blob: 23a4b533de9064a0d7b7a07fa4529e1f71722ddc [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Low-level CPU initialisation
4 * Based on arch/arm/kernel/head.S
5 *
6 * Copyright (C) 1994-2002 Russell King
7 * Copyright (C) 2003-2012 ARM Ltd.
8 * Authors: Catalin Marinas <catalin.marinas@arm.com>
9 * Will Deacon <will.deacon@arm.com>
10 */
11
12#include <linux/linkage.h>
13#include <linux/init.h>
14#include <linux/irqchip/arm-gic-v3.h>
15
16#include <asm/assembler.h>
17#include <asm/boot.h>
18#include <asm/ptrace.h>
19#include <asm/asm-offsets.h>
20#include <asm/cache.h>
21#include <asm/cputype.h>
22#include <asm/elf.h>
23#include <asm/image.h>
24#include <asm/kernel-pgtable.h>
25#include <asm/kvm_arm.h>
26#include <asm/memory.h>
27#include <asm/pgtable-hwdef.h>
28#include <asm/pgtable.h>
29#include <asm/page.h>
30#include <asm/scs.h>
31#include <asm/smp.h>
32#include <asm/sysreg.h>
33#include <asm/thread_info.h>
34#include <asm/virt.h>
35
36#include "efi-header.S"
37
38#define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET)
39
40#if (TEXT_OFFSET & 0xfff) != 0
41#error TEXT_OFFSET must be at least 4KB aligned
42#elif (PAGE_OFFSET & 0x1fffff) != 0
43#error PAGE_OFFSET must be at least 2MB aligned
44#elif TEXT_OFFSET > 0x1fffff
45#error TEXT_OFFSET must be less than 2MB
46#endif
47
48/*
49 * Kernel startup entry point.
50 * ---------------------------
51 *
52 * The requirements are:
53 * MMU = off, D-cache = off, I-cache = on or off,
54 * x0 = physical address to the FDT blob.
55 *
56 * This code is mostly position independent so you call this at
57 * __pa(PAGE_OFFSET + TEXT_OFFSET).
58 *
59 * Note that the callee-saved registers are used for storing variables
60 * that are useful before the MMU is enabled. The allocations are described
61 * in the entry routines.
62 */
63 __HEAD
64_head:
65 /*
66 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
67 */
68#ifdef CONFIG_EFI
69 /*
70 * This add instruction has no meaningful effect except that
71 * its opcode forms the magic "MZ" signature required by UEFI.
72 */
73 add x13, x18, #0x16
74 b stext
75#else
76 b stext // branch to kernel start, magic
77 .long 0 // reserved
78#endif
79 le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian
80 le64sym _kernel_size_le // Effective size of kernel image, little-endian
81 le64sym _kernel_flags_le // Informative flags, little-endian
82 .quad 0 // reserved
83 .quad 0 // reserved
84 .quad 0 // reserved
85 .ascii ARM64_IMAGE_MAGIC // Magic number
86#ifdef CONFIG_EFI
87 .long pe_header - _head // Offset to the PE header.
88
89pe_header:
90 __EFI_PE_HEADER
91#else
92 .long 0 // reserved
93#endif
94
95 __INIT
96
97 /*
98 * The following callee saved general purpose registers are used on the
99 * primary lowlevel boot path:
100 *
101 * Register Scope Purpose
102 * x21 stext() .. start_kernel() FDT pointer passed at boot in x0
103 * x23 stext() .. start_kernel() physical misalignment/KASLR offset
104 * x28 __create_page_tables() callee preserved temp register
105 * x19/x20 __primary_switch() callee preserved temp registers
106 * x24 __primary_switch() .. relocate_kernel()
107 * current RELR displacement
108 */
109ENTRY(stext)
110 bl preserve_boot_args
111 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
112 adrp x23, __PHYS_OFFSET
113 and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0
114 bl set_cpu_boot_mode_flag
115 bl __create_page_tables
116 /*
117 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
118 * details.
119 * On return, the CPU will be ready for the MMU to be turned on and
120 * the TCR will have been set.
