| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only | 
|  | 2 | /* | 
|  | 3 | *  linux/arch/arm/vfp/vfpmodule.c | 
|  | 4 | * | 
|  | 5 | *  Copyright (C) 2004 ARM Limited. | 
|  | 6 | *  Written by Deep Blue Solutions Limited. | 
|  | 7 | */ | 
|  | 8 | #include <linux/types.h> | 
|  | 9 | #include <linux/cpu.h> | 
|  | 10 | #include <linux/cpu_pm.h> | 
|  | 11 | #include <linux/hardirq.h> | 
|  | 12 | #include <linux/kernel.h> | 
|  | 13 | #include <linux/notifier.h> | 
|  | 14 | #include <linux/signal.h> | 
|  | 15 | #include <linux/sched/signal.h> | 
|  | 16 | #include <linux/smp.h> | 
|  | 17 | #include <linux/init.h> | 
|  | 18 | #include <linux/uaccess.h> | 
|  | 19 | #include <linux/user.h> | 
|  | 20 | #include <linux/export.h> | 
|  | 21 |  | 
|  | 22 | #include <asm/cp15.h> | 
|  | 23 | #include <asm/cputype.h> | 
|  | 24 | #include <asm/system_info.h> | 
|  | 25 | #include <asm/thread_notify.h> | 
|  | 26 | #include <asm/traps.h> | 
|  | 27 | #include <asm/vfp.h> | 
|  | 28 |  | 
|  | 29 | #include "vfpinstr.h" | 
|  | 30 | #include "vfp.h" | 
|  | 31 |  | 
|  | 32 | /* | 
|  | 33 | * Our undef handlers (in entry.S) | 
|  | 34 | */ | 
|  | 35 | asmlinkage void vfp_support_entry(void); | 
|  | 36 | asmlinkage void vfp_null_entry(void); | 
|  | 37 |  | 
|  | 38 | asmlinkage void (*vfp_vector)(void) = vfp_null_entry; | 
|  | 39 |  | 
|  | 40 | /* | 
|  | 41 | * Dual-use variable. | 
|  | 42 | * Used in startup: set to non-zero if VFP checks fail | 
|  | 43 | * After startup, holds VFP architecture | 
|  | 44 | */ | 
|  | 45 | static unsigned int __initdata VFP_arch; | 
|  | 46 |  | 
|  | 47 | /* | 
|  | 48 | * The pointer to the vfpstate structure of the thread which currently | 
|  | 49 | * owns the context held in the VFP hardware, or NULL if the hardware | 
|  | 50 | * context is invalid. | 
|  | 51 | * | 
|  | 52 | * For UP, this is sufficient to tell which thread owns the VFP context. | 
|  | 53 | * However, for SMP, we also need to check the CPU number stored in the | 
|  | 54 | * saved state too to catch migrations. | 
|  | 55 | */ | 
|  | 56 | union vfp_state *vfp_current_hw_state[NR_CPUS]; | 
|  | 57 |  | 
|  | 58 | /* | 
|  | 59 | * Is 'thread's most up to date state stored in this CPUs hardware? | 
|  | 60 | * Must be called from non-preemptible context. | 
|  | 61 | */ | 
|  | 62 | static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) | 
|  | 63 | { | 
|  | 64 | #ifdef CONFIG_SMP | 
|  | 65 | if (thread->vfpstate.hard.cpu != cpu) | 
|  | 66 | return false; | 
|  | 67 | #endif | 
|  | 68 | return vfp_current_hw_state[cpu] == &thread->vfpstate; | 
|  | 69 | } | 
|  | 70 |  | 
|  | 71 | /* | 
|  | 72 | * Force a reload of the VFP context from the thread structure.  We do | 
|  | 73 | * this by ensuring that access to the VFP hardware is disabled, and | 
|  | 74 | * clear vfp_current_hw_state.  Must be called from non-preemptible context. | 
|  | 75 | */ | 
|  | 76 | static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) | 
|  | 77 | { | 
|  | 78 | if (vfp_state_in_hw(cpu, thread)) { | 
|  | 79 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | 80 | vfp_current_hw_state[cpu] = NULL; | 
|  | 81 | } | 
|  | 82 | #ifdef CONFIG_SMP | 
|  | 83 | thread->vfpstate.hard.cpu = NR_CPUS; | 
|  | 84 | #endif | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | /* | 
|  | 88 | * Per-thread VFP initialization. | 
|  | 89 | */ | 
|  | 90 | static void vfp_thread_flush(struct thread_info *thread) | 
|  | 91 | { | 
|  | 92 | union vfp_state *vfp = &thread->vfpstate; | 
|  | 93 | unsigned int cpu; | 
|  | 94 |  | 
|  | 95 | /* | 
|  | 96 | * Disable VFP to ensure we initialize it first.  We must ensure | 
|  | 97 | * that the modification of vfp_current_hw_state[] and hardware | 
|  | 98 | * disable are done for the same CPU and without preemption. | 
|  | 99 | * | 
|  | 100 | * Do this first to ensure that preemption won't overwrite our | 
|  | 101 | * state saving should access to the VFP be enabled at this point. | 
|  | 102 | */ | 
|  | 103 | cpu = get_cpu(); | 
|  | 104 | if (vfp_current_hw_state[cpu] == vfp) | 
|  | 105 | vfp_current_hw_state[cpu] = NULL; | 
