| b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0-only */ |
| 2 | /* |
| 3 | * Low-level CPU initialisation |
| 4 | * Based on arch/arm/kernel/head.S |
| 5 | * |
| 6 | * Copyright (C) 1994-2002 Russell King |
| 7 | * Copyright (C) 2003-2012 ARM Ltd. |
| 8 | * Authors: Catalin Marinas <catalin.marinas@arm.com> |
| 9 | * Will Deacon <will.deacon@arm.com> |
| 10 | */ |
| 11 | |
| 12 | #include <linux/linkage.h> |
| 13 | #include <linux/init.h> |
| 14 | #include <linux/irqchip/arm-gic-v3.h> |
| 15 | |
| 16 | #include <asm/assembler.h> |
| 17 | #include <asm/boot.h> |
| 18 | #include <asm/ptrace.h> |
| 19 | #include <asm/asm-offsets.h> |
| 20 | #include <asm/cache.h> |
| 21 | #include <asm/cputype.h> |
| 22 | #include <asm/elf.h> |
| 23 | #include <asm/image.h> |
| 24 | #include <asm/kernel-pgtable.h> |
| 25 | #include <asm/kvm_arm.h> |
| 26 | #include <asm/memory.h> |
| 27 | #include <asm/pgtable-hwdef.h> |
| 28 | #include <asm/pgtable.h> |
| 29 | #include <asm/page.h> |
| 30 | #include <asm/scs.h> |
| 31 | #include <asm/smp.h> |
| 32 | #include <asm/sysreg.h> |
| 33 | #include <asm/thread_info.h> |
| 34 | #include <asm/virt.h> |
| 35 | |
| 36 | #include "efi-header.S" |
| 37 | |
| 38 | #define __PHYS_OFFSET (KERNEL_START - TEXT_OFFSET) |
| 39 | |
| 40 | #if (TEXT_OFFSET & 0xfff) != 0 |
| 41 | #error TEXT_OFFSET must be at least 4KB aligned |
| 42 | #elif (PAGE_OFFSET & 0x1fffff) != 0 |
| 43 | #error PAGE_OFFSET must be at least 2MB aligned |
| 44 | #elif TEXT_OFFSET > 0x1fffff |
| 45 | #error TEXT_OFFSET must be less than 2MB |
| 46 | #endif |
| 47 | |
| 48 | /* |
| 49 | * Kernel startup entry point. |
| 50 | * --------------------------- |
| 51 | * |
| 52 | * The requirements are: |
| 53 | * MMU = off, D-cache = off, I-cache = on or off, |
| 54 | * x0 = physical address to the FDT blob. |
| 55 | * |
| 56 | * This code is mostly position independent so you call this at |
| 57 | * __pa(PAGE_OFFSET + TEXT_OFFSET). |
| 58 | * |
| 59 | * Note that the callee-saved registers are used for storing variables |
| 60 | * that are useful before the MMU is enabled. The allocations are described |
| 61 | * in the entry routines. |
| 62 | */ |
| 63 | __HEAD |
| 64 | _head: |
| 65 | /* |
| 66 | * DO NOT MODIFY. Image header expected by Linux boot-loaders. |
| 67 | */ |
| 68 | #ifdef CONFIG_EFI |
| 69 | /* |
| 70 | * This add instruction has no meaningful effect except that |
| 71 | * its opcode forms the magic "MZ" signature required by UEFI. |
| 72 | */ |
| 73 | add x13, x18, #0x16 |
| 74 | b stext |
| 75 | #else |
| 76 | b stext // branch to kernel start, magic |
| 77 | .long 0 // reserved |
| 78 | #endif |
| 79 | le64sym _kernel_offset_le // Image load offset from start of RAM, little-endian |
| 80 | le64sym _kernel_size_le // Effective size of kernel image, little-endian |
| 81 | le64sym _kernel_flags_le // Informative flags, little-endian |
| 82 | .quad 0 // reserved |
| 83 | .quad 0 // reserved |
| 84 | .quad 0 // reserved |
| 85 | .ascii ARM64_IMAGE_MAGIC // Magic number |
| 86 | #ifdef CONFIG_EFI |
| 87 | .long pe_header - _head // Offset to the PE header. |
| 88 | |
| 89 | pe_header: |
| 90 | __EFI_PE_HEADER |
| 91 | #else |
| 92 | .long 0 // reserved |
| 93 | #endif |
| 94 | |
| 95 | __INIT |
| 96 | |
| 97 | /* |
| 98 | * The following callee saved general purpose registers are used on the |
| 99 | * primary lowlevel boot path: |
| 100 | * |
| 101 | * Register Scope Purpose |
| 102 | * x21 stext() .. start_kernel() FDT pointer passed at boot in x0 |
| 103 | * x23 stext() .. start_kernel() physical misalignment/KASLR offset |
| 104 | * x28 __create_page_tables() callee preserved temp register |
| 105 | * x19/x20 __primary_switch() callee preserved temp registers |
| 106 | * x24 __primary_switch() .. relocate_kernel() |
| 107 | * current RELR displacement |
| 108 | */ |
| 109 | ENTRY(stext) |
| 110 | bl preserve_boot_args |
| 111 | bl el2_setup // Drop to EL1, w0=cpu_boot_mode |
| 112 | adrp x23, __PHYS_OFFSET |
| 113 | and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 |
| 114 | bl set_cpu_boot_mode_flag |
| 115 | bl __create_page_tables |
| 116 | /* |
| 117 | * The following calls CPU setup code, see arch/arm64/mm/proc.S for |
| 118 | * details. |
| 119 | * On return, the CPU will be ready for the MMU to be turned on and |
| 120 | * the TCR will have been set. |
| 121 | */ |
| 122 | bl __cpu_setup // initialise processor |
| 123 | b __primary_switch |
| 124 | ENDPROC(stext) |
| 125 | |
| 126 | /* |
| 127 | * Preserve the arguments passed by the bootloader in x0 .. x3 |
| 128 | */ |
