARM_B(jmp_offset), ctx); |
| 1757 | break; |
| 1758 | case BPF_JSGT: |
| 1759 | _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); |
| 1760 | break; |
| 1761 | case BPF_JSGE: |
| 1762 | _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); |
| 1763 | break; |
| 1764 | case BPF_JLE: |
| 1765 | _emit(ARM_COND_LS, ARM_B(jmp_offset), ctx); |
| 1766 | break; |
| 1767 | case BPF_JLT: |
| 1768 | _emit(ARM_COND_CC, ARM_B(jmp_offset), ctx); |
| 1769 | break; |
| 1770 | case BPF_JSLT: |
| 1771 | _emit(ARM_COND_LT, ARM_B(jmp_offset), ctx); |
| 1772 | break; |
| 1773 | case BPF_JSLE: |
| 1774 | _emit(ARM_COND_GE, ARM_B(jmp_offset), ctx); |
| 1775 | break; |
| 1776 | } |
| 1777 | break; |
| 1778 | /* JMP OFF */ |
| 1779 | case BPF_JMP | BPF_JA: |
| 1780 | { |
| 1781 | if (off == 0) |
| 1782 | break; |
| 1783 | jmp_offset = bpf2a32_offset(i+off, i, ctx); |
| 1784 | check_imm24(jmp_offset); |
| 1785 | emit(ARM_B(jmp_offset), ctx); |
| 1786 | break; |
| 1787 | } |
| 1788 | /* tail call */ |
| 1789 | case BPF_JMP | BPF_TAIL_CALL: |
| 1790 | if (emit_bpf_tail_call(ctx)) |
| 1791 | return -EFAULT; |
| 1792 | break; |
| 1793 | /* function call */ |
| 1794 | case BPF_JMP | BPF_CALL: |
| 1795 | { |
| 1796 | const s8 *r0 = bpf2a32[BPF_REG_0]; |
| 1797 | const s8 *r1 = bpf2a32[BPF_REG_1]; |
| 1798 | const s8 *r2 = bpf2a32[BPF_REG_2]; |
| 1799 | const s8 *r3 = bpf2a32[BPF_REG_3]; |
| 1800 | const s8 *r4 = bpf2a32[BPF_REG_4]; |
| 1801 | const s8 *r5 = bpf2a32[BPF_REG_5]; |
| 1802 | const u32 func = (u32)__bpf_call_base + (u32)imm; |
| 1803 | |
| 1804 | emit_a32_mov_r64(true, r0, r1, ctx); |
| 1805 | emit_a32_mov_r64(true, r1, r2, ctx); |
| 1806 | emit_push_r64(r5, ctx); |
| 1807 | emit_push_r64(r4, ctx); |
| 1808 | emit_push_r64(r3, ctx); |
| 1809 | |
| 1810 | emit_a32_mov_i(tmp[1], func, ctx); |
| 1811 | emit_blx_r(tmp[1], ctx); |
| 1812 | |
| 1813 | emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean |
| 1814 | break; |
| 1815 | } |
| 1816 | /* function return */ |
| 1817 | case BPF_JMP | BPF_EXIT: |
| 1818 | /* Optimization: when last instruction is EXIT |
| 1819 | * simply fallthrough to epilogue. |
| 1820 | */ |
| 1821 | if (i == ctx->prog->len - 1) |
| 1822 | break; |
| 1823 | jmp_offset = epilogue_offset(ctx); |
| 1824 | check_imm24(jmp_offset); |
| 1825 | emit(ARM_B(jmp_offset), ctx); |
| 1826 | break; |
| 1827 | notyet: |
| 1828 | pr_info_once("*** NOT YET: opcode %02x ***\n", code); |
| 1829 | return -EFAULT; |
| 1830 | default: |
| 1831 | pr_err_once("unknown opcode %02x\n", code); |
| 1832 | return -EINVAL; |
| 1833 | } |
| 1834 | |
| 1835 | if (ctx->flags & FLAG_IMM_OVERFLOW) |
| 1836 | /* |
| 1837 | * this instruction generated an overflow when |
| 1838 | * trying to access the literal pool, so |
| 1839 | * delegate this filter to the kernel interpreter. |
| 1840 | */ |
| 1841 | return -1; |
| 1842 | return 0; |
| 1843 | } |
| 1844 | |
| 1845 | static int build_body(struct jit_ctx *ctx) |
| 1846 | { |
| 1847 | const struct bpf_prog *prog = ctx->prog; |
| 1848 | unsigned int i; |
| 1849 | |
| 1850 | for (i = 0; i < prog->len; i++) { |
| 1851 | const struct bpf_insn *insn = &(prog->insnsi[i]); |
