blob: 02ae0b29e68880d82dd54719693b0cd53ca897ba [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2013 Imagination Technologies
4 * Author: Paul Burton <paul.burton@mips.com>
5 */
6
7#include <linux/cpu.h>
8#include <linux/delay.h>
9#include <linux/io.h>
10#include <linux/sched/task_stack.h>
11#include <linux/sched/hotplug.h>
12#include <linux/slab.h>
13#include <linux/smp.h>
14#include <linux/types.h>
15
16#include <asm/bcache.h>
17#include <asm/mips-cps.h>
18#include <asm/mips_mt.h>
19#include <asm/mipsregs.h>
20#include <asm/pm-cps.h>
21#include <asm/r4kcache.h>
22#include <asm/smp-cps.h>
23#include <asm/time.h>
24#include <asm/uasm.h>
25
26static bool threads_disabled;
27static DECLARE_BITMAP(core_power, NR_CPUS);
28
29struct core_boot_config *mips_cps_core_bootcfg;
30
31static int __init setup_nothreads(char *s)
32{
33 threads_disabled = true;
34 return 0;
35}
36early_param("nothreads", setup_nothreads);
37
38static unsigned core_vpe_count(unsigned int cluster, unsigned core)
39{
40 if (threads_disabled)
41 return 1;
42
43 return mips_cps_numvps(cluster, core);
44}
45
46static void __init cps_smp_setup(void)
47{
48 unsigned int nclusters, ncores, nvpes, core_vpes;
49 unsigned long core_entry;
50 int cl, c, v;
51
52 /* Detect & record VPE topology */
53 nvpes = 0;
54 nclusters = mips_cps_numclusters();
55 pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
56 for (cl = 0; cl < nclusters; cl++) {
57 if (cl > 0)
58 pr_cont(",");
59 pr_cont("{");
60
61 ncores = mips_cps_numcores(cl);
62 for (c = 0; c < ncores; c++) {
63 core_vpes = core_vpe_count(cl, c);
64
65 if (c > 0)
66 pr_cont(",");
67 pr_cont("%u", core_vpes);
68
69 /* Use the number of VPEs in cluster 0 core 0 for smp_num_siblings */
70 if (!cl && !c)
71 smp_num_siblings = core_vpes;
72
73 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
74 cpu_set_cluster(&cpu_data[nvpes + v], cl);
75 cpu_set_core(&cpu_data[nvpes + v], c);
76 cpu_set_vpe_id(&cpu_data[nvpes + v], v);
77 }
78
79 nvpes += core_vpes;
80 }
81
82 pr_cont("}");
83 }
84 pr_cont(" total %u\n", nvpes);
85
86 /* Indicate present CPUs (CPU being synonymous with VPE) */
87 for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
88 set_cpu_possible(v, cpu_cluster(&cpu_data[v]) == 0);
89 set_cpu_present(v, cpu_cluster(&cpu_data[v]) == 0);
90 __cpu_number_map[v] = v;
91 __cpu_logical_map[v] = v;
92 }
93
94 /* Set a coherent default CCA (CWB) */
95 change_c0_config(CONF_CM_CMASK, 0x5);
96
97 /* Core 0 is powered up (we're running on it) */
98 bitmap_set(core_power, 0, 1);
99
100 /* Initialise core 0 */
101 mips_cps_core_init();
102
103 /* Make core 0 coherent with everything */
104 write_gcr_cl_coherence(0xff);
105
106 if (mips_cm_revision() >= CM_REV_CM3) {
107 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
108 write_gcr_bev_base(core_entry);
109 }
110
111#ifdef CONFIG_MIPS_MT_FPAFF
112 /* If we have an FPU, enroll ourselves in the FPU-full mask */
113 if (cpu_has_fpu)
114 cpumask_set_cpu(0, &mt_fpu_cpumask);
115#endif /* CONFIG_MIPS_MT_FPAFF */
116}
117
118static void __init cps_prepare_cpus(unsigned int max_cpus)
119{
120 unsigned ncores, core_vpes, c, cca;
121 bool cca_unsuitable, cores_limited;
122 u32 *entry_code;
123
124 mips_mt_set_cpuoptions();
125
126 /* Detect whether the CCA is unsuited to multi-core SMP */
127 cca = read_c0_config() & CONF_CM_CMASK;
128 switch (cca) {
129 case 0x4: /* CWBE */
130 case 0x5: /* CWB */