121 */
122 bl __cpu_setup // initialise processor
123 b __primary_switch
124ENDPROC(stext)
125
126/*
127 * Preserve the arguments passed by the bootloader in x0 .. x3
128 */
129preserve_boot_args:
130 mov x21, x0 // x21=FDT
131
132 adr_l x0, boot_args // record the contents of
133 stp x21, x1, [x0] // x0 .. x3 at kernel entry
134 stp x2, x3, [x0, #16]
135
136 dmb sy // needed before dc ivac with
137 // MMU off
138
139 mov x1, #0x20 // 4 x 8 bytes
140 b __inval_dcache_area // tail call
141ENDPROC(preserve_boot_args)
142
143/*
144 * Macro to create a table entry to the next page.
145 *
146 * tbl: page table address
147 * virt: virtual address
148 * shift: #imm page table shift
149 * ptrs: #imm pointers per table page
150 *
151 * Preserves: virt
152 * Corrupts: ptrs, tmp1, tmp2
153 * Returns: tbl -> next level table page address
154 */
155 .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
156 add \tmp1, \tbl, #PAGE_SIZE
157 phys_to_pte \tmp2, \tmp1
158 orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type
159 lsr \tmp1, \virt, #\shift
160 sub \ptrs, \ptrs, #1
161 and \tmp1, \tmp1, \ptrs // table index
162 str \tmp2, [\tbl, \tmp1, lsl #3]
163 add \tbl, \tbl, #PAGE_SIZE // next level table page
164 .endm
165
166/*
167 * Macro to populate page table entries, these entries can be pointers to the next level
168 * or last level entries pointing to physical memory.
169 *
170 * tbl: page table address
171 * rtbl: pointer to page table or physical memory
172 * index: start index to write
173 * eindex: end index to write - [index, eindex] written to
174 * flags: flags for pagetable entry to or in
175 * inc: increment to rtbl between each entry
176 * tmp1: temporary variable
177 *
178 * Preserves: tbl, eindex, flags, inc
179 * Corrupts: index, tmp1
180 * Returns: rtbl
181 */
182 .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
183.Lpe\@: phys_to_pte \tmp1, \rtbl
184 orr \tmp1, \tmp1, \flags // tmp1 = table entry
185 str \tmp1, [\tbl, \index, lsl #3]
186 add \rtbl, \rtbl, \inc // rtbl = pa next level
187 add \index, \index, #1
188 cmp \index, \eindex
189 b.ls .Lpe\@
190 .endm
191
192/*
193 * Compute indices of table entries from virtual address range. If multiple entries
194 * were needed in the previous page table level then the next page table level is assumed
195 * to be composed of multiple pages. (This effectively scales the end index).
196 *
197 * vstart: virtual address of start of range
198 * vend: virtual address of end of range - we map [vstart, vend]
199 * shift: shift used to transform virtual address into index
200 * ptrs: number of entries in page table
201 * istart: index in table corresponding to vstart
202 * iend: index in table corresponding to vend
203 * count: On entry: how many extra entries were required in previous level, scales
204 * our end index.
205 * On exit: returns how many extra entries required for next page table level
206 *
207 * Preserves: vstart, vend, shift, ptrs
208 * Returns: istart, iend, count
209 */
210 .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
211 lsr \iend, \vend, \shift
212 mov \istart, \ptrs
213 sub \istart, \istart, #1
214 and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1)
215 mov \istart, \ptrs
216 mul \istart, \istart, \count
217 add \iend, \iend, \istart // iend += (count - 1) * ptrs
218 // our entries span multiple tables
219
220 lsr \istart, \vstart, \shift
221 mov \count, \ptrs
222 sub \count, \count, #1
223 and \istart, \istart, \count
224
225 sub \count, \iend, \istart
226 .endm
227
228/*
229 * Map memory for specified virtual address range. Each level of page table needed supports
230 * multiple entries. If a level requires n entries the next page table level is assumed to be
231 * formed from n pages.