| 129 | preserve_boot_args: |
| 130 | mov x21, x0 // x21=FDT |
| 131 | |
| 132 | adr_l x0, boot_args // record the contents of |
| 133 | stp x21, x1, [x0] // x0 .. x3 at kernel entry |
| 134 | stp x2, x3, [x0, #16] |
| 135 | |
| 136 | dmb sy // needed before dc ivac with |
| 137 | // MMU off |
| 138 | |
| 139 | mov x1, #0x20 // 4 x 8 bytes |
| 140 | b __inval_dcache_area // tail call |
| 141 | ENDPROC(preserve_boot_args) |
| 142 | |
| 143 | /* |
| 144 | * Macro to create a table entry to the next page. |
| 145 | * |
| 146 | * tbl: page table address |
| 147 | * virt: virtual address |
| 148 | * shift: #imm page table shift |
| 149 | * ptrs: #imm pointers per table page |
| 150 | * |
| 151 | * Preserves: virt |
| 152 | * Corrupts: ptrs, tmp1, tmp2 |
| 153 | * Returns: tbl -> next level table page address |
| 154 | */ |
| 155 | .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 |
| 156 | add \tmp1, \tbl, #PAGE_SIZE |
| 157 | phys_to_pte \tmp2, \tmp1 |
| 158 | orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type |
| 159 | lsr \tmp1, \virt, #\shift |
| 160 | sub \ptrs, \ptrs, #1 |
| 161 | and \tmp1, \tmp1, \ptrs // table index |
| 162 | str \tmp2, [\tbl, \tmp1, lsl #3] |
| 163 | add \tbl, \tbl, #PAGE_SIZE // next level table page |
| 164 | .endm |
| 165 | |
| 166 | /* |
| 167 | * Macro to populate page table entries, these entries can be pointers to the next level |
| 168 | * or last level entries pointing to physical memory. |
| 169 | * |
| 170 | * tbl: page table address |
| 171 | * rtbl: pointer to page table or physical memory |
| 172 | * index: start index to write |
| 173 | * eindex: end index to write - [index, eindex] written to |
| 174 | * flags: flags for pagetable entry to or in |
| 175 | * inc: increment to rtbl between each entry |
| 176 | * tmp1: temporary variable |
| 177 | * |
| 178 | * Preserves: tbl, eindex, flags, inc |
| 179 | * Corrupts: index, tmp1 |
| 180 | * Returns: rtbl |
| 181 | */ |
| 182 | .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 |
| 183 | .Lpe\@: phys_to_pte \tmp1, \rtbl |
| 184 | orr \tmp1, \tmp1, \flags // tmp1 = table entry |
| 185 | str \tmp1, [\tbl, \index, lsl #3] |
| 186 | add \rtbl, \rtbl, \inc // rtbl = pa next level |
| 187 | add \index, \index, #1 |
| 188 | cmp \index, \eindex |
| 189 | b.ls .Lpe\@ |
| 190 | .endm |
| 191 | |
| 192 | /* |
| 193 | * Compute indices of table entries from virtual address range. If multiple entries |
| 194 | * were needed in the previous page table level then the next page table level is assumed |
| 195 | * to be composed of multiple pages. (This effectively scales the end index). |
| 196 | * |
| 197 | * vstart: virtual address of start of range |
| 198 | * vend: virtual address of end of range - we map [vstart, vend] |
| 199 | * shift: shift used to transform virtual address into index |
| 200 | * ptrs: number of entries in page table |
| 201 | * istart: index in table corresponding to vstart |
| 202 | * iend: index in table corresponding to vend |
| 203 | * count: On entry: how many extra entries were required in previous level, scales |
| 204 | * our end index. |
| 205 | * On exit: returns how many extra entries required for next page table level |
| 206 | * |
| 207 | * Preserves: vstart, vend, shift, ptrs |
| 208 | * Returns: istart, iend, count |
| 209 | */ |
| 210 | .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count |
| 211 | lsr \iend, \vend, \shift |
| 212 | mov \istart, \ptrs |
| 213 | sub \istart, \istart, #1 |
| 214 | and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1) |
| 215 | mov \istart, \ptrs |
| 216 | mul \istart, \istart, \count |
| 217 | add \iend, \iend, \istart // iend += (count - 1) * ptrs |
| 218 | // our entries span multiple tables |
| 219 | |
| 220 | lsr \istart, \vstart, \shift |
| 221 | mov \count, \ptrs |
| 222 | sub \count, \count, #1 |
| 223 | and \istart, \istart, \count |
| 224 | |
| 225 | sub \count, \iend, \istart |
| 226 | .endm |
| 227 | |
| 228 | /* |
| 229 | * Map memory for specified virtual address range. Each level of page table needed supports |
| 230 | * multiple entries. If a level requires n entries the next page table level is assumed to be |
| 231 | * formed from n pages. |
| 232 | * |
| 233 | * tbl: location of page table |
| 234 | * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) |
| 235 | * vstart: virtual address of start of range |
| 236 | * vend: virtual address of end of range - we map [vstart, vend - 1] |
| 237 | * flags: flags to use to map last level entries |
| 238 | * phys: physical address corresponding to vstart - physical memory is contiguous |