131 /* The CCA is coherent, multi-core is fine */
132 cca_unsuitable = false;
133 break;
134
135 default:
136 /* CCA is not coherent, multi-core is not usable */
137 cca_unsuitable = true;
138 }
139
140 /* Warn the user if the CCA prevents multi-core */
141 cores_limited = false;
142 if (cca_unsuitable || cpu_has_dc_aliases) {
143 for_each_present_cpu(c) {
144 if (cpus_are_siblings(smp_processor_id(), c))
145 continue;
146
147 set_cpu_present(c, false);
148 cores_limited = true;
149 }
150 }
151 if (cores_limited)
152 pr_warn("Using only one core due to %s%s%s\n",
153 cca_unsuitable ? "unsuitable CCA" : "",
154 (cca_unsuitable && cpu_has_dc_aliases) ? " & " : "",
155 cpu_has_dc_aliases ? "dcache aliasing" : "");
156
157 /*
158 * Patch the start of mips_cps_core_entry to provide:
159 *
160 * s0 = kseg0 CCA
161 */
162 entry_code = (u32 *)&mips_cps_core_entry;
163 uasm_i_addiu(&entry_code, 16, 0, cca);
164 blast_dcache_range((unsigned long)&mips_cps_core_entry,
165 (unsigned long)entry_code);
166 bc_wback_inv((unsigned long)&mips_cps_core_entry,
167 (void *)entry_code - (void *)&mips_cps_core_entry);
168 __sync();
169
170 /* Allocate core boot configuration structs */
171 ncores = mips_cps_numcores(0);
172 mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
173 GFP_KERNEL);
174 if (!mips_cps_core_bootcfg) {
175 pr_err("Failed to allocate boot config for %u cores\n", ncores);
176 goto err_out;
177 }
178
179 /* Allocate VPE boot configuration structs */
180 for (c = 0; c < ncores; c++) {
181 core_vpes = core_vpe_count(0, c);
182 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
183 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
184 GFP_KERNEL);
185 if (!mips_cps_core_bootcfg[c].vpe_config) {
186 pr_err("Failed to allocate %u VPE boot configs\n",
187 core_vpes);
188 goto err_out;
189 }
190 }
191
192 /* Mark this CPU as booted */
193 atomic_set(&mips_cps_core_bootcfg[cpu_core(&current_cpu_data)].vpe_mask,
194 1 << cpu_vpe_id(&current_cpu_data));
195
196 return;
197err_out:
198 /* Clean up allocations */
199 if (mips_cps_core_bootcfg) {
200 for (c = 0; c < ncores; c++)
201 kfree(mips_cps_core_bootcfg[c].vpe_config);
202 kfree(mips_cps_core_bootcfg);
203 mips_cps_core_bootcfg = NULL;
204 }
205
206 /* Effectively disable SMP by declaring CPUs not present */
207 for_each_possible_cpu(c) {
208 if (c == 0)
209 continue;
210 set_cpu_present(c, false);
211 }
212}
213
214static void boot_core(unsigned int core, unsigned int vpe_id)
215{
216 u32 stat, seq_state;
217 unsigned timeout;
218
219 /* Select the appropriate core */
220 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
221
222 /* Set its reset vector */
223 write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
224
225 /* Ensure its coherency is disabled */
226 write_gcr_co_coherence(0);
227
228 /* Start it with the legacy memory map and exception base */
229 write_gcr_co_reset_ext_base(CM_GCR_Cx_RESET_EXT_BASE_UEB);
230
231 /* Ensure the core can access the GCRs */
232 if (mips_cm_revision() < CM_REV_CM3)
233 set_gcr_access(1 << core);
234 else
235 set_gcr_access_cm3(1 << core);
236
237 if (mips_cpc_present()) {
238 /* Reset the core */
239 mips_cpc_lock_other(core);
240
241 if (mips_cm_revision() >= CM_REV_CM3) {
242 /* Run only the requested VP following the reset */
243 write_cpc_co_vp_stop(0xf);
244 write_cpc_co_vp_run(1 << vpe_id);
245
246 /*
247 * Ensure that the VP_RUN register is written before the
248 * core leaves reset.
