b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * PowerPC version |
| 4 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 5 | * |
| 6 | * Derived from "arch/i386/kernel/signal.c" |
| 7 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 8 | * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson |
| 9 | */ |
| 10 | |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/mm.h> |
| 13 | #include <linux/smp.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/signal.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/wait.h> |
| 18 | #include <linux/unistd.h> |
| 19 | #include <linux/stddef.h> |
| 20 | #include <linux/elf.h> |
| 21 | #include <linux/ptrace.h> |
| 22 | #include <linux/ratelimit.h> |
| 23 | #include <linux/syscalls.h> |
| 24 | |
| 25 | #include <asm/sigcontext.h> |
| 26 | #include <asm/ucontext.h> |
| 27 | #include <linux/uaccess.h> |
| 28 | #include <asm/pgtable.h> |
| 29 | #include <asm/unistd.h> |
| 30 | #include <asm/cacheflush.h> |
| 31 | #include <asm/syscalls.h> |
| 32 | #include <asm/vdso.h> |
| 33 | #include <asm/switch_to.h> |
| 34 | #include <asm/tm.h> |
| 35 | #include <asm/asm-prototypes.h> |
| 36 | |
| 37 | #include "signal.h" |
| 38 | |
| 39 | |
| 40 | #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs)) |
| 41 | #define FP_REGS_SIZE sizeof(elf_fpregset_t) |
| 42 | |
| 43 | #define TRAMP_TRACEBACK 3 |
| 44 | #define TRAMP_SIZE 6 |
| 45 | |
| 46 | /* |
| 47 | * When we have signals to deliver, we set up on the user stack, |
| 48 | * going down from the original stack pointer: |
| 49 | * 1) a rt_sigframe struct which contains the ucontext |
| 50 | * 2) a gap of __SIGNAL_FRAMESIZE bytes which acts as a dummy caller |
| 51 | * frame for the signal handler. |
| 52 | */ |
| 53 | |
| 54 | struct rt_sigframe { |
| 55 | /* sys_rt_sigreturn requires the ucontext be the first field */ |
| 56 | struct ucontext uc; |
| 57 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 58 | struct ucontext uc_transact; |
| 59 | #endif |
| 60 | unsigned long _unused[2]; |
| 61 | unsigned int tramp[TRAMP_SIZE]; |
| 62 | struct siginfo __user *pinfo; |
| 63 | void __user *puc; |
| 64 | struct siginfo info; |
| 65 | /* New 64 bit little-endian ABI allows redzone of 512 bytes below sp */ |
| 66 | char abigap[USER_REDZONE_SIZE]; |
| 67 | } __attribute__ ((aligned (16))); |
| 68 | |
| 69 | static const char fmt32[] = KERN_INFO \ |
| 70 | "%s[%d]: bad frame in %s: %08lx nip %08lx lr %08lx\n"; |
| 71 | static const char fmt64[] = KERN_INFO \ |
| 72 | "%s[%d]: bad frame in %s: %016lx nip %016lx lr %016lx\n"; |
| 73 | |
| 74 | /* |
| 75 | * This computes a quad word aligned pointer inside the vmx_reserve array |
| 76 | * element. For historical reasons sigcontext might not be quad word aligned, |
| 77 | * but the location we write the VMX regs to must be. See the comment in |
| 78 | * sigcontext for more detail. |
| 79 | */ |
| 80 | #ifdef CONFIG_ALTIVEC |
| 81 | static elf_vrreg_t __user *sigcontext_vmx_regs(struct sigcontext __user *sc) |
| 82 | { |
| 83 | return (elf_vrreg_t __user *) (((unsigned long)sc->vmx_reserve + 15) & ~0xful); |
| 84 | } |
| 85 | #endif |
| 86 | |
| 87 | /* |