232 *
233 * tbl: location of page table
234 * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE)
235 * vstart: virtual address of start of range
236 * vend: virtual address of end of range - we map [vstart, vend - 1]
237 * flags: flags to use to map last level entries
238 * phys: physical address corresponding to vstart - physical memory is contiguous
239 * pgds: the number of pgd entries
240 *
241 * Temporaries: istart, iend, tmp, count, sv - these need to be different registers
242 * Preserves: vstart, flags
243 * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv
244 */
245 .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
246 sub \vend, \vend, #1
247 add \rtbl, \tbl, #PAGE_SIZE
248 mov \sv, \rtbl
249 mov \count, #0
250 compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
251 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
252 mov \tbl, \sv
253 mov \sv, \rtbl
254
255#if SWAPPER_PGTABLE_LEVELS > 3
256 compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
257 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
258 mov \tbl, \sv
259 mov \sv, \rtbl
260#endif
261
262#if SWAPPER_PGTABLE_LEVELS > 2
263 compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
264 populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
265 mov \tbl, \sv
266#endif
267
268 compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
269 bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
270 populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
271 .endm
272
273/*
274 * Setup the initial page tables. We only setup the barest amount which is
275 * required to get the kernel running. The following sections are required:
276 * - identity mapping to enable the MMU (low address, TTBR0)
277 * - first few MB of the kernel linear mapping to jump to once the MMU has
278 * been enabled
279 */
280__create_page_tables:
281 mov x28, lr
282
283 /*
284 * Invalidate the init page tables to avoid potential dirty cache lines
285 * being evicted. Other page tables are allocated in rodata as part of
286 * the kernel image, and thus are clean to the PoC per the boot
287 * protocol.
288 */
289 adrp x0, init_pg_dir
290 adrp x1, init_pg_end
291 sub x1, x1, x0
292 bl __inval_dcache_area
293
294 /*
295 * Clear the init page tables.
296 */
297 adrp x0, init_pg_dir
298 adrp x1, init_pg_end
299 sub x1, x1, x0
3001: stp xzr, xzr, [x0], #16
301 stp xzr, xzr, [x0], #16
302 stp xzr, xzr, [x0], #16
303 stp xzr, xzr, [x0], #16
304 subs x1, x1, #64
305 b.ne 1b
306
307 mov x7, SWAPPER_MM_MMUFLAGS
308
309 /*
310 * Create the identity mapping.
311 */
312 adrp x0, idmap_pg_dir
313 adrp x3, __idmap_text_start // __pa(__idmap_text_start)
314
315#ifdef CONFIG_ARM64_VA_BITS_52
316 mrs_s x6, SYS_ID_AA64MMFR2_EL1
317 and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
318 mov x5, #52
319 cbnz x6, 1f
320#endif
321 mov x5, #VA_BITS_MIN
3221:
323 adr_l x6, vabits_actual
324 str x5, [x6]
325 dmb sy
326 dc ivac, x6 // Invalidate potentially stale cache line
327
328 /*
329 * VA_BITS may be too small to allow for an ID mapping to be created
330 * that covers system RAM if that is located sufficiently high in the
331 * physical address space. So for the ID map, use an extended virtual
332 * range in that case, and configure an additional translation level
333 * if needed.
334 *
335 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
336 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
337 * this number conveniently equals the number of leading zeroes in
338 * the physical address of __idmap_text_end.
339 */
340 adrp x5, __idmap_text_end
341 clz x5, x5
342 cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
343 b.ge 1f // .. then skip VA range extension
344
345 adr_l x6, idmap_t0sz
346 str x5, [x6]
347 dmb sy
348 dc ivac, x6 // Invalidate potentially stale cache line
349
350#if (VA_BITS < 48)
351#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3)
352#define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
353
354 /*
355 * If VA_BITS < 48, we have to configure an additional table level.
356 * First, we have to verify our assumption that the current value of
357 * VA_BITS was chosen such that all translation levels are fully
358 * utilised, and that lowering T0SZ will always result in an additional
359 * translation level to be configured.
360 */
361#if VA_BITS != EXTRA_SHIFT
362#error "Mismatch between VA_BITS and page size/number of translation levels"
363#endif
364
365 mov x4, EXTRA_PTRS
366 create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
367#else
368 /*
369 * If VA_BITS == 48, we don't have to configure an additional
370 * translation level, but the top-level table has more entries.
