blob: a8e8ebc747d5cc70793f26d8919db0f073ef5698 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/pgtable-hwdef.h>
13#include <asm/pgtable-prot.h>
14#include <asm/tlbflush.h>
15
16/*
17 * VMALLOC range.
18 *
19 * VMALLOC_START: beginning of the kernel vmalloc space
20 * VMALLOC_END: extends to the available space below vmmemmap, PCI I/O space
21 * and fixed mappings
22 */
23#define VMALLOC_START (MODULES_END)
24#define VMALLOC_END (- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
25
26#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
27
28#define FIRST_USER_ADDRESS 0UL
29
30#ifndef __ASSEMBLY__
31
32#include <asm/cmpxchg.h>
33#include <asm/fixmap.h>
34#include <linux/mmdebug.h>
35#include <linux/mm_types.h>
36#include <linux/sched.h>
37
38extern void __pte_error(const char *file, int line, unsigned long val);
39extern void __pmd_error(const char *file, int line, unsigned long val);
40extern void __pud_error(const char *file, int line, unsigned long val);
41extern void __pgd_error(const char *file, int line, unsigned long val);
42
43/*
44 * ZERO_PAGE is a global shared page that is always zero: used
45 * for zero-mapped memory areas etc..
46 */
47extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
48#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
49
50#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
51
52/*
53 * Macros to convert between a physical address and its placement in a
54 * page table entry, taking care of 52-bit addresses.
55 */
56#ifdef CONFIG_ARM64_PA_BITS_52
57static inline phys_addr_t __pte_to_phys(pte_t pte)
58{
59 return (pte_val(pte) & PTE_ADDR_LOW) |
60 ((pte_val(pte) & PTE_ADDR_HIGH) << 36);
61}
62static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
63{
64 return (phys | (phys >> 36)) & PTE_ADDR_MASK;
65}
66#else
67#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK)
68#define __phys_to_pte_val(phys) (phys)
69#endif
70
71#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
72#define pfn_pte(pfn,prot) \
73 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
74
75#define pte_none(pte) (!pte_val(pte))
76#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0))
77#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
78
79/*
80 * The following only work if pte_present(). Undefined behaviour otherwise.
81 */
82#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
83#define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
84#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
85#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
86#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
87#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
88#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
89
90#define pte_cont_addr_end(addr, end) \
91({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
92 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
93})
94
95#define pmd_cont_addr_end(addr, end) \
96({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
97 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
98})
99
100#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
101#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
102#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
103
104#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
105#define pte_valid_not_user(pte) \
106 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
107#define pte_valid_user(pte) \
108 ((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
109
110/*
111 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
112 * so that we don't erroneously return false for pages that have been
113 * remapped as PROT_NONE but are yet to be flushed from the TLB.
114 * Note that we can't make any assumptions based on the state of the access
115 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
116 * TLB.
117 */
118#define pte_accessible(mm, pte) \
119 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
120
121/*
122 * p??_access_permitted() is true for valid user mappings (subject to the
123 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
124 * set.
125 */
126#define pte_access_permitted(pte, write) \
127 (pte_valid_user(pte) && (!(write) || pte_write(pte)))
128#define pmd_access_permitted(pmd, write) \
129 (pte_access_permitted(pmd_pte(pmd), (write)))
130#define pud_access_permitted(pud, write) \
131 (pte_access_permitted(pud_pte(pud), (write)))
132
133static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
134{
135 pte_val(pte) &= ~pgprot_val(prot);
136 return pte;
137}
138
139static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
140{
141 pte_val(pte) |= pgprot_val(prot);
142 return pte;
143}
144
145static inline pte_t pte_mkwrite(pte_t pte)
146{
147 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
148 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
149 return pte;
150}
151
152static inline pte_t pte_mkclean(pte_t pte)
153{
154 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
155 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
156
157 return pte;
158}
159
160static inline pte_t pte_mkdirty(pte_t pte)
161{
162 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
163
164 if (pte_write(pte))
165 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
166
167 return pte;
168}
169
170static inline pte_t pte_wrprotect(pte_t pte)
171{
172 /*
173 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
174 * clear), set the PTE_DIRTY bit.