|  | 106 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | 107 | put_cpu(); | 
|  | 108 |  | 
|  | 109 | memset(vfp, 0, sizeof(union vfp_state)); | 
|  | 110 |  | 
|  | 111 | vfp->hard.fpexc = FPEXC_EN; | 
|  | 112 | vfp->hard.fpscr = FPSCR_ROUND_NEAREST; | 
|  | 113 | #ifdef CONFIG_SMP | 
|  | 114 | vfp->hard.cpu = NR_CPUS; | 
|  | 115 | #endif | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | static void vfp_thread_exit(struct thread_info *thread) | 
|  | 119 | { | 
|  | 120 | /* release case: Per-thread VFP cleanup. */ | 
|  | 121 | union vfp_state *vfp = &thread->vfpstate; | 
|  | 122 | unsigned int cpu = get_cpu(); | 
|  | 123 |  | 
|  | 124 | if (vfp_current_hw_state[cpu] == vfp) | 
|  | 125 | vfp_current_hw_state[cpu] = NULL; | 
|  | 126 | put_cpu(); | 
|  | 127 | } | 
|  | 128 |  | 
|  | 129 | static void vfp_thread_copy(struct thread_info *thread) | 
|  | 130 | { | 
|  | 131 | struct thread_info *parent = current_thread_info(); | 
|  | 132 |  | 
|  | 133 | vfp_sync_hwstate(parent); | 
|  | 134 | thread->vfpstate = parent->vfpstate; | 
|  | 135 | #ifdef CONFIG_SMP | 
|  | 136 | thread->vfpstate.hard.cpu = NR_CPUS; | 
|  | 137 | #endif | 
|  | 138 | } | 
|  | 139 |  | 
|  | 140 | /* | 
|  | 141 | * When this function is called with the following 'cmd's, the following | 
|  | 142 | * is true while this function is being run: | 
|  | 143 | *  THREAD_NOFTIFY_SWTICH: | 
|  | 144 | *   - the previously running thread will not be scheduled onto another CPU. | 
|  | 145 | *   - the next thread to be run (v) will not be running on another CPU. | 
|  | 146 | *   - thread->cpu is the local CPU number | 
|  | 147 | *   - not preemptible as we're called in the middle of a thread switch | 
|  | 148 | *  THREAD_NOTIFY_FLUSH: | 
|  | 149 | *   - the thread (v) will be running on the local CPU, so | 
|  | 150 | *	v === current_thread_info() | 
|  | 151 | *   - thread->cpu is the local CPU number at the time it is accessed, | 
|  | 152 | *	but may change at any time. | 
|  | 153 | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | 154 | *	it is unsafe to use thread->cpu. | 
|  | 155 | *  THREAD_NOTIFY_EXIT | 
|  | 156 | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | 157 | *	it is unsafe to use thread->cpu. | 
|  | 158 | */ | 
|  | 159 | static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) | 
|  | 160 | { | 
|  | 161 | struct thread_info *thread = v; | 
|  | 162 | u32 fpexc; | 
|  | 163 | #ifdef CONFIG_SMP | 
|  | 164 | unsigned int cpu; | 
|  | 165 | #endif | 
|  | 166 |  | 
|  | 167 | switch (cmd) { | 
|  | 168 | case THREAD_NOTIFY_SWITCH: | 
|  | 169 | fpexc = fmrx(FPEXC); | 
|  | 170 |  | 
|  | 171 | #ifdef CONFIG_SMP | 
|  | 172 | cpu = thread->cpu; | 
|  | 173 |  | 
|  | 174 | /* | 
|  | 175 | * On SMP, if VFP is enabled, save the old state in | 
|  | 176 | * case the thread migrates to a different CPU. The | 
|  | 177 | * restoring is done lazily. | 
|  | 178 | */ | 
|  | 179 | if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) | 
|  | 180 | vfp_save_state(vfp_current_hw_state[cpu], fpexc); | 
|  | 181 | #endif | 
|  | 182 |  | 
|  | 183 | /* | 
|  | 184 | * Always disable VFP so we can lazily save/restore the | 
|  | 185 | * old state. | 
|  | 186 | */ | 
|  | 187 | fmxr(FPEXC, fpexc & ~FPEXC_EN); | 
|  | 188 | break; | 
|  | 189 |  | 
|  | 190 | case THREAD_NOTIFY_FLUSH: | 
|  | 191 | vfp_thread_flush(thread); | 
|  | 192 | break; | 
|  | 193 |  | 
|  | 194 | case THREAD_NOTIFY_EXIT: | 
|  | 195 | vfp_thread_exit(thread); | 
|  | 196 | break; | 
|  | 197 |  | 
|  | 198 | case THREAD_NOTIFY_COPY: | 
|  | 199 | vfp_thread_copy(thread); | 
|  | 200 | break; | 
|  | 201 | } | 
|  | 202 |  | 
|  | 203 | return NOTIFY_DONE; | 
|  | 204 | } | 
|  | 205 |  | 
|  | 206 | static struct notifier_block vfp_notifier_block = { | 
|  | 207 | .notifier_call	= vfp_notifier, | 
|  | 208 | }; | 
|  | 209 |  | 
|  | 210 | /* | 
|  | 211 | * Raise a SIGFPE for the current process. | 
|  | 212 | * sicode describes the signal being raised. | 
|  | 213 | */ | 
|  | 214 | static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) | 
|  | 215 | { | 