371 */
372 mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
373 str_l x4, idmap_ptrs_per_pgd, x5
374#endif
3751:
376 ldr_l x4, idmap_ptrs_per_pgd
377 mov x5, x3 // __pa(__idmap_text_start)
378 adr_l x6, __idmap_text_end // __pa(__idmap_text_end)
379
380 map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
381
382 /*
383 * Map the kernel image (starting with PHYS_OFFSET).
384 */
385 adrp x0, init_pg_dir
386 mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text)
387 add x5, x5, x23 // add KASLR displacement
388 mov x4, PTRS_PER_PGD
389 adrp x6, _end // runtime __pa(_end)
390 adrp x3, _text // runtime __pa(_text)
391 sub x6, x6, x3 // _end - _text
392 add x6, x6, x5 // runtime __va(_end)
393
394 map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
395
396 /*
397 * Since the page tables have been populated with non-cacheable
398 * accesses (MMU disabled), invalidate those tables again to
399 * remove any speculatively loaded cache lines.
400 */
401 dmb sy
402
403 adrp x0, idmap_pg_dir
404 adrp x1, idmap_pg_end
405 sub x1, x1, x0
406 bl __inval_dcache_area
407
408 adrp x0, init_pg_dir
409 adrp x1, init_pg_end
410 sub x1, x1, x0
411 bl __inval_dcache_area
412
413 ret x28
414ENDPROC(__create_page_tables)
415 .ltorg
416
417/*
418 * The following fragment of code is executed with the MMU enabled.
419 *
420 * x0 = __PHYS_OFFSET
421 */
422__primary_switched:
423 adrp x4, init_thread_union
424 add sp, x4, #THREAD_SIZE
425 adr_l x5, init_task
426 msr sp_el0, x5 // Save thread_info
427
428 adr_l x8, vectors // load VBAR_EL1 with virtual
429 msr vbar_el1, x8 // vector table address
430 isb
431
432 stp xzr, x30, [sp, #-16]!
433 mov x29, sp
434
435#ifdef CONFIG_SHADOW_CALL_STACK
436 adr_l x18, init_shadow_call_stack // Set shadow call stack
437#endif
438
439 str_l x21, __fdt_pointer, x5 // Save FDT pointer
440
441 ldr_l x4, kimage_vaddr // Save the offset between
442 sub x4, x4, x0 // the kernel virtual and
443 str_l x4, kimage_voffset, x5 // physical mappings
444
445 // Clear BSS
446 adr_l x0, __bss_start
447 mov x1, xzr
448 adr_l x2, __bss_stop
449 sub x2, x2, x0
450 bl __pi_memset
451 dsb ishst // Make zero page visible to PTW
452
453#ifdef CONFIG_KASAN
454 bl kasan_early_init
455#endif
456#ifdef CONFIG_RANDOMIZE_BASE
457 tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized?
458 b.ne 0f
459 mov x0, x21 // pass FDT address in x0
460 bl kaslr_early_init // parse FDT for KASLR options
461 cbz x0, 0f // KASLR disabled? just proceed
462 orr x23, x23, x0 // record KASLR offset
463 ldp x29, x30, [sp], #16 // we must enable KASLR, return
464 ret // to __primary_switch()
4650:
466#endif
467 add sp, sp, #16
468 mov x29, #0
469 mov x30, #0
470 b start_kernel
471ENDPROC(__primary_switched)
472
473/*
474 * end early head section, begin head code that is also used for
475 * hotplug and needs to have the same protections as the text region
476 */
477 .section ".idmap.text","awx"
478
479ENTRY(kimage_vaddr)
480 .quad _text - TEXT_OFFSET
481EXPORT_SYMBOL(kimage_vaddr)
482
483/*
484 * If we're fortunate enough to boot at EL2, ensure that the world is
485 * sane before dropping to EL1.
486 *
487 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
488 * booted in EL1 or EL2 respectively.
489 */
490ENTRY(el2_setup)
491 msr SPsel, #1 // We want to use SP_EL{1,2}
492 mrs x0, CurrentEL
493 cmp x0, #CurrentEL_EL2
494 b.eq 1f
495 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
496 msr sctlr_el1, x0
497 mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1
498 isb
499 ret
500
5011: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2)
502 msr sctlr_el2, x0
503
504#ifdef CONFIG_ARM64_VHE
505 /*
506 * Check for VHE being present. For the rest of the EL2 setup,
507 * x2 being non-zero indicates that we do have VHE, and that the
508 * kernel is intended to run at EL2.