249 */
250 wmb();
251 }
252
253 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
254
255 timeout = 100;
256 while (true) {
257 stat = read_cpc_co_stat_conf();
258 seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE;
259 seq_state >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
260
261 /* U6 == coherent execution, ie. the core is up */
262 if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
263 break;
264
265 /* Delay a little while before we start warning */
266 if (timeout) {
267 timeout--;
268 mdelay(10);
269 continue;
270 }
271
272 pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
273 core, stat);
274 mdelay(1000);
275 }
276
277 mips_cpc_unlock_other();
278 } else {
279 /* Take the core out of reset */
280 write_gcr_co_reset_release(0);
281 }
282
283 mips_cm_unlock_other();
284
285 /* The core is now powered up */
286 bitmap_set(core_power, core, 1);
287}
288
289static void remote_vpe_boot(void *dummy)
290{
291 unsigned core = cpu_core(&current_cpu_data);
292 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
293
294 mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
295}
296
297static int cps_boot_secondary(int cpu, struct task_struct *idle)
298{
299 unsigned core = cpu_core(&cpu_data[cpu]);
300 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
301 struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
302 struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
303 unsigned long core_entry;
304 unsigned int remote;
305 int err;
306
307 /* We don't yet support booting CPUs in other clusters */
308 if (cpu_cluster(&cpu_data[cpu]) != cpu_cluster(&raw_current_cpu_data))
309 return -ENOSYS;
310
311 vpe_cfg->pc = (unsigned long)&smp_bootstrap;
312 vpe_cfg->sp = __KSTK_TOS(idle);
313 vpe_cfg->gp = (unsigned long)task_thread_info(idle);
314
315 atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
316
317 preempt_disable();
318
319 if (!test_bit(core, core_power)) {
320 /* Boot a VPE on a powered down core */
321 boot_core(core, vpe_id);
322 goto out;
323 }
324
325 if (cpu_has_vp) {
326 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
327 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
328 write_gcr_co_reset_base(core_entry);
329 mips_cm_unlock_other();
330 }
331
332 if (!cpus_are_siblings(cpu, smp_processor_id())) {
333 /* Boot a VPE on another powered up core */
334 for (remote = 0; remote < NR_CPUS; remote++) {
335 if (!cpus_are_siblings(cpu, remote))
336 continue;
337 if (cpu_online(remote))
338 break;
339 }
340 if (remote >= NR_CPUS) {
341 pr_crit("No online CPU in core %u to start CPU%d\n",
342 core, cpu);
343 goto out;
344 }
345
346 err = smp_call_function_single(remote, remote_vpe_boot,
347 NULL, 1);
348 if (err)
349 panic("Failed to call remote CPU\n");
350 goto out;
351 }
352
353 BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
354
355 /* Boot a VPE on this core */
356 mips_cps_boot_vpes(core_cfg, vpe_id);
357out:
358 preempt_enable();
359 return 0;
360}
361
362static void cps_init_secondary(void)
363{
364 /* Disable MT - we only want to run 1 TC per VPE */
365 if (cpu_has_mipsmt)
366 dmt();
367
368 if (mips_cm_revision() >= CM_REV_CM3) {
369 unsigned int ident = read_gic_vl_ident();
370
371 /*
372 * Ensure that our calculation of the VP ID matches up with
373 * what the GIC reports, otherwise we'll have configured
374 * interrupts incorrectly.