|  | 216 | /* | 
|  | 217 | * This is the same as NWFPE, because it's not clear what | 
|  | 218 | * this is used for | 
|  | 219 | */ | 
|  | 220 | current->thread.error_code = 0; | 
|  | 221 | current->thread.trap_no = 6; | 
|  | 222 |  | 
|  | 223 | send_sig_fault(SIGFPE, sicode, | 
|  | 224 | (void __user *)(instruction_pointer(regs) - 4), | 
|  | 225 | current); | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 | static void vfp_panic(char *reason, u32 inst) | 
|  | 229 | { | 
|  | 230 | int i; | 
|  | 231 |  | 
|  | 232 | pr_err("VFP: Error: %s\n", reason); | 
|  | 233 | pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", | 
|  | 234 | fmrx(FPEXC), fmrx(FPSCR), inst); | 
|  | 235 | for (i = 0; i < 32; i += 2) | 
|  | 236 | pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n", | 
|  | 237 | i, vfp_get_float(i), i+1, vfp_get_float(i+1)); | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | /* | 
|  | 241 | * Process bitmask of exception conditions. | 
|  | 242 | */ | 
|  | 243 | static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | 244 | { | 
|  | 245 | int si_code = 0; | 
|  | 246 |  | 
|  | 247 | pr_debug("VFP: raising exceptions %08x\n", exceptions); | 
|  | 248 |  | 
|  | 249 | if (exceptions == VFP_EXCEPTION_ERROR) { | 
|  | 250 | vfp_panic("unhandled bounce", inst); | 
|  | 251 | vfp_raise_sigfpe(FPE_FLTINV, regs); | 
|  | 252 | return; | 
|  | 253 | } | 
|  | 254 |  | 
|  | 255 | /* | 
|  | 256 | * If any of the status flags are set, update the FPSCR. | 
|  | 257 | * Comparison instructions always return at least one of | 
|  | 258 | * these flags set. | 
|  | 259 | */ | 
|  | 260 | if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | 
|  | 261 | fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); | 
|  | 262 |  | 
|  | 263 | fpscr |= exceptions; | 
|  | 264 |  | 
|  | 265 | fmxr(FPSCR, fpscr); | 
|  | 266 |  | 
|  | 267 | #define RAISE(stat,en,sig)				\ | 
|  | 268 | if (exceptions & stat && fpscr & en)		\ | 
|  | 269 | si_code = sig; | 
|  | 270 |  | 
|  | 271 | /* | 
|  | 272 | * These are arranged in priority order, least to highest. | 
|  | 273 | */ | 
|  | 274 | RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); | 
|  | 275 | RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); | 
|  | 276 | RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); | 
|  | 277 | RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); | 
|  | 278 | RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); | 
|  | 279 |  | 
|  | 280 | if (si_code) | 
|  | 281 | vfp_raise_sigfpe(si_code, regs); | 
|  | 282 | } | 
|  | 283 |  | 
|  | 284 | /* | 
|  | 285 | * Emulate a VFP instruction. | 
|  | 286 | */ | 
|  | 287 | static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | 288 | { | 
|  | 289 | u32 exceptions = VFP_EXCEPTION_ERROR; | 
|  | 290 |  | 
|  | 291 | pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); | 
|  | 292 |  | 
|  | 293 | if (INST_CPRTDO(inst)) { | 
|  | 294 | if (!INST_CPRT(inst)) { | 
|  | 295 | /* | 
|  | 296 | * CPDO | 
|  | 297 | */ | 
|  | 298 | if (vfp_single(inst)) { | 
|  | 299 | exceptions = vfp_single_cpdo(inst, fpscr); | 
|  | 300 | } else { | 
|  | 301 | exceptions = vfp_double_cpdo(inst, fpscr); | 
|  | 302 | } | 
|  | 303 | } else { | 
|  | 304 | /* | 
|  | 305 | * A CPRT instruction can not appear in FPINST2, nor | 
|  | 306 | * can it cause an exception.  Therefore, we do not | 
|  | 307 | * have to emulate it. | 
|  | 308 | */ | 
|  | 309 | } | 
|  | 310 | } else { | 
|  | 311 | /* | 
|  | 312 | * A CPDT instruction can not appear in FPINST2, nor can | 
|  | 313 | * it cause an exception.  Therefore, we do not have to | 
|  | 314 | * emulate it. | 
|  | 315 | */ | 
|  | 316 | } | 
|  | 317 | return exceptions & ~VFP_NAN_FLAG; | 
|  | 318 | } | 
|  | 319 |  | 
|  | 320 | /* | 
|  | 321 | * Package up a bounce condition. | 
|  | 322 | */ | 
|  | 323 | void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) | 
|  | 324 | { | 
|  | 325 | u32 fpscr, orig_fpscr, fpsid, exceptions; | 
|  | 326 |  | 
|  | 327 | pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); | 
|  | 328 |  | 
|  | 329 | /* | 