509 */
510 mrs x2, id_aa64mmfr1_el1
511 ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4
512#else
513 mov x2, xzr
514#endif
515
516 /* Hyp configuration. */
517 mov_q x0, HCR_HOST_NVHE_FLAGS
518 cbz x2, set_hcr
519 mov_q x0, HCR_HOST_VHE_FLAGS
520set_hcr:
521 msr hcr_el2, x0
522 isb
523
524 /*
525 * Allow Non-secure EL1 and EL0 to access physical timer and counter.
526 * This is not necessary for VHE, since the host kernel runs in EL2,
527 * and EL0 accesses are configured in the later stage of boot process.
528 * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout
529 * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined
530 * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1
531 * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in
532 * EL2.
533 */
534 cbnz x2, 1f
535 mrs x0, cnthctl_el2
536 orr x0, x0, #3 // Enable EL1 physical timers
537 msr cnthctl_el2, x0
5381:
539 msr cntvoff_el2, xzr // Clear virtual offset
540
541#ifdef CONFIG_ARM_GIC_V3
542 /* GICv3 system register access */
543 mrs x0, id_aa64pfr0_el1
544 ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4
545 cbz x0, 3f
546
547 mrs_s x0, SYS_ICC_SRE_EL2
548 orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1
549 orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1
550 msr_s SYS_ICC_SRE_EL2, x0
551 isb // Make sure SRE is now set
552 mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back,
553 tbz x0, #0, 3f // and check that it sticks
554 msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults
555
5563:
557#endif
558
559 /* Populate ID registers. */
560 mrs x0, midr_el1
561 mrs x1, mpidr_el1
562 msr vpidr_el2, x0
563 msr vmpidr_el2, x1
564
565#ifdef CONFIG_COMPAT
566 msr hstr_el2, xzr // Disable CP15 traps to EL2
567#endif
568
569 /* EL2 debug */
570 mrs x1, id_aa64dfr0_el1
571 sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4
572 cmp x0, #1
573 b.lt 4f // Skip if no PMU present
574 mrs x0, pmcr_el0 // Disable debug access traps
575 ubfx x0, x0, #11, #5 // to EL2 and allow access to
5764:
577 csel x3, xzr, x0, lt // all PMU counters from EL1
578
579 /* Statistical profiling */
580 ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4
581 cbz x0, 7f // Skip if SPE not present
582 cbnz x2, 6f // VHE?
583 mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2,
584 and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT)
585 cbnz x4, 5f // then permit sampling of physical
586 mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \
587 1 << SYS_PMSCR_EL2_PA_SHIFT)
588 msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter
5895:
590 mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT)
591 orr x3, x3, x1 // If we don't have VHE, then
592 b 7f // use EL1&0 translation.
5936: // For VHE, use EL2 translation
594 orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1
5957:
596 msr mdcr_el2, x3 // Configure debug traps
597
598 /* LORegions */
599 mrs x1, id_aa64mmfr1_el1
600 ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4
601 cbz x0, 1f
602 msr_s SYS_LORC_EL1, xzr
6031:
604
605 /* Stage-2 translation */
606 msr vttbr_el2, xzr
607
608 cbz x2, install_el2_stub
609
610 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
611 isb
612 ret
613
614install_el2_stub:
615 /*
616 * When VHE is not in use, early init of EL2 and EL1 needs to be
617 * done here.
618 * When VHE _is_ in use, EL1 will not be used in the host and
619 * requires no configuration, and all non-hyp-specific EL2 setup
620 * will be done via the _EL1 system register aliases in __cpu_setup.
621 */
622 mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1)
623 msr sctlr_el1, x0
624
625 /* Coprocessor traps. */
626 mov x0, #0x33ff
627 msr cptr_el2, x0 // Disable copro. traps to EL2
628
629 /* SVE register access */
630 mrs x1, id_aa64pfr0_el1
631 ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4
632 cbz x1, 7f
633
634 bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps
635 msr cptr_el2, x0 // Disable copro. traps to EL2
636 isb
637 mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector
638 msr_s SYS_ZCR_EL2, x1 // length for EL1.