| 88 | * Set up the sigcontext for the signal frame. |
| 89 | */ |
| 90 | |
| 91 | static long setup_sigcontext(struct sigcontext __user *sc, |
| 92 | struct task_struct *tsk, int signr, sigset_t *set, |
| 93 | unsigned long handler, int ctx_has_vsx_region) |
| 94 | { |
| 95 | /* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the |
| 96 | * process never used altivec yet (MSR_VEC is zero in pt_regs of |
| 97 | * the context). This is very important because we must ensure we |
| 98 | * don't lose the VRSAVE content that may have been set prior to |
| 99 | * the process doing its first vector operation |
| 100 | * Userland shall check AT_HWCAP to know whether it can rely on the |
| 101 | * v_regs pointer or not |
| 102 | */ |
| 103 | #ifdef CONFIG_ALTIVEC |
| 104 | elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc); |
| 105 | unsigned long vrsave; |
| 106 | #endif |
| 107 | struct pt_regs *regs = tsk->thread.regs; |
| 108 | unsigned long msr = regs->msr; |
| 109 | long err = 0; |
| 110 | /* Force usr to alway see softe as 1 (interrupts enabled) */ |
| 111 | unsigned long softe = 0x1; |
| 112 | |
| 113 | BUG_ON(tsk != current); |
| 114 | |
| 115 | #ifdef CONFIG_ALTIVEC |
| 116 | err |= __put_user(v_regs, &sc->v_regs); |
| 117 | |
| 118 | /* save altivec registers */ |
| 119 | if (tsk->thread.used_vr) { |
| 120 | flush_altivec_to_thread(tsk); |
| 121 | /* Copy 33 vec registers (vr0..31 and vscr) to the stack */ |
| 122 | err |= __copy_to_user(v_regs, &tsk->thread.vr_state, |
| 123 | 33 * sizeof(vector128)); |
| 124 | /* set MSR_VEC in the MSR value in the frame to indicate that sc->v_reg) |
| 125 | * contains valid data. |
| 126 | */ |
| 127 | msr |= MSR_VEC; |
| 128 | } |
| 129 | /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| 130 | * use altivec. |
| 131 | */ |
| 132 | vrsave = 0; |
| 133 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) { |
| 134 | vrsave = mfspr(SPRN_VRSAVE); |
| 135 | tsk->thread.vrsave = vrsave; |
| 136 | } |
| 137 | |
| 138 | err |= __put_user(vrsave, (u32 __user *)&v_regs[33]); |
| 139 | #else /* CONFIG_ALTIVEC */ |
| 140 | err |= __put_user(0, &sc->v_regs); |
| 141 | #endif /* CONFIG_ALTIVEC */ |
| 142 | flush_fp_to_thread(tsk); |
| 143 | /* copy fpr regs and fpscr */ |
| 144 | err |= copy_fpr_to_user(&sc->fp_regs, tsk); |
| 145 | |
| 146 | /* |
| 147 | * Clear the MSR VSX bit to indicate there is no valid state attached |
| 148 | * to this context, except in the specific case below where we set it. |
| 149 | */ |
| 150 | msr &= ~MSR_VSX; |
| 151 | #ifdef CONFIG_VSX |
| 152 | /* |
| 153 | * Copy VSX low doubleword to local buffer for formatting, |
| 154 | * then out to userspace. Update v_regs to point after the |
| 155 | * VMX data. |
| 156 | */ |
| 157 | if (tsk->thread.used_vsr && ctx_has_vsx_region) { |
| 158 | flush_vsx_to_thread(tsk); |
| 159 | v_regs += ELF_NVRREG; |
| 160 | err |= copy_vsx_to_user(v_regs, tsk); |
| 161 | /* set MSR_VSX in the MSR value in the frame to |
| 162 | * indicate that sc->vs_reg) contains valid data. |
| 163 | */ |
| 164 | msr |= MSR_VSX; |
| 165 | } |
| 166 | #endif /* CONFIG_VSX */ |
| 167 | err |= __put_user(&sc->gp_regs, &sc->regs); |