375 */
376 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
377 }
378
379 if (cpu_has_veic)
380 clear_c0_status(ST0_IM);
381 else
382 change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 |
383 STATUSF_IP4 | STATUSF_IP5 |
384 STATUSF_IP6 | STATUSF_IP7);
385}
386
387static void cps_smp_finish(void)
388{
389 write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
390
391#ifdef CONFIG_MIPS_MT_FPAFF
392 /* If we have an FPU, enroll ourselves in the FPU-full mask */
393 if (cpu_has_fpu)
394 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
395#endif /* CONFIG_MIPS_MT_FPAFF */
396
397 local_irq_enable();
398}
399
400#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_KEXEC)
401
402enum cpu_death {
403 CPU_DEATH_HALT,
404 CPU_DEATH_POWER,
405};
406
407static void cps_shutdown_this_cpu(enum cpu_death death)
408{
409 unsigned int cpu, core, vpe_id;
410
411 cpu = smp_processor_id();
412 core = cpu_core(&cpu_data[cpu]);
413
414 if (death == CPU_DEATH_HALT) {
415 vpe_id = cpu_vpe_id(&cpu_data[cpu]);
416
417 pr_debug("Halting core %d VP%d\n", core, vpe_id);
418 if (cpu_has_mipsmt) {
419 /* Halt this TC */
420 write_c0_tchalt(TCHALT_H);
421 instruction_hazard();
422 } else if (cpu_has_vp) {
423 write_cpc_cl_vp_stop(1 << vpe_id);
424
425 /* Ensure that the VP_STOP register is written */
426 wmb();
427 }
428 } else {
429 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
430 pr_debug("Gating power to core %d\n", core);
431 /* Power down the core */
432 cps_pm_enter_state(CPS_PM_POWER_GATED);
433 }
434 }
435}
436
437#ifdef CONFIG_KEXEC
438
439static void cps_kexec_nonboot_cpu(void)
440{
441 if (cpu_has_mipsmt || cpu_has_vp)
442 cps_shutdown_this_cpu(CPU_DEATH_HALT);
443 else
444 cps_shutdown_this_cpu(CPU_DEATH_POWER);
445}
446
447#endif /* CONFIG_KEXEC */
448
449#endif /* CONFIG_HOTPLUG_CPU || CONFIG_KEXEC */
450
451#ifdef CONFIG_HOTPLUG_CPU
452
453static int cps_cpu_disable(void)
454{
455 unsigned cpu = smp_processor_id();
456 struct core_boot_config *core_cfg;
457
458 if (!cpu)
459 return -EBUSY;
460
461 if (!cps_pm_support_state(CPS_PM_POWER_GATED))
462 return -EINVAL;
463
464 core_cfg = &mips_cps_core_bootcfg[cpu_core(&current_cpu_data)];
465 atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
466 smp_mb__after_atomic();
467 set_cpu_online(cpu, false);
468 calculate_cpu_foreign_map();
469
470 return 0;
471}
472
473static unsigned cpu_death_sibling;
474static enum cpu_death cpu_death;
475
476void play_dead(void)
477{
478 unsigned int cpu;
479
480 local_irq_disable();
481 idle_task_exit();
482 cpu = smp_processor_id();
483 cpu_death = CPU_DEATH_POWER;
484
485 pr_debug("CPU%d going offline\n", cpu);
486
487 if (cpu_has_mipsmt || cpu_has_vp) {
488 /* Look for another online VPE within the core */
489 for_each_online_cpu(cpu_death_sibling) {
490 if (!cpus_are_siblings(cpu, cpu_death_sibling))
491 continue;
492
493 /*
494 * There is an online VPE within the core. Just halt
495 * this TC and leave the core alone.
496 */
497 cpu_death = CPU_DEATH_HALT;
498 break;
499 }
500 }
501
502 /* This CPU has chosen its way out */
503 (void)cpu_report_death();
504
505 cps_shutdown_this_cpu(cpu_death);
506
507 /* This should never be reached */
508 panic("Failed to offline CPU %u", cpu);
509}
510
511static void wait_for_sibling_halt(void *ptr_cpu)
512{
513 unsigned cpu = (unsigned long)ptr_cpu;
514 unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
515 unsigned halted;
516 unsigned long flags;
517
518 do {
519 local_irq_save(flags);
520 settc(vpe_id);
521 halted = read_tc_c0_tchalt();
522 local_irq_restore(flags);
523 } while (!(halted & TCHALT_H));
524}
525
526static void cps_cpu_die(unsigned int cpu)
527{
528 unsigned core = cpu_core(&cpu_data[cpu]);
529 unsigned int vpe_id = cpu_vpe_id(&cpu_data[cpu]);
530 ktime_t fail_time;
531 unsigned stat;
532 int err;
533
534 /* Wait for the cpu to choose its way out */
535 if (!cpu_wait_death(cpu, 5)) {
536 pr_err("CPU%u: didn't offline\n", cpu);
537 return;
538 }
539
540 /*
541 * Now wait for the CPU to actually offline. Without doing this that
542 * offlining may race with one or more of:
543 *
544 * - Onlining the CPU again.