175 */
176 if (pte_hw_dirty(pte))
177 pte = pte_mkdirty(pte);
178
179 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
180 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
181 return pte;
182}
183
184static inline pte_t pte_mkold(pte_t pte)
185{
186 return clear_pte_bit(pte, __pgprot(PTE_AF));
187}
188
189static inline pte_t pte_mkyoung(pte_t pte)
190{
191 return set_pte_bit(pte, __pgprot(PTE_AF));
192}
193
194static inline pte_t pte_mkspecial(pte_t pte)
195{
196 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
197}
198
199static inline pte_t pte_mkcont(pte_t pte)
200{
201 pte = set_pte_bit(pte, __pgprot(PTE_CONT));
202 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
203}
204
205static inline pte_t pte_mknoncont(pte_t pte)
206{
207 return clear_pte_bit(pte, __pgprot(PTE_CONT));
208}
209
210static inline pte_t pte_mkpresent(pte_t pte)
211{
212 return set_pte_bit(pte, __pgprot(PTE_VALID));
213}
214
215static inline pmd_t pmd_mkcont(pmd_t pmd)
216{
217 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
218}
219
220static inline pte_t pte_mkdevmap(pte_t pte)
221{
222 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
223}
224
225static inline void set_pte(pte_t *ptep, pte_t pte)
226{
227 WRITE_ONCE(*ptep, pte);
228
229 /*
230 * Only if the new pte is valid and kernel, otherwise TLB maintenance
231 * or update_mmu_cache() have the necessary barriers.
232 */
233 if (pte_valid_not_user(pte)) {
234 dsb(ishst);
235 isb();
236 }
237}
238
239extern void __sync_icache_dcache(pte_t pteval);
240
241/*
242 * PTE bits configuration in the presence of hardware Dirty Bit Management
243 * (PTE_WRITE == PTE_DBM):
244 *
245 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
246 * 0 0 | 1 0 0
247 * 0 1 | 1 1 0
248 * 1 0 | 1 0 1
249 * 1 1 | 0 1 x
250 *
251 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
252 * the page fault mechanism. Checking the dirty status of a pte becomes:
253 *
254 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
255 */
256
257static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
258 pte_t pte)
259{
260 pte_t old_pte;
261
262 if (!IS_ENABLED(CONFIG_DEBUG_VM))
263 return;
264
265 old_pte = READ_ONCE(*ptep);
266
267 if (!pte_valid(old_pte) || !pte_valid(pte))
268 return;
269 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
270 return;
271
272 /*
273 * Check for potential race with hardware updates of the pte
274 * (ptep_set_access_flags safely changes valid ptes without going
275 * through an invalid entry).
276 */
277 VM_WARN_ONCE(!pte_young(pte),
278 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
279 __func__, pte_val(old_pte), pte_val(pte));
280 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
281 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
282 __func__, pte_val(old_pte), pte_val(pte));
283}
284
285static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
286 pte_t *ptep, pte_t pte)
287{
288 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
289 __sync_icache_dcache(pte);
290
291 __check_racy_pte_update(mm, ptep, pte);
292
293 set_pte(ptep, pte);
294}
295
296/*
297 * Huge pte definitions.
298 */
299#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
300
301/*
302 * Hugetlb definitions.
303 */
304#define HUGE_MAX_HSTATE 4
305#define HPAGE_SHIFT PMD_SHIFT
306#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
307#define HPAGE_MASK (~(HPAGE_SIZE - 1))
308#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
309
310static inline pte_t pgd_pte(pgd_t pgd)
311{
312 return __pte(pgd_val(pgd));
313}
314
315static inline pte_t pud_pte(pud_t pud)
316{
317 return __pte(pud_val(pud));
318}
319
320static inline pud_t pte_pud(pte_t pte)
321{
322 return __pud(pte_val(pte));
323}
324
325static inline pmd_t pud_pmd(pud_t pud)
326{
327 return __pmd(pud_val(pud));
328}
329
330static inline pte_t pmd_pte(pmd_t pmd)
331{
332 return __pte(pmd_val(pmd));
333}
334
335static inline pmd_t pte_pmd(pte_t pte)
336{
337 return __pmd(pte_val(pte));
338}
339
340static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
341{
342 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
343}
344
345static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
346{
347 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
348}
349
350#ifdef CONFIG_NUMA_BALANCING
351/*
352 * See the comment in include/asm-generic/pgtable.h
353 */
354static inline int pte_protnone(pte_t pte)
355{
356 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
357}
358
359static inline int pmd_protnone(pmd_t pmd)
360{
361 return pte_protnone(pmd_pte(pmd));
362}
363#endif
364
365/*
366 * THP definitions.