| 168 | WARN_ON(!FULL_REGS(regs)); |
| 169 | err |= __copy_to_user(&sc->gp_regs, regs, GP_REGS_SIZE); |
| 170 | err |= __put_user(msr, &sc->gp_regs[PT_MSR]); |
| 171 | err |= __put_user(softe, &sc->gp_regs[PT_SOFTE]); |
| 172 | err |= __put_user(signr, &sc->signal); |
| 173 | err |= __put_user(handler, &sc->handler); |
| 174 | if (set != NULL) |
| 175 | err |= __put_user(set->sig[0], &sc->oldmask); |
| 176 | |
| 177 | return err; |
| 178 | } |
| 179 | |
| 180 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 181 | /* |
| 182 | * As above, but Transactional Memory is in use, so deliver sigcontexts |
| 183 | * containing checkpointed and transactional register states. |
| 184 | * |
| 185 | * To do this, we treclaim (done before entering here) to gather both sets of |
| 186 | * registers and set up the 'normal' sigcontext registers with rolled-back |
| 187 | * register values such that a simple signal handler sees a correct |
| 188 | * checkpointed register state. If interested, a TM-aware sighandler can |
| 189 | * examine the transactional registers in the 2nd sigcontext to determine the |
| 190 | * real origin of the signal. |
| 191 | */ |
| 192 | static long setup_tm_sigcontexts(struct sigcontext __user *sc, |
| 193 | struct sigcontext __user *tm_sc, |
| 194 | struct task_struct *tsk, |
| 195 | int signr, sigset_t *set, unsigned long handler, |
| 196 | unsigned long msr) |
| 197 | { |
| 198 | /* When CONFIG_ALTIVEC is set, we _always_ setup v_regs even if the |
| 199 | * process never used altivec yet (MSR_VEC is zero in pt_regs of |
| 200 | * the context). This is very important because we must ensure we |
| 201 | * don't lose the VRSAVE content that may have been set prior to |
| 202 | * the process doing its first vector operation |
| 203 | * Userland shall check AT_HWCAP to know wether it can rely on the |
| 204 | * v_regs pointer or not. |
| 205 | */ |
| 206 | #ifdef CONFIG_ALTIVEC |
| 207 | elf_vrreg_t __user *v_regs = sigcontext_vmx_regs(sc); |
| 208 | elf_vrreg_t __user *tm_v_regs = sigcontext_vmx_regs(tm_sc); |
| 209 | #endif |
| 210 | struct pt_regs *regs = tsk->thread.regs; |
| 211 | long err = 0; |
| 212 | |
| 213 | BUG_ON(tsk != current); |
| 214 | |
| 215 | BUG_ON(!MSR_TM_ACTIVE(msr)); |
| 216 | |
| 217 | WARN_ON(tm_suspend_disabled); |
| 218 | |
| 219 | /* Restore checkpointed FP, VEC, and VSX bits from ckpt_regs as |
| 220 | * it contains the correct FP, VEC, VSX state after we treclaimed |
| 221 | * the transaction and giveup_all() was called on reclaiming. |
| 222 | */ |
| 223 | msr |= tsk->thread.ckpt_regs.msr & (MSR_FP | MSR_VEC | MSR_VSX); |
| 224 | |
| 225 | #ifdef CONFIG_ALTIVEC |
| 226 | err |= __put_user(v_regs, &sc->v_regs); |
| 227 | err |= __put_user(tm_v_regs, &tm_sc->v_regs); |
| 228 | |
| 229 | /* save altivec registers */ |
| 230 | if (tsk->thread.used_vr) { |
| 231 | /* Copy 33 vec registers (vr0..31 and vscr) to the stack */ |
| 232 | err |= __copy_to_user(v_regs, &tsk->thread.ckvr_state, |
| 233 | 33 * sizeof(vector128)); |
| 234 | /* If VEC was enabled there are transactional VRs valid too, |
| 235 | * else they're a copy of the checkpointed VRs. |
| 236 | */ |