| 1852 | int ret; |
| 1853 | |
| 1854 | ret = build_insn(insn, ctx); |
| 1855 | |
| 1856 | /* It's used with loading the 64 bit immediate value. */ |
| 1857 | if (ret > 0) { |
| 1858 | i++; |
| 1859 | if (ctx->target == NULL) |
| 1860 | ctx->offsets[i] = ctx->idx; |
| 1861 | continue; |
| 1862 | } |
| 1863 | |
| 1864 | if (ctx->target == NULL) |
| 1865 | ctx->offsets[i] = ctx->idx; |
| 1866 | |
| 1867 | /* If unsuccesfull, return with error code */ |
| 1868 | if (ret) |
| 1869 | return ret; |
| 1870 | } |
| 1871 | return 0; |
| 1872 | } |
| 1873 | |
| 1874 | static int validate_code(struct jit_ctx *ctx) |
| 1875 | { |
| 1876 | int i; |
| 1877 | |
| 1878 | for (i = 0; i < ctx->idx; i++) { |
| 1879 | if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF)) |
| 1880 | return -1; |
| 1881 | } |
| 1882 | |
| 1883 | return 0; |
| 1884 | } |
| 1885 | |
| 1886 | void bpf_jit_compile(struct bpf_prog *prog) |
| 1887 | { |
| 1888 | /* Nothing to do here. We support Internal BPF. */ |
| 1889 | } |
| 1890 | |
| 1891 | bool bpf_jit_needs_zext(void) |
| 1892 | { |
| 1893 | return true; |
| 1894 | } |
| 1895 | |
| 1896 | struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) |
| 1897 | { |
| 1898 | struct bpf_prog *tmp, *orig_prog = prog; |
| 1899 | struct bpf_binary_header *header; |
| 1900 | bool tmp_blinded = false; |
| 1901 | struct jit_ctx ctx; |
| 1902 | unsigned int tmp_idx; |
| 1903 | unsigned int image_size; |
| 1904 | u8 *image_ptr; |
| 1905 | |
| 1906 | /* If BPF JIT was not enabled then we must fall back to |
| 1907 | * the interpreter. |
| 1908 | */ |
| 1909 | if (!prog->jit_requested) |
| 1910 | return orig_prog; |
| 1911 | |
| 1912 | /* If constant blinding was enabled and we failed during blinding |
| 1913 | * then we must fall back to the interpreter. Otherwise, we save |
| 1914 | * the new JITed code. |
| 1915 | */ |
| 1916 | tmp = bpf_jit_blind_constants(prog); |
| 1917 | |
| 1918 | if (IS_ERR(tmp)) |
| 1919 | return orig_prog; |
| 1920 | if (tmp != prog) { |
| 1921 | tmp_blinded = true; |
| 1922 | prog = tmp; |
| 1923 | } |
| 1924 | |
| 1925 | memset(&ctx, 0, sizeof(ctx)); |
| 1926 | ctx.prog = prog; |
| 1927 | ctx.cpu_architecture = cpu_architecture(); |
| 1928 | |
| 1929 | /* Not able to allocate memory for offsets[] , then |
| 1930 | * we must fall back to the interpreter |
| 1931 | */ |
| 1932 | ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL); |
| 1933 | if (ctx.offsets == NULL) { |
| 1934 | prog = orig_prog; |
| 1935 | goto out; |
| 1936 | } |
| 1937 | |
| 1938 | /* 1) fake pass to find in the length of the JITed code, |
| 1939 | * to compute ctx->offsets and other context variables |
| 1940 | * needed to compute final JITed code. |
| 1941 | * Also, calculate random starting pointer/start of JITed code |
| 1942 | * which is prefixed by random number of fault instructions. |
| 1943 | * |
| 1944 | * If the first pass fails then there is no chance of it |
| 1945 | * being successful in the second pass, so just fall back |
| 1946 | * to the interpreter. |
| 1947 | */ |
| 1948 | if (build_body(&ctx)) { |
| 1949 | prog = orig_prog; |
| 1950 | goto out_off; |
| 1951 | } |
| 1952 | |
| 1953 | tmp_idx = ctx.idx; |