|  | 330 | * At this point, FPEXC can have the following configuration: | 
|  | 331 | * | 
|  | 332 | *  EX DEX IXE | 
|  | 333 | *  0   1   x   - synchronous exception | 
|  | 334 | *  1   x   0   - asynchronous exception | 
|  | 335 | *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later | 
|  | 336 | *  0   0   1   - synchronous on VFP9 (non-standard subarch 1 | 
|  | 337 | *                implementation), undefined otherwise | 
|  | 338 | * | 
|  | 339 | * Clear various bits and enable access to the VFP so we can | 
|  | 340 | * handle the bounce. | 
|  | 341 | */ | 
|  | 342 | fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); | 
|  | 343 |  | 
|  | 344 | fpsid = fmrx(FPSID); | 
|  | 345 | orig_fpscr = fpscr = fmrx(FPSCR); | 
|  | 346 |  | 
|  | 347 | /* | 
|  | 348 | * Check for the special VFP subarch 1 and FPSCR.IXE bit case | 
|  | 349 | */ | 
|  | 350 | if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) | 
|  | 351 | && (fpscr & FPSCR_IXE)) { | 
|  | 352 | /* | 
|  | 353 | * Synchronous exception, emulate the trigger instruction | 
|  | 354 | */ | 
|  | 355 | goto emulate; | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | if (fpexc & FPEXC_EX) { | 
|  | 359 | #ifndef CONFIG_CPU_FEROCEON | 
|  | 360 | /* | 
|  | 361 | * Asynchronous exception. The instruction is read from FPINST | 
|  | 362 | * and the interrupted instruction has to be restarted. | 
|  | 363 | */ | 
|  | 364 | trigger = fmrx(FPINST); | 
|  | 365 | regs->ARM_pc -= 4; | 
|  | 366 | #endif | 
|  | 367 | } else if (!(fpexc & FPEXC_DEX)) { | 
|  | 368 | /* | 
|  | 369 | * Illegal combination of bits. It can be caused by an | 
|  | 370 | * unallocated VFP instruction but with FPSCR.IXE set and not | 
|  | 371 | * on VFP subarch 1. | 
|  | 372 | */ | 
|  | 373 | vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); | 
|  | 374 | goto exit; | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | /* | 
|  | 378 | * Modify fpscr to indicate the number of iterations remaining. | 
|  | 379 | * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates | 
|  | 380 | * whether FPEXC.VECITR or FPSCR.LEN is used. | 
|  | 381 | */ | 
|  | 382 | if (fpexc & (FPEXC_EX | FPEXC_VV)) { | 
|  | 383 | u32 len; | 
|  | 384 |  | 
|  | 385 | len = fpexc + (1 << FPEXC_LENGTH_BIT); | 
|  | 386 |  | 
|  | 387 | fpscr &= ~FPSCR_LENGTH_MASK; | 
|  | 388 | fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); | 
|  | 389 | } | 
|  | 390 |  | 
|  | 391 | /* | 
|  | 392 | * Handle the first FP instruction.  We used to take note of the | 
|  | 393 | * FPEXC bounce reason, but this appears to be unreliable. | 
|  | 394 | * Emulate the bounced instruction instead. | 
|  | 395 | */ | 
|  | 396 | exceptions = vfp_emulate_instruction(trigger, fpscr, regs); | 
|  | 397 | if (exceptions) | 
|  | 398 | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  | 399 |  | 
|  | 400 | /* | 
|  | 401 | * If there isn't a second FP instruction, exit now. Note that | 
|  | 402 | * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. | 
|  | 403 | */ | 
|  | 404 | if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) | 
|  | 405 | goto exit; | 
|  | 406 |  | 
|  | 407 | /* | 
|  | 408 | * The barrier() here prevents fpinst2 being read | 
|  | 409 | * before the condition above. | 
|  | 410 | */ | 
|  | 411 | barrier(); | 
|  | 412 | trigger = fmrx(FPINST2); | 
|  | 413 |  | 
|  | 414 | emulate: | 
|  | 415 | exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); | 
|  | 416 | if (exceptions) | 
|  | 417 | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  | 418 | exit: | 
|  | 419 | preempt_enable(); | 
|  | 420 | } | 
|  | 421 |  | 
|  | 422 | static void vfp_enable(void *unused) | 
|  | 423 | { | 
|  | 424 | u32 access; | 
|  | 425 |  | 
|  | 426 | BUG_ON(preemptible()); | 
|  | 427 | access = get_copro_access(); | 
|  | 428 |  | 
|  | 429 | /* | 
|  | 430 | * Enable full access to VFP (cp10 and cp11) | 
|  | 431 | */ | 
|  | 432 | set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | /* Called by platforms on which we want to disable VFP because it may not be | 