| 237 | if (msr & MSR_VEC) |
| 238 | err |= __copy_to_user(tm_v_regs, |
| 239 | &tsk->thread.vr_state, |
| 240 | 33 * sizeof(vector128)); |
| 241 | else |
| 242 | err |= __copy_to_user(tm_v_regs, |
| 243 | &tsk->thread.ckvr_state, |
| 244 | 33 * sizeof(vector128)); |
| 245 | |
| 246 | /* set MSR_VEC in the MSR value in the frame to indicate |
| 247 | * that sc->v_reg contains valid data. |
| 248 | */ |
| 249 | msr |= MSR_VEC; |
| 250 | } |
| 251 | /* We always copy to/from vrsave, it's 0 if we don't have or don't |
| 252 | * use altivec. |
| 253 | */ |
| 254 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 255 | tsk->thread.ckvrsave = mfspr(SPRN_VRSAVE); |
| 256 | err |= __put_user(tsk->thread.ckvrsave, (u32 __user *)&v_regs[33]); |
| 257 | if (msr & MSR_VEC) |
| 258 | err |= __put_user(tsk->thread.vrsave, |
| 259 | (u32 __user *)&tm_v_regs[33]); |
| 260 | else |
| 261 | err |= __put_user(tsk->thread.ckvrsave, |
| 262 | (u32 __user *)&tm_v_regs[33]); |
| 263 | |
| 264 | #else /* CONFIG_ALTIVEC */ |
| 265 | err |= __put_user(0, &sc->v_regs); |
| 266 | err |= __put_user(0, &tm_sc->v_regs); |
| 267 | #endif /* CONFIG_ALTIVEC */ |
| 268 | |
| 269 | /* copy fpr regs and fpscr */ |
| 270 | err |= copy_ckfpr_to_user(&sc->fp_regs, tsk); |
| 271 | if (msr & MSR_FP) |
| 272 | err |= copy_fpr_to_user(&tm_sc->fp_regs, tsk); |
| 273 | else |
| 274 | err |= copy_ckfpr_to_user(&tm_sc->fp_regs, tsk); |
| 275 | |
| 276 | #ifdef CONFIG_VSX |
| 277 | /* |
| 278 | * Copy VSX low doubleword to local buffer for formatting, |
| 279 | * then out to userspace. Update v_regs to point after the |
| 280 | * VMX data. |
| 281 | */ |
| 282 | if (tsk->thread.used_vsr) { |
| 283 | v_regs += ELF_NVRREG; |
| 284 | tm_v_regs += ELF_NVRREG; |
| 285 | |
| 286 | err |= copy_ckvsx_to_user(v_regs, tsk); |
| 287 | |
| 288 | if (msr & MSR_VSX) |
| 289 | err |= copy_vsx_to_user(tm_v_regs, tsk); |
| 290 | else |
| 291 | err |= copy_ckvsx_to_user(tm_v_regs, tsk); |
| 292 | |
| 293 | /* set MSR_VSX in the MSR value in the frame to |
| 294 | * indicate that sc->vs_reg) contains valid data. |
| 295 | */ |
| 296 | msr |= MSR_VSX; |
| 297 | } |
| 298 | #endif /* CONFIG_VSX */ |
| 299 | |
| 300 | err |= __put_user(&sc->gp_regs, &sc->regs); |
| 301 | err |= __put_user(&tm_sc->gp_regs, &tm_sc->regs); |
| 302 | WARN_ON(!FULL_REGS(regs)); |
| 303 | err |= __copy_to_user(&tm_sc->gp_regs, regs, GP_REGS_SIZE); |
| 304 | err |= __copy_to_user(&sc->gp_regs, |
| 305 | &tsk->thread.ckpt_regs, GP_REGS_SIZE); |
| 306 | err |= __put_user(msr, &tm_sc->gp_regs[PT_MSR]); |
| 307 | err |= __put_user(msr, &sc->gp_regs[PT_MSR]); |
| 308 | err |= __put_user(signr, &sc->signal); |
| 309 | err |= __put_user(handler, &sc->handler); |
| 310 | if (set != NULL) |
| 311 | err |= __put_user(set->sig[0], &sc->oldmask); |
| 312 | |
| 313 | return err; |
| 314 | } |
| 315 | #endif |
| 316 | |
| 317 | /* |
| 318 | * Restore the sigcontext from the signal frame. |
| 319 | */ |
| 320 | |
| 321 | static long restore_sigcontext(struct task_struct *tsk, sigset_t *set, int sig, |
| 322 | struct sigcontext __user *sc) |
| 323 | { |
| 324 | #ifdef CONFIG_ALTIVEC |
| 325 | elf_vrreg_t __user *v_regs; |