545 * - Powering down the core if another VPE within it is offlined.
546 * - A sibling VPE entering a non-coherent state.
547 *
548 * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
549 * with which we could race, so do nothing.
550 */
551 if (cpu_death == CPU_DEATH_POWER) {
552 /*
553 * Wait for the core to enter a powered down or clock gated
554 * state, the latter happening when a JTAG probe is connected
555 * in which case the CPC will refuse to power down the core.
556 */
557 fail_time = ktime_add_ms(ktime_get(), 2000);
558 do {
559 mips_cm_lock_other(0, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
560 mips_cpc_lock_other(core);
561 stat = read_cpc_co_stat_conf();
562 stat &= CPC_Cx_STAT_CONF_SEQSTATE;
563 stat >>= __ffs(CPC_Cx_STAT_CONF_SEQSTATE);
564 mips_cpc_unlock_other();
565 mips_cm_unlock_other();
566
567 if (stat == CPC_Cx_STAT_CONF_SEQSTATE_D0 ||
568 stat == CPC_Cx_STAT_CONF_SEQSTATE_D2 ||
569 stat == CPC_Cx_STAT_CONF_SEQSTATE_U2)
570 break;
571
572 /*
573 * The core ought to have powered down, but didn't &
574 * now we don't really know what state it's in. It's
575 * likely that its _pwr_up pin has been wired to logic
576 * 1 & it powered back up as soon as we powered it
577 * down...
578 *
579 * The best we can do is warn the user & continue in
580 * the hope that the core is doing nothing harmful &
581 * might behave properly if we online it later.
582 */
583 if (WARN(ktime_after(ktime_get(), fail_time),
584 "CPU%u hasn't powered down, seq. state %u\n",
585 cpu, stat))
586 break;
587 } while (1);
588
589 /* Indicate the core is powered off */
590 bitmap_clear(core_power, core, 1);
591 } else if (cpu_has_mipsmt) {
592 /*
593 * Have a CPU with access to the offlined CPUs registers wait
594 * for its TC to halt.
595 */
596 err = smp_call_function_single(cpu_death_sibling,
597 wait_for_sibling_halt,
598 (void *)(unsigned long)cpu, 1);
599 if (err)
600 panic("Failed to call remote sibling CPU\n");
601 } else if (cpu_has_vp) {
602 do {
603 mips_cm_lock_other(0, core, vpe_id, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
604 stat = read_cpc_co_vp_running();
605 mips_cm_unlock_other();
606 } while (stat & (1 << vpe_id));
607 }
608}
609
610#endif /* CONFIG_HOTPLUG_CPU */
611
612static const struct plat_smp_ops cps_smp_ops = {
613 .smp_setup = cps_smp_setup,
614 .prepare_cpus = cps_prepare_cpus,
615 .boot_secondary = cps_boot_secondary,
616 .init_secondary = cps_init_secondary,
617 .smp_finish = cps_smp_finish,
618 .send_ipi_single = mips_smp_send_ipi_single,
619 .send_ipi_mask = mips_smp_send_ipi_mask,
620#ifdef CONFIG_HOTPLUG_CPU
621 .cpu_disable = cps_cpu_disable,
622 .cpu_die = cps_cpu_die,
623#endif
624#ifdef CONFIG_KEXEC
625 .kexec_nonboot_cpu = cps_kexec_nonboot_cpu,
626#endif
627};
628
629bool mips_cps_smp_in_use(void)
630{
631 extern const struct plat_smp_ops *mp_ops;
632 return mp_ops == &cps_smp_ops;
633}
634
635int register_cps_smp_ops(void)
636{
637 if (!mips_cm_present()) {
638 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
639 return -ENODEV;
640 }
641
642 /* check we have a GIC - we need one for IPIs */
643 if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX)) {
644 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
645 return -ENODEV;
646 }
647
648 register_smp_ops(&cps_smp_ops);
649 return 0;
650}