|  | 436 | * present on all CPUs within a SMP complex. Needs to be called prior to | 
|  | 437 | * vfp_init(). | 
|  | 438 | */ | 
|  | 439 | void __init vfp_disable(void) | 
|  | 440 | { | 
|  | 441 | if (VFP_arch) { | 
|  | 442 | pr_debug("%s: should be called prior to vfp_init\n", __func__); | 
|  | 443 | return; | 
|  | 444 | } | 
|  | 445 | VFP_arch = 1; | 
|  | 446 | } | 
|  | 447 |  | 
|  | 448 | #ifdef CONFIG_CPU_PM | 
|  | 449 | static int vfp_pm_suspend(void) | 
|  | 450 | { | 
|  | 451 | struct thread_info *ti = current_thread_info(); | 
|  | 452 | u32 fpexc = fmrx(FPEXC); | 
|  | 453 |  | 
|  | 454 | /* if vfp is on, then save state for resumption */ | 
|  | 455 | if (fpexc & FPEXC_EN) { | 
|  | 456 | pr_debug("%s: saving vfp state\n", __func__); | 
|  | 457 | vfp_save_state(&ti->vfpstate, fpexc); | 
|  | 458 |  | 
|  | 459 | /* disable, just in case */ | 
|  | 460 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | 461 | } else if (vfp_current_hw_state[ti->cpu]) { | 
|  | 462 | #ifndef CONFIG_SMP | 
|  | 463 | fmxr(FPEXC, fpexc | FPEXC_EN); | 
|  | 464 | vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc); | 
|  | 465 | fmxr(FPEXC, fpexc); | 
|  | 466 | #endif | 
|  | 467 | } | 
|  | 468 |  | 
|  | 469 | /* clear any information we had about last context state */ | 
|  | 470 | vfp_current_hw_state[ti->cpu] = NULL; | 
|  | 471 |  | 
|  | 472 | return 0; | 
|  | 473 | } | 
|  | 474 |  | 
|  | 475 | static void vfp_pm_resume(void) | 
|  | 476 | { | 
|  | 477 | /* ensure we have access to the vfp */ | 
|  | 478 | vfp_enable(NULL); | 
|  | 479 |  | 
|  | 480 | /* and disable it to ensure the next usage restores the state */ | 
|  | 481 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, | 
|  | 485 | void *v) | 
|  | 486 | { | 
|  | 487 | switch (cmd) { | 
|  | 488 | case CPU_PM_ENTER: | 
|  | 489 | vfp_pm_suspend(); | 
|  | 490 | break; | 
|  | 491 | case CPU_PM_ENTER_FAILED: | 
|  | 492 | case CPU_PM_EXIT: | 
|  | 493 | vfp_pm_resume(); | 
|  | 494 | break; | 
|  | 495 | } | 
|  | 496 | return NOTIFY_OK; | 
|  | 497 | } | 
|  | 498 |  | 
|  | 499 | static struct notifier_block vfp_cpu_pm_notifier_block = { | 
|  | 500 | .notifier_call = vfp_cpu_pm_notifier, | 
|  | 501 | }; | 
|  | 502 |  | 
|  | 503 | static void vfp_pm_init(void) | 
|  | 504 | { | 
|  | 505 | cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block); | 
|  | 506 | } | 
|  | 507 |  | 
|  | 508 | #else | 
|  | 509 | static inline void vfp_pm_init(void) { } | 
|  | 510 | #endif /* CONFIG_CPU_PM */ | 
|  | 511 |  | 
|  | 512 | /* | 
|  | 513 | * Ensure that the VFP state stored in 'thread->vfpstate' is up to date | 
|  | 514 | * with the hardware state. | 
|  | 515 | */ | 
|  | 516 | void vfp_sync_hwstate(struct thread_info *thread) | 
|  | 517 | { | 
|  | 518 | unsigned int cpu = get_cpu(); | 
|  | 519 |  | 
|  | 520 | if (vfp_state_in_hw(cpu, thread)) { | 
|  | 521 | u32 fpexc = fmrx(FPEXC); | 
|  | 522 |  | 
|  | 523 | /* | 
|  | 524 | * Save the last VFP state on this CPU. | 
|  | 525 | */ | 
|  | 526 | fmxr(FPEXC, fpexc | FPEXC_EN); | 
|  | 527 | vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); | 
|  | 528 | fmxr(FPEXC, fpexc); | 
|  | 529 | } | 
|  | 530 |  | 
|  | 531 | put_cpu(); | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | /* Ensure that the thread reloads the hardware VFP state on the next use. */ | 
|  | 535 | void vfp_flush_hwstate(struct thread_info *thread) | 
|  | 536 | { | 
|  | 537 | unsigned int cpu = get_cpu(); | 
|  | 538 |  | 
|  | 539 | vfp_force_reload(cpu, thread); | 
|  | 540 |  | 
|  | 541 | put_cpu(); | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | /* | 
|  | 545 | * Save the current VFP state into the provided structures and prepare | 
|  | 546 | * for entry into a new function (signal handler). | 
|  | 547 | */ | 
|  | 548 | int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp, | 
|  | 549 | struct user_vfp_exc *ufp_exc) | 
|  | 550 | { | 
|  | 551 | struct thread_info *thread = current_thread_info(); | 
|  | 552 | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; | 
|  | 553 |  | 
|  | 554 | /* Ensure that the saved hwstate is up-to-date. */ | 