367 */
368
369#ifdef CONFIG_TRANSPARENT_HUGEPAGE
370#define pmd_trans_huge(pmd) (pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT))
371#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
372
373#define pmd_present(pmd) pte_present(pmd_pte(pmd))
374#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
375#define pmd_young(pmd) pte_young(pmd_pte(pmd))
376#define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
377#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
378#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
379#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
380#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
381#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
382#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
383#define pmd_mknotpresent(pmd) (__pmd(pmd_val(pmd) & ~PMD_SECT_VALID))
384
385#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
386
387#define pmd_write(pmd) pte_write(pmd_pte(pmd))
388
389#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
390
391#ifdef CONFIG_TRANSPARENT_HUGEPAGE
392#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
393#endif
394static inline pmd_t pmd_mkdevmap(pmd_t pmd)
395{
396 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
397}
398
399#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
400#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
401#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
402#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
403#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
404
405#define pud_young(pud) pte_young(pud_pte(pud))
406#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
407#define pud_write(pud) pte_write(pud_pte(pud))
408
409#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
410
411#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
412#define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
413#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
414#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
415
416#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
417#define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud))
418
419#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
420#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
421
422#define __pgprot_modify(prot,mask,bits) \
423 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
424
425/*
426 * Mark the prot value as uncacheable and unbufferable.
427 */
428#define pgprot_noncached(prot) \
429 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
430#define pgprot_writecombine(prot) \
431 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
432#define pgprot_device(prot) \
433 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
434/*
435 * DMA allocations for non-coherent devices use what the Arm architecture calls
436 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
437 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
438 * is intended for MMIO and thus forbids speculation, preserves access size,
439 * requires strict alignment and can also force write responses to come from the
440 * endpoint.
441 */
442#define pgprot_dmacoherent(prot) \
443 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
444 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
445
446#define __HAVE_PHYS_MEM_ACCESS_PROT
447struct file;
448extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
449 unsigned long size, pgprot_t vma_prot);
450
451#define pmd_none(pmd) (!pmd_val(pmd))
452
453#define pmd_bad(pmd) (!(pmd_val(pmd) & PMD_TABLE_BIT))
454
455#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
456 PMD_TYPE_TABLE)
457#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
458 PMD_TYPE_SECT)
459
460#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
461static inline bool pud_sect(pud_t pud) { return false; }
462static inline bool pud_table(pud_t pud) { return true; }
463#else
464#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
465 PUD_TYPE_SECT)
466#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
467 PUD_TYPE_TABLE)
468#endif
469
470extern pgd_t init_pg_dir[PTRS_PER_PGD];
471extern pgd_t init_pg_end[];
472extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
473extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
474extern pgd_t idmap_pg_end[];
475extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
476extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
477
478extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
479
480static inline bool in_swapper_pgdir(void *addr)
481{
482 return ((unsigned long)addr & PAGE_MASK) ==
483 ((unsigned long)swapper_pg_dir & PAGE_MASK);
484}
485
486static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
487{
488#ifdef __PAGETABLE_PMD_FOLDED
489 if (in_swapper_pgdir(pmdp)) {
490 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
491 return;
492 }
493#endif /* __PAGETABLE_PMD_FOLDED */
494
495 WRITE_ONCE(*pmdp, pmd);
496
497 if (pmd_valid(pmd)) {
498 dsb(ishst);
499 isb();
500 }
501}
502
503static inline void pmd_clear(pmd_t *pmdp)
504{
505 set_pmd(pmdp, __pmd(0));
506}
507
508static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
509{
510 return __pmd_to_phys(pmd);
511}
512
513static inline void pte_unmap(pte_t *pte) { }
514
515/* Find an entry in the third-level page table. */
516#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
517
518#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
519#define pte_offset_kernel(dir,addr) ((pte_t *)__va(pte_offset_phys((dir), (addr))))
520
521#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
522
523#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
524#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
525#define pte_clear_fixmap() clear_fixmap(FIX_PTE)
526
527#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(__pmd_to_phys(pmd)))
528
529/* use ONLY for statically allocated translation tables */
530#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
531
532/*
533 * Conversion functions: convert a page and protection to a page entry,
534 * and a page entry and page directory to the page they refer to.