639
640 /* Hypervisor stub */
6417: adr_l x0, __hyp_stub_vectors
642 msr vbar_el2, x0
643
644 /* spsr */
645 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
646 PSR_MODE_EL1h)
647 msr spsr_el2, x0
648 msr elr_el2, lr
649 mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2
650 eret
651ENDPROC(el2_setup)
652
653/*
654 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
655 * in w0. See arch/arm64/include/asm/virt.h for more info.
656 */
657set_cpu_boot_mode_flag:
658 adr_l x1, __boot_cpu_mode
659 cmp w0, #BOOT_CPU_MODE_EL2
660 b.ne 1f
661 add x1, x1, #4
6621: str w0, [x1] // This CPU has booted in EL1
663 dmb sy
664 dc ivac, x1 // Invalidate potentially stale cache line
665 ret
666ENDPROC(set_cpu_boot_mode_flag)
667
668/*
669 * These values are written with the MMU off, but read with the MMU on.
670 * Writers will invalidate the corresponding address, discarding up to a
671 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
672 * sufficient alignment that the CWG doesn't overlap another section.
673 */
674 .pushsection ".mmuoff.data.write", "aw"
675/*
676 * We need to find out the CPU boot mode long after boot, so we need to
677 * store it in a writable variable.
678 *
679 * This is not in .bss, because we set it sufficiently early that the boot-time
680 * zeroing of .bss would clobber it.
681 */
682ENTRY(__boot_cpu_mode)
683 .long BOOT_CPU_MODE_EL2
684 .long BOOT_CPU_MODE_EL1
685/*
686 * The booting CPU updates the failed status @__early_cpu_boot_status,
687 * with MMU turned off.
688 */
689ENTRY(__early_cpu_boot_status)
690 .quad 0
691
692 .popsection
693
694 /*
695 * This provides a "holding pen" for platforms to hold all secondary
696 * cores are held until we're ready for them to initialise.
697 */
698ENTRY(secondary_holding_pen)
699 bl el2_setup // Drop to EL1, w0=cpu_boot_mode
700 bl set_cpu_boot_mode_flag
701 mrs x0, mpidr_el1
702 mov_q x1, MPIDR_HWID_BITMASK
703 and x0, x0, x1
704 adr_l x3, secondary_holding_pen_release
705pen: ldr x4, [x3]
706 cmp x4, x0
707 b.eq secondary_startup
708 wfe
709 b pen
710ENDPROC(secondary_holding_pen)
711
712 /*
713 * Secondary entry point that jumps straight into the kernel. Only to
714 * be used where CPUs are brought online dynamically by the kernel.
715 */
716ENTRY(secondary_entry)
717 bl el2_setup // Drop to EL1
718 bl set_cpu_boot_mode_flag
719 b secondary_startup
720ENDPROC(secondary_entry)
721
722secondary_startup:
723 /*
724 * Common entry point for secondary CPUs.
725 */
726 bl __cpu_secondary_check52bitva
727 bl __cpu_setup // initialise processor
728 adrp x1, swapper_pg_dir
729 bl __enable_mmu
730 ldr x8, =__secondary_switched
731 br x8
732ENDPROC(secondary_startup)
733
734__secondary_switched:
735 adr_l x5, vectors
736 msr vbar_el1, x5
737 isb
738
739 adr_l x0, secondary_data
740 ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack
741 cbz x1, __secondary_too_slow
742 mov sp, x1
743 ldr x2, [x0, #CPU_BOOT_TASK]
744 cbz x2, __secondary_too_slow
745 msr sp_el0, x2
746#ifdef CONFIG_SHADOW_CALL_STACK
747 ldr x18, [x2, #TSK_TI_SCS] // set shadow call stack
748 str xzr, [x2, #TSK_TI_SCS] // limit visibility of saved SCS
749#endif
750 mov x29, #0
751 mov x30, #0
752 b secondary_start_kernel
753ENDPROC(__secondary_switched)
754
755__secondary_too_slow:
756 wfe
757 wfi
758 b __secondary_too_slow
759ENDPROC(__secondary_too_slow)
760
761/*
762 * The booting CPU updates the failed status @__early_cpu_boot_status,
763 * with MMU turned off.