|  | 555 | vfp_sync_hwstate(thread); | 
|  | 556 |  | 
|  | 557 | /* | 
|  | 558 | * Copy the floating point registers. There can be unused | 
|  | 559 | * registers see asm/hwcap.h for details. | 
|  | 560 | */ | 
|  | 561 | memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs)); | 
|  | 562 |  | 
|  | 563 | /* | 
|  | 564 | * Copy the status and control register. | 
|  | 565 | */ | 
|  | 566 | ufp->fpscr = hwstate->fpscr; | 
|  | 567 |  | 
|  | 568 | /* | 
|  | 569 | * Copy the exception registers. | 
|  | 570 | */ | 
|  | 571 | ufp_exc->fpexc = hwstate->fpexc; | 
|  | 572 | ufp_exc->fpinst = hwstate->fpinst; | 
|  | 573 | ufp_exc->fpinst2 = hwstate->fpinst2; | 
|  | 574 |  | 
|  | 575 | /* Ensure that VFP is disabled. */ | 
|  | 576 | vfp_flush_hwstate(thread); | 
|  | 577 |  | 
|  | 578 | /* | 
|  | 579 | * As per the PCS, clear the length and stride bits for function | 
|  | 580 | * entry. | 
|  | 581 | */ | 
|  | 582 | hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK); | 
|  | 583 | return 0; | 
|  | 584 | } | 
|  | 585 |  | 
|  | 586 | /* Sanitise and restore the current VFP state from the provided structures. */ | 
|  | 587 | int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc) | 
|  | 588 | { | 
|  | 589 | struct thread_info *thread = current_thread_info(); | 
|  | 590 | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; | 
|  | 591 | unsigned long fpexc; | 
|  | 592 |  | 
|  | 593 | /* Disable VFP to avoid corrupting the new thread state. */ | 
|  | 594 | vfp_flush_hwstate(thread); | 
|  | 595 |  | 
|  | 596 | /* | 
|  | 597 | * Copy the floating point registers. There can be unused | 
|  | 598 | * registers see asm/hwcap.h for details. | 
|  | 599 | */ | 
|  | 600 | memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs)); | 
|  | 601 | /* | 
|  | 602 | * Copy the status and control register. | 
|  | 603 | */ | 
|  | 604 | hwstate->fpscr = ufp->fpscr; | 
|  | 605 |  | 
|  | 606 | /* | 
|  | 607 | * Sanitise and restore the exception registers. | 
|  | 608 | */ | 
|  | 609 | fpexc = ufp_exc->fpexc; | 
|  | 610 |  | 
|  | 611 | /* Ensure the VFP is enabled. */ | 
|  | 612 | fpexc |= FPEXC_EN; | 
|  | 613 |  | 
|  | 614 | /* Ensure FPINST2 is invalid and the exception flag is cleared. */ | 
|  | 615 | fpexc &= ~(FPEXC_EX | FPEXC_FP2V); | 
|  | 616 | hwstate->fpexc = fpexc; | 
|  | 617 |  | 
|  | 618 | hwstate->fpinst = ufp_exc->fpinst; | 
|  | 619 | hwstate->fpinst2 = ufp_exc->fpinst2; | 
|  | 620 |  | 
|  | 621 | return 0; | 
|  | 622 | } | 
|  | 623 |  | 
|  | 624 | /* | 
|  | 625 | * VFP hardware can lose all context when a CPU goes offline. | 
|  | 626 | * As we will be running in SMP mode with CPU hotplug, we will save the | 
|  | 627 | * hardware state at every thread switch.  We clear our held state when | 
|  | 628 | * a CPU has been killed, indicating that the VFP hardware doesn't contain | 
|  | 629 | * a threads VFP state.  When a CPU starts up, we re-enable access to the | 
|  | 630 | * VFP hardware. The callbacks below are called on the CPU which | 
|  | 631 | * is being offlined/onlined. | 
|  | 632 | */ | 
|  | 633 | static int vfp_dying_cpu(unsigned int cpu) | 
|  | 634 | { | 
|  | 635 | vfp_current_hw_state[cpu] = NULL; | 
|  | 636 | return 0; | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | static int vfp_starting_cpu(unsigned int unused) | 
|  | 640 | { | 
|  | 641 | vfp_enable(NULL); | 
|  | 642 | return 0; | 
|  | 643 | } | 
|  | 644 |  | 
|  | 645 | #ifdef CONFIG_KERNEL_MODE_NEON | 
|  | 646 |  | 
|  | 647 | static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr) | 
|  | 648 | { | 
|  | 649 | /* | 
|  | 650 | * If we reach this point, a floating point exception has been raised | 
|  | 651 | * while running in kernel mode. If the NEON/VFP unit was enabled at the | 
|  | 652 | * time, it means a VFP instruction has been issued that requires | 
|  | 653 | * software assistance to complete, something which is not currently | 
|  | 654 | * supported in kernel mode. | 
|  | 655 | * If the NEON/VFP unit was disabled, and the location pointed to below | 
|  | 656 | * is properly preceded by a call to kernel_neon_begin(), something has | 