535 */
536#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
537
538#if CONFIG_PGTABLE_LEVELS > 2
539
540#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
541
542#define pud_none(pud) (!pud_val(pud))
543#define pud_bad(pud) (!(pud_val(pud) & PUD_TABLE_BIT))
544#define pud_present(pud) pte_present(pud_pte(pud))
545#define pud_valid(pud) pte_valid(pud_pte(pud))
546
547static inline void set_pud(pud_t *pudp, pud_t pud)
548{
549#ifdef __PAGETABLE_PUD_FOLDED
550 if (in_swapper_pgdir(pudp)) {
551 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
552 return;
553 }
554#endif /* __PAGETABLE_PUD_FOLDED */
555
556 WRITE_ONCE(*pudp, pud);
557
558 if (pud_valid(pud)) {
559 dsb(ishst);
560 isb();
561 }
562}
563
564static inline void pud_clear(pud_t *pudp)
565{
566 set_pud(pudp, __pud(0));
567}
568
569static inline phys_addr_t pud_page_paddr(pud_t pud)
570{
571 return __pud_to_phys(pud);
572}
573
574/* Find an entry in the second-level page table. */
575#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
576
577#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
578#define pmd_offset(dir, addr) ((pmd_t *)__va(pmd_offset_phys((dir), (addr))))
579
580#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
581#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
582#define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
583
584#define pud_page(pud) pfn_to_page(__phys_to_pfn(__pud_to_phys(pud)))
585
586/* use ONLY for statically allocated translation tables */
587#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
588
589#else
590
591#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
592
593/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
594#define pmd_set_fixmap(addr) NULL
595#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
596#define pmd_clear_fixmap()
597
598#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
599
600#endif /* CONFIG_PGTABLE_LEVELS > 2 */
601
602#if CONFIG_PGTABLE_LEVELS > 3
603
604#define pud_ERROR(pud) __pud_error(__FILE__, __LINE__, pud_val(pud))
605
606#define pgd_none(pgd) (!pgd_val(pgd))
607#define pgd_bad(pgd) (!(pgd_val(pgd) & 2))
608#define pgd_present(pgd) (pgd_val(pgd))
609
610static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
611{
612 if (in_swapper_pgdir(pgdp)) {
613 set_swapper_pgd(pgdp, pgd);
614 return;
615 }
616
617 WRITE_ONCE(*pgdp, pgd);
618 dsb(ishst);
619 isb();
620}
621
622static inline void pgd_clear(pgd_t *pgdp)
623{
624 set_pgd(pgdp, __pgd(0));
625}
626
627static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
628{
629 return __pgd_to_phys(pgd);
630}
631
632/* Find an entry in the frst-level page table. */
633#define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
634
635#define pud_offset_phys(dir, addr) (pgd_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
636#define pud_offset(dir, addr) ((pud_t *)__va(pud_offset_phys((dir), (addr))))
637
638#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr))
639#define pud_set_fixmap_offset(pgd, addr) pud_set_fixmap(pud_offset_phys(pgd, addr))
640#define pud_clear_fixmap() clear_fixmap(FIX_PUD)
641
642#define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
643
644/* use ONLY for statically allocated translation tables */
645#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
646
647#else
648
649#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;})
650
651/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
652#define pud_set_fixmap(addr) NULL
653#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
654#define pud_clear_fixmap()
655
656#define pud_offset_kimg(dir,addr) ((pud_t *)dir)
657
658#endif /* CONFIG_PGTABLE_LEVELS > 3 */
659
660#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
661
662/* to find an entry in a page-table-directory */
663#define pgd_index(addr) (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
664
665#define pgd_offset_raw(pgd, addr) ((pgd) + pgd_index(addr))
666
667#define pgd_offset(mm, addr) (pgd_offset_raw((mm)->pgd, (addr)))
668
669/* to find an entry in a kernel page-table-directory */
670#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
671
672#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
673#define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
674
675static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
676{
677 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
678 PTE_PROT_NONE | PTE_VALID | PTE_WRITE;
679 /* preserve the hardware dirty information */
680 if (pte_hw_dirty(pte))
681 pte = pte_mkdirty(pte);
682 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
683 /*
684 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
685 * dirtiness again.
686 */
687 if (pte_sw_dirty(pte))
688 pte = pte_mkdirty(pte);
689 return pte;
690}
691
692static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
693{
694 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
695}
696
697#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
698extern int ptep_set_access_flags(struct vm_area_struct *vma,
699 unsigned long address, pte_t *ptep,
700 pte_t entry, int dirty);
701
702#ifdef CONFIG_TRANSPARENT_HUGEPAGE
703#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
704static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
705 unsigned long address, pmd_t *pmdp,
706 pmd_t entry, int dirty)
707{
708 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
709}
710
711static inline int pud_devmap(pud_t pud)
712{
713 return 0;
714}
715
716static inline int pgd_devmap(pgd_t pgd)
717{
718 return 0;
719}
720#endif
721
722/*
723 * Atomic pte/pmd modifications.