764 *
765 * update_early_cpu_boot_status tmp, status
766 * - Corrupts tmp1, tmp2
767 * - Writes 'status' to __early_cpu_boot_status and makes sure
768 * it is committed to memory.
769 */
770
771 .macro update_early_cpu_boot_status status, tmp1, tmp2
772 mov \tmp2, #\status
773 adr_l \tmp1, __early_cpu_boot_status
774 str \tmp2, [\tmp1]
775 dmb sy
776 dc ivac, \tmp1 // Invalidate potentially stale cache line
777 .endm
778
779/*
780 * Enable the MMU.
781 *
782 * x0 = SCTLR_EL1 value for turning on the MMU.
783 * x1 = TTBR1_EL1 value
784 *
785 * Returns to the caller via x30/lr. This requires the caller to be covered
786 * by the .idmap.text section.
787 *
788 * Checks if the selected granule size is supported by the CPU.
789 * If it isn't, park the CPU
790 */
791ENTRY(__enable_mmu)
792 mrs x2, ID_AA64MMFR0_EL1
793 ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
794 cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED
795 b.ne __no_granule_support
796 update_early_cpu_boot_status 0, x2, x3
797 adrp x2, idmap_pg_dir
798 phys_to_ttbr x1, x1
799 phys_to_ttbr x2, x2
800 msr ttbr0_el1, x2 // load TTBR0
801 offset_ttbr1 x1, x3
802 msr ttbr1_el1, x1 // load TTBR1
803 isb
804 msr sctlr_el1, x0
805 isb
806 /*
807 * Invalidate the local I-cache so that any instructions fetched
808 * speculatively from the PoC are discarded, since they may have
809 * been dynamically patched at the PoU.
810 */
811 ic iallu
812 dsb nsh
813 isb
814 ret
815ENDPROC(__enable_mmu)
816
817ENTRY(__cpu_secondary_check52bitva)
818#ifdef CONFIG_ARM64_VA_BITS_52
819 ldr_l x0, vabits_actual
820 cmp x0, #52
821 b.ne 2f
822
823 mrs_s x0, SYS_ID_AA64MMFR2_EL1
824 and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
825 cbnz x0, 2f
826
827 update_early_cpu_boot_status \
828 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
8291: wfe
830 wfi
831 b 1b
832
833#endif
8342: ret
835ENDPROC(__cpu_secondary_check52bitva)
836
837__no_granule_support:
838 /* Indicate that this CPU can't boot and is stuck in the kernel */
839 update_early_cpu_boot_status \
840 CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
8411:
842 wfe
843 wfi
844 b 1b
845ENDPROC(__no_granule_support)
846
847#ifdef CONFIG_RELOCATABLE
848__relocate_kernel:
849 /*
850 * Iterate over each entry in the relocation table, and apply the
851 * relocations in place.
852 */
853 ldr w9, =__rela_offset // offset to reloc table
854 ldr w10, =__rela_size // size of reloc table
855
856 mov_q x11, KIMAGE_VADDR // default virtual offset
857 add x11, x11, x23 // actual virtual offset
858 add x9, x9, x11 // __va(.rela)
859 add x10, x9, x10 // __va(.rela) + sizeof(.rela)
860
8610: cmp x9, x10
862 b.hs 1f
863 ldp x12, x13, [x9], #24
864 ldr x14, [x9, #-8]
865 cmp w13, #R_AARCH64_RELATIVE
866 b.ne 0b
867 add x14, x14, x23 // relocate
868 str x14, [x12, x23]
869 b 0b
870
8711:
872#ifdef CONFIG_RELR
873 /*
874 * Apply RELR relocations.
875 *
876 * RELR is a compressed format for storing relative relocations. The
877 * encoded sequence of entries looks like:
878 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
879 *
880 * i.e. start with an address, followed by any number of bitmaps. The
881 * address entry encodes 1 relocation. The subsequent bitmap entries
882 * encode up to 63 relocations each, at subsequent offsets following
883 * the last address entry.