| 239 | * pgds: the number of pgd entries |
| 240 | * |
| 241 | * Temporaries: istart, iend, tmp, count, sv - these need to be different registers |
| 242 | * Preserves: vstart, flags |
| 243 | * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv |
| 244 | */ |
| 245 | .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv |
| 246 | sub \vend, \vend, #1 |
| 247 | add \rtbl, \tbl, #PAGE_SIZE |
| 248 | mov \sv, \rtbl |
| 249 | mov \count, #0 |
| 250 | compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count |
| 251 | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| 252 | mov \tbl, \sv |
| 253 | mov \sv, \rtbl |
| 254 | |
| 255 | #if SWAPPER_PGTABLE_LEVELS > 3 |
| 256 | compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count |
| 257 | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| 258 | mov \tbl, \sv |
| 259 | mov \sv, \rtbl |
| 260 | #endif |
| 261 | |
| 262 | #if SWAPPER_PGTABLE_LEVELS > 2 |
| 263 | compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count |
| 264 | populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp |
| 265 | mov \tbl, \sv |
| 266 | #endif |
| 267 | |
| 268 | compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count |
| 269 | bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 |
| 270 | populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp |
| 271 | .endm |
| 272 | |
| 273 | /* |
| 274 | * Setup the initial page tables. We only setup the barest amount which is |
| 275 | * required to get the kernel running. The following sections are required: |
| 276 | * - identity mapping to enable the MMU (low address, TTBR0) |
| 277 | * - first few MB of the kernel linear mapping to jump to once the MMU has |
| 278 | * been enabled |
| 279 | */ |
| 280 | __create_page_tables: |
| 281 | mov x28, lr |
| 282 | |
| 283 | /* |
| 284 | * Invalidate the init page tables to avoid potential dirty cache lines |
| 285 | * being evicted. Other page tables are allocated in rodata as part of |
| 286 | * the kernel image, and thus are clean to the PoC per the boot |
| 287 | * protocol. |
| 288 | */ |
| 289 | adrp x0, init_pg_dir |
| 290 | adrp x1, init_pg_end |
| 291 | sub x1, x1, x0 |
| 292 | bl __inval_dcache_area |
| 293 | |
| 294 | /* |
| 295 | * Clear the init page tables. |
| 296 | */ |
| 297 | adrp x0, init_pg_dir |
| 298 | adrp x1, init_pg_end |
| 299 | sub x1, x1, x0 |
| 300 | 1: stp xzr, xzr, [x0], #16 |
| 301 | stp xzr, xzr, [x0], #16 |
| 302 | stp xzr, xzr, [x0], #16 |
| 303 | stp xzr, xzr, [x0], #16 |
| 304 | subs x1, x1, #64 |
| 305 | b.ne 1b |
| 306 | |
| 307 | mov x7, SWAPPER_MM_MMUFLAGS |
| 308 | |
| 309 | /* |
| 310 | * Create the identity mapping. |
| 311 | */ |
| 312 | adrp x0, idmap_pg_dir |
| 313 | adrp x3, __idmap_text_start // __pa(__idmap_text_start) |
| 314 | |
| 315 | #ifdef CONFIG_ARM64_VA_BITS_52 |
| 316 | mrs_s x6, SYS_ID_AA64MMFR2_EL1 |
| 317 | and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT) |
| 318 | mov x5, #52 |
| 319 | cbnz x6, 1f |
| 320 | #endif |
| 321 | mov x5, #VA_BITS_MIN |
| 322 | 1: |
| 323 | adr_l x6, vabits_actual |
| 324 | str x5, [x6] |
| 325 | dmb sy |
| 326 | dc ivac, x6 // Invalidate potentially stale cache line |
| 327 | |
| 328 | /* |
| 329 | * VA_BITS may be too small to allow for an ID mapping to be created |
| 330 | * that covers system RAM if that is located sufficiently high in the |
| 331 | * physical address space. So for the ID map, use an extended virtual |
| 332 | * range in that case, and configure an additional translation level |
| 333 | * if needed. |
| 334 | * |
| 335 | * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the |
| 336 | * entire ID map region can be mapped. As T0SZ == (64 - #bits used), |
| 337 | * this number conveniently equals the number of leading zeroes in |
| 338 | * the physical address of __idmap_text_end. |
| 339 | */ |
| 340 | adrp x5, __idmap_text_end |
| 341 | clz x5, x5 |
| 342 | cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough? |
| 343 | b.ge 1f // .. then skip VA range extension |
| 344 | |
| 345 | adr_l x6, idmap_t0sz |
| 346 | str x5, [x6] |
| 347 | dmb sy |
| 348 | dc ivac, x6 // Invalidate potentially stale cache line |
| 349 | |
| 350 | #if (VA_BITS < 48) |
| 351 | #define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) |
| 352 | #define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) |
| 353 | |
| 354 | /* |
| 355 | * If VA_BITS < 48, we have to configure an additional table level. |
| 356 | * First, we have to verify our assumption that the current value of |