724 */
725#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
726static inline int __ptep_test_and_clear_young(pte_t *ptep)
727{
728 pte_t old_pte, pte;
729
730 pte = READ_ONCE(*ptep);
731 do {
732 old_pte = pte;
733 pte = pte_mkold(pte);
734 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
735 pte_val(old_pte), pte_val(pte));
736 } while (pte_val(pte) != pte_val(old_pte));
737
738 return pte_young(pte);
739}
740
741static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
742 unsigned long address,
743 pte_t *ptep)
744{
745 return __ptep_test_and_clear_young(ptep);
746}
747
748#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
749static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
750 unsigned long address, pte_t *ptep)
751{
752 int young = ptep_test_and_clear_young(vma, address, ptep);
753
754 if (young) {
755 /*
756 * We can elide the trailing DSB here since the worst that can
757 * happen is that a CPU continues to use the young entry in its
758 * TLB and we mistakenly reclaim the associated page. The
759 * window for such an event is bounded by the next
760 * context-switch, which provides a DSB to complete the TLB
761 * invalidation.
762 */
763 flush_tlb_page_nosync(vma, address);
764 }
765
766 return young;
767}
768
769#ifdef CONFIG_TRANSPARENT_HUGEPAGE
770#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
771static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
772 unsigned long address,
773 pmd_t *pmdp)
774{
775 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
776}
777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
778
779#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
780static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
781 unsigned long address, pte_t *ptep)
782{
783 return __pte(xchg_relaxed(&pte_val(*ptep), 0));
784}
785
786#ifdef CONFIG_TRANSPARENT_HUGEPAGE
787#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
788static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
789 unsigned long address, pmd_t *pmdp)
790{
791 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
792}
793#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
794
795/*
796 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
797 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
798 */
799#define __HAVE_ARCH_PTEP_SET_WRPROTECT
800static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
801{
802 pte_t old_pte, pte;
803
804 pte = READ_ONCE(*ptep);
805 do {
806 old_pte = pte;
807 pte = pte_wrprotect(pte);
808 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
809 pte_val(old_pte), pte_val(pte));
810 } while (pte_val(pte) != pte_val(old_pte));
811}
812
813#ifdef CONFIG_TRANSPARENT_HUGEPAGE
814#define __HAVE_ARCH_PMDP_SET_WRPROTECT
815static inline void pmdp_set_wrprotect(struct mm_struct *mm,
816 unsigned long address, pmd_t *pmdp)
817{
818 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
819}
820
821#define pmdp_establish pmdp_establish
822static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
823 unsigned long address, pmd_t *pmdp, pmd_t pmd)
824{
825 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
826}
827#endif
828
829/*
830 * Encode and decode a swap entry:
831 * bits 0-1: present (must be zero)
832 * bits 2-7: swap type
833 * bits 8-57: swap offset
834 * bit 58: PTE_PROT_NONE (must be zero)
835 */
836#define __SWP_TYPE_SHIFT 2
837#define __SWP_TYPE_BITS 6
838#define __SWP_OFFSET_BITS 50
839#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
840#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
841#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
842
843#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
844#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
845#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
846
847#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
848#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
849
850/*
851 * Ensure that there are not more swap files than can be encoded in the kernel
852 * PTEs.
853 */
854#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
855
856extern int kern_addr_valid(unsigned long addr);
857
858#include <asm-generic/pgtable.h>
859
860/*
861 * On AArch64, the cache coherency is handled via the set_pte_at() function.
862 */
863static inline void update_mmu_cache(struct vm_area_struct *vma,
864 unsigned long addr, pte_t *ptep)
865{
866 /*
867 * We don't do anything here, so there's a very small chance of
868 * us retaking a user fault which we just fixed up. The alternative
869 * is doing a dsb(ishst), but that penalises the fastpath.
870 */
871}
872
873#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
874
875#ifdef CONFIG_ARM64_PA_BITS_52
876#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
877#else
878#define phys_to_ttbr(addr) (addr)
879#endif
880
881#endif /* !__ASSEMBLY__ */
882
883#endif /* __ASM_PGTABLE_H */