884 *
885 * The bitmap entries must have 1 in the least significant bit. The
886 * assumption here is that an address cannot have 1 in lsb. Odd
887 * addresses are not supported. Any odd addresses are stored in the RELA
888 * section, which is handled above.
889 *
890 * Excluding the least significant bit in the bitmap, each non-zero
891 * bit in the bitmap represents a relocation to be applied to
892 * a corresponding machine word that follows the base address
893 * word. The second least significant bit represents the machine
894 * word immediately following the initial address, and each bit
895 * that follows represents the next word, in linear order. As such,
896 * a single bitmap can encode up to 63 relocations in a 64-bit object.
897 *
898 * In this implementation we store the address of the next RELR table
899 * entry in x9, the address being relocated by the current address or
900 * bitmap entry in x13 and the address being relocated by the current
901 * bit in x14.
902 *
903 * Because addends are stored in place in the binary, RELR relocations
904 * cannot be applied idempotently. We use x24 to keep track of the
905 * currently applied displacement so that we can correctly relocate if
906 * __relocate_kernel is called twice with non-zero displacements (i.e.
907 * if there is both a physical misalignment and a KASLR displacement).
908 */
909 ldr w9, =__relr_offset // offset to reloc table
910 ldr w10, =__relr_size // size of reloc table
911 add x9, x9, x11 // __va(.relr)
912 add x10, x9, x10 // __va(.relr) + sizeof(.relr)
913
914 sub x15, x23, x24 // delta from previous offset
915 cbz x15, 7f // nothing to do if unchanged
916 mov x24, x23 // save new offset
917
9182: cmp x9, x10
919 b.hs 7f
920 ldr x11, [x9], #8
921 tbnz x11, #0, 3f // branch to handle bitmaps
922 add x13, x11, x23
923 ldr x12, [x13] // relocate address entry
924 add x12, x12, x15
925 str x12, [x13], #8 // adjust to start of bitmap
926 b 2b
927
9283: mov x14, x13
9294: lsr x11, x11, #1
930 cbz x11, 6f
931 tbz x11, #0, 5f // skip bit if not set
932 ldr x12, [x14] // relocate bit
933 add x12, x12, x15
934 str x12, [x14]
935
9365: add x14, x14, #8 // move to next bit's address
937 b 4b
938
9396: /*
940 * Move to the next bitmap's address. 8 is the word size, and 63 is the
941 * number of significant bits in a bitmap entry.
942 */
943 add x13, x13, #(8 * 63)
944 b 2b
945
9467:
947#endif
948 ret
949
950ENDPROC(__relocate_kernel)
951#endif
952
953__primary_switch:
954#ifdef CONFIG_RANDOMIZE_BASE
955 mov x19, x0 // preserve new SCTLR_EL1 value
956 mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value
957#endif
958
959 adrp x1, init_pg_dir
960 bl __enable_mmu
961#ifdef CONFIG_RELOCATABLE
962#ifdef CONFIG_RELR
963 mov x24, #0 // no RELR displacement yet
964#endif
965 bl __relocate_kernel
966#ifdef CONFIG_RANDOMIZE_BASE
967 ldr x8, =__primary_switched
968 adrp x0, __PHYS_OFFSET
969 blr x8
970
971 /*
972 * If we return here, we have a KASLR displacement in x23 which we need
973 * to take into account by discarding the current kernel mapping and
974 * creating a new one.
975 */
976 pre_disable_mmu_workaround
977 msr sctlr_el1, x20 // disable the MMU
978 isb
979 bl __create_page_tables // recreate kernel mapping
980
981 tlbi vmalle1 // Remove any stale TLB entries
982 dsb nsh
983 isb
984
985 msr sctlr_el1, x19 // re-enable the MMU
986 isb
987 ic iallu // flush instructions fetched
988 dsb nsh // via old mapping
989 isb
990
991 bl __relocate_kernel
992#endif
993#endif
994 ldr x8, =__primary_switched
995 adrp x0, __PHYS_OFFSET
996 br x8
997ENDPROC(__primary_switch)