| 357 | * VA_BITS was chosen such that all translation levels are fully |
| 358 | * utilised, and that lowering T0SZ will always result in an additional |
| 359 | * translation level to be configured. |
| 360 | */ |
| 361 | #if VA_BITS != EXTRA_SHIFT |
| 362 | #error "Mismatch between VA_BITS and page size/number of translation levels" |
| 363 | #endif |
| 364 | |
| 365 | mov x4, EXTRA_PTRS |
| 366 | create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 |
| 367 | #else |
| 368 | /* |
| 369 | * If VA_BITS == 48, we don't have to configure an additional |
| 370 | * translation level, but the top-level table has more entries. |
| 371 | */ |
| 372 | mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) |
| 373 | str_l x4, idmap_ptrs_per_pgd, x5 |
| 374 | #endif |
| 375 | 1: |
| 376 | ldr_l x4, idmap_ptrs_per_pgd |
| 377 | mov x5, x3 // __pa(__idmap_text_start) |
| 378 | adr_l x6, __idmap_text_end // __pa(__idmap_text_end) |
| 379 | |
| 380 | map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 |
| 381 | |
| 382 | /* |
| 383 | * Map the kernel image (starting with PHYS_OFFSET). |
| 384 | */ |
| 385 | adrp x0, init_pg_dir |
| 386 | mov_q x5, KIMAGE_VADDR + TEXT_OFFSET // compile time __va(_text) |
| 387 | add x5, x5, x23 // add KASLR displacement |
| 388 | mov x4, PTRS_PER_PGD |
| 389 | adrp x6, _end // runtime __pa(_end) |
| 390 | adrp x3, _text // runtime __pa(_text) |
| 391 | sub x6, x6, x3 // _end - _text |
| 392 | add x6, x6, x5 // runtime __va(_end) |
| 393 | |
| 394 | map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 |
| 395 | |
| 396 | /* |
| 397 | * Since the page tables have been populated with non-cacheable |
| 398 | * accesses (MMU disabled), invalidate those tables again to |
| 399 | * remove any speculatively loaded cache lines. |
| 400 | */ |
| 401 | dmb sy |
| 402 | |
| 403 | adrp x0, idmap_pg_dir |
| 404 | adrp x1, idmap_pg_end |
| 405 | sub x1, x1, x0 |
| 406 | bl __inval_dcache_area |
| 407 | |
| 408 | adrp x0, init_pg_dir |
| 409 | adrp x1, init_pg_end |
| 410 | sub x1, x1, x0 |
| 411 | bl __inval_dcache_area |
| 412 | |
| 413 | ret x28 |
| 414 | ENDPROC(__create_page_tables) |
| 415 | .ltorg |
| 416 | |
| 417 | /* |
| 418 | * The following fragment of code is executed with the MMU enabled. |
| 419 | * |
| 420 | * x0 = __PHYS_OFFSET |
| 421 | */ |
| 422 | __primary_switched: |
| 423 | adrp x4, init_thread_union |
| 424 | add sp, x4, #THREAD_SIZE |
| 425 | adr_l x5, init_task |
| 426 | msr sp_el0, x5 // Save thread_info |
| 427 | |
| 428 | adr_l x8, vectors // load VBAR_EL1 with virtual |
| 429 | msr vbar_el1, x8 // vector table address |
| 430 | isb |
| 431 | |
| 432 | stp xzr, x30, [sp, #-16]! |
| 433 | mov x29, sp |
| 434 | |
| 435 | #ifdef CONFIG_SHADOW_CALL_STACK |
| 436 | adr_l x18, init_shadow_call_stack // Set shadow call stack |
| 437 | #endif |
| 438 | |
| 439 | str_l x21, __fdt_pointer, x5 // Save FDT pointer |
| 440 | |
| 441 | ldr_l x4, kimage_vaddr // Save the offset between |
| 442 | sub x4, x4, x0 // the kernel virtual and |
| 443 | str_l x4, kimage_voffset, x5 // physical mappings |
| 444 | |
| 445 | // Clear BSS |
| 446 | adr_l x0, __bss_start |
| 447 | mov x1, xzr |
| 448 | adr_l x2, __bss_stop |
| 449 | sub x2, x2, x0 |
| 450 | bl __pi_memset |
| 451 | dsb ishst // Make zero page visible to PTW |
| 452 | |
| 453 | #ifdef CONFIG_KASAN |
| 454 | bl kasan_early_init |
| 455 | #endif |
| 456 | #ifdef CONFIG_RANDOMIZE_BASE |
| 457 | tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized? |
| 458 | b.ne 0f |
| 459 | mov x0, x21 // pass FDT address in x0 |
| 460 | bl kaslr_early_init // parse FDT for KASLR options |
| 461 | cbz x0, 0f // KASLR disabled? just proceed |
| 462 | orr x23, x23, x0 // record KASLR offset |
| 463 | ldp x29, x30, [sp], #16 // we must enable KASLR, return |
| 464 | ret // to __primary_switch() |
| 465 | 0: |
| 466 | #endif |
| 467 | add sp, sp, #16 |
| 468 | mov x29, #0 |
| 469 | mov x30, #0 |
| 470 | b start_kernel |
| 471 | ENDPROC(__primary_switched) |
| 472 | |
| 473 | /* |
| 474 | * end early head section, begin head code that is also used for |
| 475 | * hotplug and needs to have the same protections as the text region |
| 476 | */ |
| 477 | .section ".idmap.text","awx" |
| 478 | |
| 479 | ENTRY(kimage_vaddr) |
| 480 | .quad _text - TEXT_OFFSET |
| 481 | EXPORT_SYMBOL(kimage_vaddr) |
| 482 | |
| 483 | /* |
| 484 | * If we're fortunate enough to boot at EL2, ensure that the world is |
| 485 | * sane before dropping to EL1. |
| 486 | * |
| 487 | * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if |