|  | 657 | * caused the task to be scheduled out and back in again. In this case, | 
|  | 658 | * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should | 
|  | 659 | * be helpful in localizing the problem. | 
|  | 660 | */ | 
|  | 661 | if (fmrx(FPEXC) & FPEXC_EN) | 
|  | 662 | pr_crit("BUG: unsupported FP instruction in kernel mode\n"); | 
|  | 663 | else | 
|  | 664 | pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n"); | 
|  | 665 | pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC)); | 
|  | 666 | return 1; | 
|  | 667 | } | 
|  | 668 |  | 
|  | 669 | static struct undef_hook vfp_kmode_exception_hook[] = {{ | 
|  | 670 | .instr_mask	= 0xfe000000, | 
|  | 671 | .instr_val	= 0xf2000000, | 
|  | 672 | .cpsr_mask	= MODE_MASK | PSR_T_BIT, | 
|  | 673 | .cpsr_val	= SVC_MODE, | 
|  | 674 | .fn		= vfp_kmode_exception, | 
|  | 675 | }, { | 
|  | 676 | .instr_mask	= 0xff100000, | 
|  | 677 | .instr_val	= 0xf4000000, | 
|  | 678 | .cpsr_mask	= MODE_MASK | PSR_T_BIT, | 
|  | 679 | .cpsr_val	= SVC_MODE, | 
|  | 680 | .fn		= vfp_kmode_exception, | 
|  | 681 | }, { | 
|  | 682 | .instr_mask	= 0xef000000, | 
|  | 683 | .instr_val	= 0xef000000, | 
|  | 684 | .cpsr_mask	= MODE_MASK | PSR_T_BIT, | 
|  | 685 | .cpsr_val	= SVC_MODE | PSR_T_BIT, | 
|  | 686 | .fn		= vfp_kmode_exception, | 
|  | 687 | }, { | 
|  | 688 | .instr_mask	= 0xff100000, | 
|  | 689 | .instr_val	= 0xf9000000, | 
|  | 690 | .cpsr_mask	= MODE_MASK | PSR_T_BIT, | 
|  | 691 | .cpsr_val	= SVC_MODE | PSR_T_BIT, | 
|  | 692 | .fn		= vfp_kmode_exception, | 
|  | 693 | }, { | 
|  | 694 | .instr_mask	= 0x0c000e00, | 
|  | 695 | .instr_val	= 0x0c000a00, | 
|  | 696 | .cpsr_mask	= MODE_MASK, | 
|  | 697 | .cpsr_val	= SVC_MODE, | 
|  | 698 | .fn		= vfp_kmode_exception, | 
|  | 699 | }}; | 
|  | 700 |  | 
|  | 701 | static int __init vfp_kmode_exception_hook_init(void) | 
|  | 702 | { | 
|  | 703 | int i; | 
|  | 704 |  | 
|  | 705 | for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++) | 
|  | 706 | register_undef_hook(&vfp_kmode_exception_hook[i]); | 
|  | 707 | return 0; | 
|  | 708 | } | 
|  | 709 | subsys_initcall(vfp_kmode_exception_hook_init); | 
|  | 710 |  | 
|  | 711 | /* | 
|  | 712 | * Kernel-side NEON support functions | 
|  | 713 | */ | 
|  | 714 | void kernel_neon_begin(void) | 
|  | 715 | { | 
|  | 716 | struct thread_info *thread = current_thread_info(); | 
|  | 717 | unsigned int cpu; | 
|  | 718 | u32 fpexc; | 
|  | 719 |  | 
|  | 720 | /* | 
|  | 721 | * Kernel mode NEON is only allowed outside of interrupt context | 
|  | 722 | * with preemption disabled. This will make sure that the kernel | 
|  | 723 | * mode NEON register contents never need to be preserved. | 
|  | 724 | */ | 
|  | 725 | BUG_ON(in_interrupt()); | 
|  | 726 | cpu = get_cpu(); | 
|  | 727 |  | 
|  | 728 | fpexc = fmrx(FPEXC) | FPEXC_EN; | 
|  | 729 | fmxr(FPEXC, fpexc); | 
|  | 730 |  | 
|  | 731 | /* | 
|  | 732 | * Save the userland NEON/VFP state. Under UP, | 
|  | 733 | * the owner could be a task other than 'current' | 
|  | 734 | */ | 
|  | 735 | if (vfp_state_in_hw(cpu, thread)) | 
|  | 736 | vfp_save_state(&thread->vfpstate, fpexc); | 
|  | 737 | #ifndef CONFIG_SMP | 
|  | 738 | else if (vfp_current_hw_state[cpu] != NULL) | 
|  | 739 | vfp_save_state(vfp_current_hw_state[cpu], fpexc); | 
|  | 740 | #endif | 
|  | 741 | vfp_current_hw_state[cpu] = NULL; | 
|  | 742 | } | 
|  | 743 | EXPORT_SYMBOL(kernel_neon_begin); | 
|  | 744 |  | 
|  | 745 | void kernel_neon_end(void) | 
|  | 746 | { | 
|  | 747 | /* Disable the NEON/VFP unit. */ | 
|  | 748 | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | 749 | put_cpu(); | 
|  | 750 | } | 
|  | 751 | EXPORT_SYMBOL(kernel_neon_end); | 
|  | 752 |  | 
|  | 753 | #endif /* CONFIG_KERNEL_MODE_NEON */ | 
|  | 754 |  | 
|  | 755 | static int __init vfp_detect(struct pt_regs *regs, unsigned int instr) | 
|  | 756 | { | 
|  | 757 | VFP_arch = UINT_MAX;	/* mark as not present */ | 
|  | 758 | regs->ARM_pc += 4; | 
|  | 759 | return 0; | 
|  | 760 | } | 
|  | 761 |  | 
|  | 762 | static struct undef_hook vfp_detect_hook __initdata = { | 
|  | 763 | .instr_mask	= 0x0c000e00, | 