| 1954 | build_prologue(&ctx); |
| 1955 | ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4; |
| 1956 | |
| 1957 | ctx.epilogue_offset = ctx.idx; |
| 1958 | |
| 1959 | #if __LINUX_ARM_ARCH__ < 7 |
| 1960 | tmp_idx = ctx.idx; |
| 1961 | build_epilogue(&ctx); |
| 1962 | ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4; |
| 1963 | |
| 1964 | ctx.idx += ctx.imm_count; |
| 1965 | if (ctx.imm_count) { |
| 1966 | ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL); |
| 1967 | if (ctx.imms == NULL) { |
| 1968 | prog = orig_prog; |
| 1969 | goto out_off; |
| 1970 | } |
| 1971 | } |
| 1972 | #else |
| 1973 | /* there's nothing about the epilogue on ARMv7 */ |
| 1974 | build_epilogue(&ctx); |
| 1975 | #endif |
| 1976 | /* Now we can get the actual image size of the JITed arm code. |
| 1977 | * Currently, we are not considering the THUMB-2 instructions |
| 1978 | * for jit, although it can decrease the size of the image. |
| 1979 | * |
| 1980 | * As each arm instruction is of length 32bit, we are translating |
| 1981 | * number of JITed intructions into the size required to store these |
| 1982 | * JITed code. |
| 1983 | */ |
| 1984 | image_size = sizeof(u32) * ctx.idx; |
| 1985 | |
| 1986 | /* Now we know the size of the structure to make */ |
| 1987 | header = bpf_jit_binary_alloc(image_size, &image_ptr, |
| 1988 | sizeof(u32), jit_fill_hole); |
| 1989 | /* Not able to allocate memory for the structure then |
| 1990 | * we must fall back to the interpretation |
| 1991 | */ |
| 1992 | if (header == NULL) { |
| 1993 | prog = orig_prog; |
| 1994 | goto out_imms; |
| 1995 | } |
| 1996 | |
| 1997 | /* 2.) Actual pass to generate final JIT code */ |
| 1998 | ctx.target = (u32 *) image_ptr; |
| 1999 | ctx.idx = 0; |
| 2000 | |
| 2001 | build_prologue(&ctx); |
| 2002 | |
| 2003 | /* If building the body of the JITed code fails somehow, |
| 2004 | * we fall back to the interpretation. |
| 2005 | */ |
| 2006 | if (build_body(&ctx) < 0) { |
| 2007 | image_ptr = NULL; |
| 2008 | bpf_jit_binary_free(header); |
| 2009 | prog = orig_prog; |
| 2010 | goto out_imms; |
| 2011 | } |
| 2012 | build_epilogue(&ctx); |
| 2013 | |
| 2014 | /* 3.) Extra pass to validate JITed Code */ |
| 2015 | if (validate_code(&ctx)) { |
| 2016 | image_ptr = NULL; |
| 2017 | bpf_jit_binary_free(header); |
| 2018 | prog = orig_prog; |
| 2019 | goto out_imms; |
| 2020 | } |
| 2021 | flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx)); |
| 2022 | |
| 2023 | if (bpf_jit_enable > 1) |
| 2024 | /* there are 2 passes here */ |
| 2025 | bpf_jit_dump(prog->len, image_size, 2, ctx.target); |
| 2026 | |
| 2027 | bpf_jit_binary_lock_ro(header); |
| 2028 | prog->bpf_func = (void *)ctx.target; |
| 2029 | prog->jited = 1; |
| 2030 | prog->jited_len = image_size; |
| 2031 | |
| 2032 | out_imms: |
| 2033 | #if __LINUX_ARM_ARCH__ < 7 |
| 2034 | if (ctx.imm_count) |
| 2035 | kfree(ctx.imms); |
| 2036 | #endif |
| 2037 | out_off: |
| 2038 | kfree(ctx.offsets); |
| 2039 | out: |
| 2040 | if (tmp_blinded) |
| 2041 | bpf_jit_prog_release_other(prog, prog == orig_prog ? |
| 2042 | tmp : orig_prog); |
| 2043 | return prog; |
| 2044 | } |
| 2045 | |