| 488 | * booted in EL1 or EL2 respectively. |
| 489 | */ |
| 490 | ENTRY(el2_setup) |
| 491 | msr SPsel, #1 // We want to use SP_EL{1,2} |
| 492 | mrs x0, CurrentEL |
| 493 | cmp x0, #CurrentEL_EL2 |
| 494 | b.eq 1f |
| 495 | mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) |
| 496 | msr sctlr_el1, x0 |
| 497 | mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 |
| 498 | isb |
| 499 | ret |
| 500 | |
| 501 | 1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2) |
| 502 | msr sctlr_el2, x0 |
| 503 | |
| 504 | #ifdef CONFIG_ARM64_VHE |
| 505 | /* |
| 506 | * Check for VHE being present. For the rest of the EL2 setup, |
| 507 | * x2 being non-zero indicates that we do have VHE, and that the |
| 508 | * kernel is intended to run at EL2. |
| 509 | */ |
| 510 | mrs x2, id_aa64mmfr1_el1 |
| 511 | ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4 |
| 512 | #else |
| 513 | mov x2, xzr |
| 514 | #endif |
| 515 | |
| 516 | /* Hyp configuration. */ |
| 517 | mov_q x0, HCR_HOST_NVHE_FLAGS |
| 518 | cbz x2, set_hcr |
| 519 | mov_q x0, HCR_HOST_VHE_FLAGS |
| 520 | set_hcr: |
| 521 | msr hcr_el2, x0 |
| 522 | isb |
| 523 | |
| 524 | /* |
| 525 | * Allow Non-secure EL1 and EL0 to access physical timer and counter. |
| 526 | * This is not necessary for VHE, since the host kernel runs in EL2, |
| 527 | * and EL0 accesses are configured in the later stage of boot process. |
| 528 | * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout |
| 529 | * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined |
| 530 | * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1 |
| 531 | * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in |
| 532 | * EL2. |
| 533 | */ |
| 534 | cbnz x2, 1f |
| 535 | mrs x0, cnthctl_el2 |
| 536 | orr x0, x0, #3 // Enable EL1 physical timers |
| 537 | msr cnthctl_el2, x0 |
| 538 | 1: |
| 539 | msr cntvoff_el2, xzr // Clear virtual offset |
| 540 | |
| 541 | #ifdef CONFIG_ARM_GIC_V3 |
| 542 | /* GICv3 system register access */ |
| 543 | mrs x0, id_aa64pfr0_el1 |
| 544 | ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4 |
| 545 | cbz x0, 3f |
| 546 | |
| 547 | mrs_s x0, SYS_ICC_SRE_EL2 |
| 548 | orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 |
| 549 | orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 |
| 550 | msr_s SYS_ICC_SRE_EL2, x0 |
| 551 | isb // Make sure SRE is now set |
| 552 | mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back, |
| 553 | tbz x0, #0, 3f // and check that it sticks |
| 554 | msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults |
| 555 | |
| 556 | 3: |
| 557 | #endif |
| 558 | |
| 559 | /* Populate ID registers. */ |
| 560 | mrs x0, midr_el1 |
| 561 | mrs x1, mpidr_el1 |
| 562 | msr vpidr_el2, x0 |
| 563 | msr vmpidr_el2, x1 |
| 564 | |
| 565 | #ifdef CONFIG_COMPAT |
| 566 | msr hstr_el2, xzr // Disable CP15 traps to EL2 |
| 567 | #endif |
| 568 | |
| 569 | /* EL2 debug */ |
| 570 | mrs x1, id_aa64dfr0_el1 |
| 571 | sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4 |
| 572 | cmp x0, #1 |
| 573 | b.lt 4f // Skip if no PMU present |
| 574 | mrs x0, pmcr_el0 // Disable debug access traps |
| 575 | ubfx x0, x0, #11, #5 // to EL2 and allow access to |
| 576 | 4: |
| 577 | csel x3, xzr, x0, lt // all PMU counters from EL1 |
| 578 | |
| 579 | /* Statistical profiling */ |
| 580 | ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4 |
| 581 | cbz x0, 7f // Skip if SPE not present |
| 582 | cbnz x2, 6f // VHE? |
| 583 | mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2, |
| 584 | and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT) |
| 585 | cbnz x4, 5f // then permit sampling of physical |
| 586 | mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \ |
| 587 | 1 << SYS_PMSCR_EL2_PA_SHIFT) |
| 588 | msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter |
| 589 | 5: |
| 590 | mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) |
| 591 | orr x3, x3, x1 // If we don't have VHE, then |
| 592 | b 7f // use EL1&0 translation. |
| 593 | 6: // For VHE, use EL2 translation |
| 594 | orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1 |
| 595 | 7: |
| 596 | msr mdcr_el2, x3 // Configure debug traps |
| 597 | |
| 598 | /* LORegions */ |
| 599 | mrs x1, id_aa64mmfr1_el1 |
| 600 | ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4 |
| 601 | cbz x0, 1f |
| 602 | msr_s SYS_LORC_EL1, xzr |
| 603 | 1: |
| 604 | |
| 605 | /* Stage-2 translation */ |
| 606 | msr vttbr_el2, xzr |
| 607 | |
| 608 | cbz x2, install_el2_stub |
| 609 | |
| 610 | mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 |