|  | 764 | .instr_val	= 0x0c000a00, | 
|  | 765 | .cpsr_mask	= MODE_MASK, | 
|  | 766 | .cpsr_val	= SVC_MODE, | 
|  | 767 | .fn		= vfp_detect, | 
|  | 768 | }; | 
|  | 769 |  | 
|  | 770 | /* | 
|  | 771 | * VFP support code initialisation. | 
|  | 772 | */ | 
|  | 773 | static int __init vfp_init(void) | 
|  | 774 | { | 
|  | 775 | unsigned int vfpsid; | 
|  | 776 | unsigned int cpu_arch = cpu_architecture(); | 
|  | 777 |  | 
|  | 778 | /* | 
|  | 779 | * Enable the access to the VFP on all online CPUs so the | 
|  | 780 | * following test on FPSID will succeed. | 
|  | 781 | */ | 
|  | 782 | if (cpu_arch >= CPU_ARCH_ARMv6) | 
|  | 783 | on_each_cpu(vfp_enable, NULL, 1); | 
|  | 784 |  | 
|  | 785 | /* | 
|  | 786 | * First check that there is a VFP that we can use. | 
|  | 787 | * The handler is already setup to just log calls, so | 
|  | 788 | * we just need to read the VFPSID register. | 
|  | 789 | */ | 
|  | 790 | register_undef_hook(&vfp_detect_hook); | 
|  | 791 | barrier(); | 
|  | 792 | vfpsid = fmrx(FPSID); | 
|  | 793 | barrier(); | 
|  | 794 | unregister_undef_hook(&vfp_detect_hook); | 
|  | 795 | vfp_vector = vfp_null_entry; | 
|  | 796 |  | 
|  | 797 | pr_info("VFP support v0.3: "); | 
|  | 798 | if (VFP_arch) { | 
|  | 799 | pr_cont("not present\n"); | 
|  | 800 | return 0; | 
|  | 801 | /* Extract the architecture on CPUID scheme */ | 
|  | 802 | } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { | 
|  | 803 | VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK; | 
|  | 804 | VFP_arch >>= FPSID_ARCH_BIT; | 
|  | 805 | /* | 
|  | 806 | * Check for the presence of the Advanced SIMD | 
|  | 807 | * load/store instructions, integer and single | 
|  | 808 | * precision floating point operations. Only check | 
|  | 809 | * for NEON if the hardware has the MVFR registers. | 
|  | 810 | */ | 
|  | 811 | if (IS_ENABLED(CONFIG_NEON) && | 
|  | 812 | (fmrx(MVFR1) & 0x000fff00) == 0x00011100) | 
|  | 813 | elf_hwcap |= HWCAP_NEON; | 
|  | 814 |  | 
|  | 815 | if (IS_ENABLED(CONFIG_VFPv3)) { | 
|  | 816 | u32 mvfr0 = fmrx(MVFR0); | 
|  | 817 | if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 || | 
|  | 818 | ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) { | 
|  | 819 | elf_hwcap |= HWCAP_VFPv3; | 
|  | 820 | /* | 
|  | 821 | * Check for VFPv3 D16 and VFPv4 D16.  CPUs in | 
|  | 822 | * this configuration only have 16 x 64bit | 
|  | 823 | * registers. | 
|  | 824 | */ | 
|  | 825 | if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1) | 
|  | 826 | /* also v4-D16 */ | 
|  | 827 | elf_hwcap |= HWCAP_VFPv3D16; | 
|  | 828 | else | 
|  | 829 | elf_hwcap |= HWCAP_VFPD32; | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000) | 
|  | 833 | elf_hwcap |= HWCAP_VFPv4; | 
|  | 834 | } | 
|  | 835 | /* Extract the architecture version on pre-cpuid scheme */ | 
|  | 836 | } else { | 
|  | 837 | if (vfpsid & FPSID_NODOUBLE) { | 
|  | 838 | pr_cont("no double precision support\n"); | 
|  | 839 | return 0; | 
|  | 840 | } | 
|  | 841 |  | 
|  | 842 | VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; | 
|  | 843 | } | 
|  | 844 |  | 
|  | 845 | cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING, | 
|  | 846 | "arm/vfp:starting", vfp_starting_cpu, | 
|  | 847 | vfp_dying_cpu); | 
|  | 848 |  | 
|  | 849 | vfp_vector = vfp_support_entry; | 
|  | 850 |  | 
|  | 851 | thread_register_notifier(&vfp_notifier_block); | 
|  | 852 | vfp_pm_init(); | 
|  | 853 |  | 
|  | 854 | /* | 
|  | 855 | * We detected VFP, and the support code is | 
|  | 856 | * in place; report VFP support to userspace. | 
|  | 857 | */ | 
|  | 858 | elf_hwcap |= HWCAP_VFP; | 
|  | 859 |  | 
|  | 860 | pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n", | 
|  | 861 | (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, | 
|  | 862 | VFP_arch, | 
|  | 863 | (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, | 
|  | 864 | (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, | 
|  | 865 | (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); | 
|  | 866 |  | 
|  | 867 | return 0; | 
|  | 868 | } | 
|  | 869 |  | 
|  | 870 | core_initcall(vfp_init); |