| 611 | isb |
| 612 | ret |
| 613 | |
| 614 | install_el2_stub: |
| 615 | /* |
| 616 | * When VHE is not in use, early init of EL2 and EL1 needs to be |
| 617 | * done here. |
| 618 | * When VHE _is_ in use, EL1 will not be used in the host and |
| 619 | * requires no configuration, and all non-hyp-specific EL2 setup |
| 620 | * will be done via the _EL1 system register aliases in __cpu_setup. |
| 621 | */ |
| 622 | mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) |
| 623 | msr sctlr_el1, x0 |
| 624 | |
| 625 | /* Coprocessor traps. */ |
| 626 | mov x0, #0x33ff |
| 627 | msr cptr_el2, x0 // Disable copro. traps to EL2 |
| 628 | |
| 629 | /* SVE register access */ |
| 630 | mrs x1, id_aa64pfr0_el1 |
| 631 | ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4 |
| 632 | cbz x1, 7f |
| 633 | |
| 634 | bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps |
| 635 | msr cptr_el2, x0 // Disable copro. traps to EL2 |
| 636 | isb |
| 637 | mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector |
| 638 | msr_s SYS_ZCR_EL2, x1 // length for EL1. |
| 639 | |
| 640 | /* Hypervisor stub */ |
| 641 | 7: adr_l x0, __hyp_stub_vectors |
| 642 | msr vbar_el2, x0 |
| 643 | |
| 644 | /* spsr */ |
| 645 | mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ |
| 646 | PSR_MODE_EL1h) |
| 647 | msr spsr_el2, x0 |
| 648 | msr elr_el2, lr |
| 649 | mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 |
| 650 | eret |
| 651 | ENDPROC(el2_setup) |
| 652 | |
| 653 | /* |
| 654 | * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed |
| 655 | * in w0. See arch/arm64/include/asm/virt.h for more info. |
| 656 | */ |
| 657 | set_cpu_boot_mode_flag: |
| 658 | adr_l x1, __boot_cpu_mode |
| 659 | cmp w0, #BOOT_CPU_MODE_EL2 |
| 660 | b.ne 1f |
| 661 | add x1, x1, #4 |
| 662 | 1: str w0, [x1] // This CPU has booted in EL1 |
| 663 | dmb sy |
| 664 | dc ivac, x1 // Invalidate potentially stale cache line |
| 665 | ret |
| 666 | ENDPROC(set_cpu_boot_mode_flag) |
| 667 | |
| 668 | /* |
| 669 | * These values are written with the MMU off, but read with the MMU on. |
| 670 | * Writers will invalidate the corresponding address, discarding up to a |
| 671 | * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures |
| 672 | * sufficient alignment that the CWG doesn't overlap another section. |
| 673 | */ |
| 674 | .pushsection ".mmuoff.data.write", "aw" |
| 675 | /* |
| 676 | * We need to find out the CPU boot mode long after boot, so we need to |
| 677 | * store it in a writable variable. |
| 678 | * |
| 679 | * This is not in .bss, because we set it sufficiently early that the boot-time |
| 680 | * zeroing of .bss would clobber it. |
| 681 | */ |
| 682 | ENTRY(__boot_cpu_mode) |
| 683 | .long BOOT_CPU_MODE_EL2 |
| 684 | .long BOOT_CPU_MODE_EL1 |
| 685 | /* |
| 686 | * The booting CPU updates the failed status @__early_cpu_boot_status, |
| 687 | * with MMU turned off. |
| 688 | */ |
| 689 | ENTRY(__early_cpu_boot_status) |
| 690 | .quad 0 |
| 691 | |
| 692 | .popsection |
| 693 | |
| 694 | /* |
| 695 | * This provides a "holding pen" for platforms to hold all secondary |
| 696 | * cores are held until we're ready for them to initialise. |
| 697 | */ |
| 698 | ENTRY(secondary_holding_pen) |
| 699 | bl el2_setup // Drop to EL1, w0=cpu_boot_mode |
| 700 | bl set_cpu_boot_mode_flag |
| 701 | mrs x0, mpidr_el1 |
| 702 | mov_q x1, MPIDR_HWID_BITMASK |
| 703 | and x0, x0, x1 |
| 704 | adr_l x3, secondary_holding_pen_release |
| 705 | pen: ldr x4, [x3] |
| 706 | cmp x4, x0 |
| 707 | b.eq secondary_startup |
| 708 | wfe |
| 709 | b pen |
| 710 | ENDPROC(secondary_holding_pen) |
| 711 | |
| 712 | /* |
| 713 | * Secondary entry point that jumps straight into the kernel. Only to |
| 714 | * be used where CPUs are brought online dynamically by the kernel. |
| 715 | */ |
| 716 | ENTRY(secondary_entry) |
| 717 | bl el2_setup // Drop to EL1 |
| 718 | bl set_cpu_boot_mode_flag |
| 719 | b secondary_startup |
| 720 | ENDPROC(secondary_entry) |
| 721 | |
| 722 | secondary_startup: |
| 723 | /* |
| 724 | * Common entry point for secondary CPUs. |
| 725 | */ |
| 726 | bl __cpu_secondary_check52bitva |
| 727 | bl __cpu_setup // initialise processor |
| 728 | adrp x1, swapper_pg_dir |
| 729 | bl __enable_mmu |
| 730 | ldr x8, =__secondary_switched |
| 731 | br x8 |
| 732 | ENDPROC(secondary_startup) |
| 733 | |
| 734 | __secondary_switched: |
| 735 | adr_l x5, vectors |
| 736 | msr vbar_el1, x5 |
| 737 | isb |
| 738 | |
| 739 | adr_l x0, secondary_data |
| 740 | ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack |
| 741 | cbz x1, __secondary_too_slow |
| 742 | mov sp, x1 |
| 743 | ldr x2, [x0, #CPU_BOOT_TASK] |
| 744 | cbz x2, __secondary_too_slow |
| 745 | msr sp_el0, x2 |
| 746 | #ifdef CONFIG_SHADOW_CALL_STACK |
| 747 | ldr x18, [x2, #TSK_TI_SCS] // set shadow call stack |
| 748 | str xzr, [x2, #TSK_TI_SCS] // limit visibility of saved SCS |
| 749 | #endif |
| 750 | mov x29, #0 |
| 751 | mov x30, #0 |
| 752 | b secondary_start_kernel |
| 753 | ENDPROC(__secondary_switched) |
| 754 | |
| 755 | __secondary_too_slow: |
| 756 | wfe |
| 757 | wfi |
| 758 | b __secondary_too_slow |
| 759 | ENDPROC(__secondary_too_slow) |
| 760 | |
| 761 | /* |
| 762 | * The booting CPU updates the failed status @__early_cpu_boot_status, |
| 763 | * with MMU turned off. |
| 764 | * |
| 765 | * update_early_cpu_boot_status tmp, status |
| 766 | * - Corrupts tmp1, tmp2 |
| 767 | * - Writes 'status' to __early_cpu_boot_status and makes sure |
| 768 | * it is committed to memory. |
| 769 | */ |
| 770 | |
| 771 | .macro update_early_cpu_boot_status status, tmp1, tmp2 |
| 772 | mov \tmp2, #\status |
| 773 | adr_l \tmp1, __early_cpu_boot_status |
| 774 | str \tmp2, [\tmp1] |
| 775 | dmb sy |
| 776 | dc ivac, \tmp1 // Invalidate potentially stale cache line |
| 777 | .endm |
| 778 | |
| 779 | /* |
| 780 | * Enable the MMU. |
| 781 | * |
| 782 | * x0 = SCTLR_EL1 value for turning on the MMU. |
| 783 | * x1 = TTBR1_EL1 value |
| 784 | * |
| 785 | * Returns to the caller via x30/lr. This requires the caller to be covered |
| 786 | * by the .idmap.text section. |
| 787 | * |
| 788 | * Checks if the selected granule size is supported by the CPU. |
| 789 | * If it isn't, park the CPU |
| 790 | */ |
| 791 | ENTRY(__enable_mmu) |
| 792 | mrs x2, ID_AA64MMFR0_EL1 |
| 793 | ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4 |
| 794 | cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED |
| 795 | b.ne __no_granule_support |
| 796 | update_early_cpu_boot_status 0, x2, x3 |
| 797 | adrp x2, idmap_pg_dir |
| 798 | phys_to_ttbr x1, x1 |
| 799 | phys_to_ttbr x2, x2 |
| 800 | msr ttbr0_el1, x2 // load TTBR0 |
| 801 | offset_ttbr1 x1, x3 |
| 802 | msr ttbr1_el1, x1 // load TTBR1 |
| 803 | isb |
| 804 | msr sctlr_el1, x0 |
| 805 | isb |
| 806 | /* |
| 807 | * Invalidate the local I-cache so that any instructions fetched |
| 808 | * speculatively from the PoC are discarded, since they may have |
| 809 | * been dynamically patched at the PoU. |
| 810 | */ |
| 811 | ic iallu |
| 812 | dsb nsh |
| 813 | isb |
| 814 | ret |
| 815 | ENDPROC(__enable_mmu) |
| 816 | |
| 817 | ENTRY(__cpu_secondary_check52bitva) |
| 818 | #ifdef CONFIG_ARM64_VA_BITS_52 |
| 819 | ldr_l x0, vabits_actual |
| 820 | cmp x0, #52 |
| 821 | b.ne 2f |
| 822 | |
| 823 | mrs_s x0, SYS_ID_AA64MMFR2_EL1 |
| 824 | and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) |
| 825 | cbnz x0, 2f |
| 826 | |
| 827 | update_early_cpu_boot_status \ |
| 828 | CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 |
| 829 | 1: wfe |
| 830 | wfi |
| 831 | b 1b |
| 832 | |
| 833 | #endif |
| 834 | 2: ret |
| 835 | ENDPROC(__cpu_secondary_check52bitva) |
| 836 | |
| 837 | __no_granule_support: |
| 838 | /* Indicate that this CPU can't boot and is stuck in the kernel */ |
| 839 | update_early_cpu_boot_status \ |
| 840 | CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 |
| 841 | 1: |
| 842 | wfe |
| 843 | wfi |
| 844 | b 1b |
| 845 | ENDPROC(__no_granule_support) |
| 846 | |
| 847 | #ifdef CONFIG_RELOCATABLE |
| 848 | __relocate_kernel: |
| 849 | /* |
| 850 | * Iterate over each entry in the relocation table, and apply the |
| 851 | * relocations in place. |
| 852 | */ |
| 853 | ldr w9, =__rela_offset // offset to reloc table |
| 854 | ldr w10, =__rela_size // size of reloc table |
| 855 | |
| 856 | mov_q x11, KIMAGE_VADDR // default virtual offset |
| 857 | add x11, x11, x23 // actual virtual offset |
| 858 | add x9, x9, x11 // __va(.rela) |
| 859 | add x10, x9, x10 // __va(.rela) + sizeof(.rela) |
| 860 | |
| 861 | 0: cmp x9, x10 |
| 862 | b.hs 1f |
| 863 | ldp x12, x13, [x9], #24 |
| 864 | ldr x14, [x9, #-8] |
| 865 | cmp w13, #R_AARCH64_RELATIVE |
| 866 | b.ne 0b |
| 867 | add x14, x14, x23 // relocate |
| 868 | str x14, [x12, x23] |
| 869 | b 0b |
| 870 | |
| 871 | 1: |
| 872 | #ifdef CONFIG_RELR |
| 873 | /* |
| 874 | * Apply RELR relocations. |
| 875 | * |
| 876 | * RELR is a compressed format for storing relative relocations. The |
| 877 | * encoded sequence of entries looks like: |
| 878 | * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] |
| 879 | * |
| 880 | * i.e. start with an address, followed by any number of bitmaps. The |
| 881 | * address entry encodes 1 relocation. The subsequent bitmap entries |
| 882 | * encode up to 63 relocations each, at subsequent offsets following |
| 883 | * the last address entry. |
| 884 | * |
| 885 | * The bitmap entries must have 1 in the least significant bit. The |
| 886 | * assumption here is that an address cannot have 1 in lsb. Odd |
| 887 | * addresses are not supported. Any odd addresses are stored in the RELA |
| 888 | * section, which is handled above. |
| 889 | * |
| 890 | * Excluding the least significant bit in the bitmap, each non-zero |
| 891 | * bit in the bitmap represents a relocation to be applied to |
| 892 | * a corresponding machine word that follows the base address |
| 893 | * word. The second least significant bit represents the machine |
| 894 | * word immediately following the initial address, and each bit |
| 895 | * that follows represents the next word, in linear order. As such, |
| 896 | * a single bitmap can encode up to 63 relocations in a 64-bit object. |
| 897 | * |
| 898 | * In this implementation we store the address of the next RELR table |
| 899 | * entry in x9, the address being relocated by the current address or |
| 900 | * bitmap entry in x13 and the address being relocated by the current |
| 901 | * bit in x14. |
| 902 | * |
| 903 | * Because addends are stored in place in the binary, RELR relocations |
| 904 | * cannot be applied idempotently. We use x24 to keep track of the |
| 905 | * currently applied displacement so that we can correctly relocate if |
| 906 | * __relocate_kernel is called twice with non-zero displacements (i.e. |
| 907 | * if there is both a physical misalignment and a KASLR displacement). |
| 908 | */ |
| 909 | ldr w9, =__relr_offset // offset to reloc table |
| 910 | ldr w10, =__relr_size // size of reloc table |
| 911 | add x9, x9, x11 // __va(.relr) |
| 912 | add x10, x9, x10 // __va(.relr) + sizeof(.relr) |
| 913 | |
| 914 | sub x15, x23, x24 // delta from previous offset |
| 915 | cbz x15, 7f // nothing to do if unchanged |
| 916 | mov x24, x23 // save new offset |
| 917 | |
| 918 | 2: cmp x9, x10 |
| 919 | b.hs 7f |
| 920 | ldr x11, [x9], #8 |
| 921 | tbnz x11, #0, 3f // branch to handle bitmaps |
| 922 | add x13, x11, x23 |
| 923 | ldr x12, [x13] // relocate address entry |
| 924 | add x12, x12, x15 |
| 925 | str x12, [x13], #8 // adjust to start of bitmap |
| 926 | b 2b |
| 927 | |
| 928 | 3: mov x14, x13 |
| 929 | 4: lsr x11, x11, #1 |
| 930 | cbz x11, 6f |
| 931 | tbz x11, #0, 5f // skip bit if not set |
| 932 | ldr x12, [x14] // relocate bit |
| 933 | add x12, x12, x15 |
| 934 | str x12, [x14] |
| 935 | |
| 936 | 5: add x14, x14, #8 // move to next bit's address |
| 937 | b 4b |
| 938 | |
| 939 | 6: /* |
| 940 | * Move to the next bitmap's address. 8 is the word size, and 63 is the |
| 941 | * number of significant bits in a bitmap entry. |
| 942 | */ |
| 943 | add x13, x13, #(8 * 63) |
| 944 | b 2b |
| 945 | |
| 946 | 7: |
| 947 | #endif |
| 948 | ret |
| 949 | |
| 950 | ENDPROC(__relocate_kernel) |
| 951 | #endif |
| 952 | |
| 953 | __primary_switch: |
| 954 | #ifdef CONFIG_RANDOMIZE_BASE |
| 955 | mov x19, x0 // preserve new SCTLR_EL1 value |
| 956 | mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value |
| 957 | #endif |
| 958 | |
| 959 | adrp x1, init_pg_dir |
| 960 | bl __enable_mmu |
| 961 | #ifdef CONFIG_RELOCATABLE |
| 962 | #ifdef CONFIG_RELR |
| 963 | mov x24, #0 // no RELR displacement yet |
| 964 | #endif |
| 965 | bl __relocate_kernel |
| 966 | #ifdef CONFIG_RANDOMIZE_BASE |
| 967 | ldr x8, =__primary_switched |
| 968 | adrp x0, __PHYS_OFFSET |
| 969 | blr x8 |
| 970 | |
| 971 | /* |
| 972 | * If we return here, we have a KASLR displacement in x23 which we need |
| 973 | * to take into account by discarding the current kernel mapping and |
| 974 | * creating a new one. |
| 975 | */ |
| 976 | pre_disable_mmu_workaround |
| 977 | msr sctlr_el1, x20 // disable the MMU |
| 978 | isb |
| 979 | bl __create_page_tables // recreate kernel mapping |
| 980 | |
| 981 | tlbi vmalle1 // Remove any stale TLB entries |
| 982 | dsb nsh |
| 983 | isb |
| 984 | |
| 985 | msr sctlr_el1, x19 // re-enable the MMU |
| 986 | isb |
| 987 | ic iallu // flush instructions fetched |
| 988 | dsb nsh // via old mapping |
| 989 | isb |
| 990 | |
| 991 | bl __relocate_kernel |
| 992 | #endif |
| 993 | #endif |
| 994 | ldr x8, =__primary_switched |
| 995 | adrp x0, __PHYS_OFFSET |
| 996 | br x8 |
| 997 | ENDPROC(__primary_switch) |