| 326 | #endif |
| 327 | unsigned long err = 0; |
| 328 | unsigned long save_r13 = 0; |
| 329 | unsigned long msr; |
| 330 | struct pt_regs *regs = tsk->thread.regs; |
| 331 | #ifdef CONFIG_VSX |
| 332 | int i; |
| 333 | #endif |
| 334 | |
| 335 | BUG_ON(tsk != current); |
| 336 | |
| 337 | /* If this is not a signal return, we preserve the TLS in r13 */ |
| 338 | if (!sig) |
| 339 | save_r13 = regs->gpr[13]; |
| 340 | |
| 341 | /* copy the GPRs */ |
| 342 | err |= __copy_from_user(regs->gpr, sc->gp_regs, sizeof(regs->gpr)); |
| 343 | err |= __get_user(regs->nip, &sc->gp_regs[PT_NIP]); |
| 344 | /* get MSR separately, transfer the LE bit if doing signal return */ |
| 345 | err |= __get_user(msr, &sc->gp_regs[PT_MSR]); |
| 346 | if (sig) |
| 347 | regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); |
| 348 | err |= __get_user(regs->orig_gpr3, &sc->gp_regs[PT_ORIG_R3]); |
| 349 | err |= __get_user(regs->ctr, &sc->gp_regs[PT_CTR]); |
| 350 | err |= __get_user(regs->link, &sc->gp_regs[PT_LNK]); |
| 351 | err |= __get_user(regs->xer, &sc->gp_regs[PT_XER]); |
| 352 | err |= __get_user(regs->ccr, &sc->gp_regs[PT_CCR]); |
| 353 | /* skip SOFTE */ |
| 354 | regs->trap = 0; |
| 355 | err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]); |
| 356 | err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]); |
| 357 | err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]); |
| 358 | |
| 359 | if (!sig) |
| 360 | regs->gpr[13] = save_r13; |
| 361 | if (set != NULL) |
| 362 | err |= __get_user(set->sig[0], &sc->oldmask); |
| 363 | |
| 364 | /* |
| 365 | * Force reload of FP/VEC. |
| 366 | * This has to be done before copying stuff into tsk->thread.fpr/vr |
| 367 | * for the reasons explained in the previous comment. |
| 368 | */ |
| 369 | regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX); |
| 370 | |
| 371 | #ifdef CONFIG_ALTIVEC |
| 372 | err |= __get_user(v_regs, &sc->v_regs); |
| 373 | if (err) |
| 374 | return err; |
| 375 | if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128))) |
| 376 | return -EFAULT; |
| 377 | /* Copy 33 vec registers (vr0..31 and vscr) from the stack */ |
| 378 | if (v_regs != NULL && (msr & MSR_VEC) != 0) { |
| 379 | err |= __copy_from_user(&tsk->thread.vr_state, v_regs, |
| 380 | 33 * sizeof(vector128)); |
| 381 | tsk->thread.used_vr = true; |
| 382 | } else if (tsk->thread.used_vr) { |
| 383 | memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128)); |
| 384 | } |
| 385 | /* Always get VRSAVE back */ |
| 386 | if (v_regs != NULL) |
| 387 | err |= __get_user(tsk->thread.vrsave, (u32 __user *)&v_regs[33]); |
| 388 | else |
| 389 | tsk->thread.vrsave = 0; |
| 390 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 391 | mtspr(SPRN_VRSAVE, tsk->thread.vrsave); |
| 392 | #endif /* CONFIG_ALTIVEC */ |
| 393 | /* restore floating point */ |
| 394 | err |= copy_fpr_from_user(tsk, &sc->fp_regs); |
| 395 | #ifdef CONFIG_VSX |
| 396 | /* |
| 397 | * Get additional VSX data. Update v_regs to point after the |
| 398 | * VMX data. Copy VSX low doubleword from userspace to local |
| 399 | * buffer for formatting, then into the taskstruct. |
| 400 | */ |
| 401 | v_regs += ELF_NVRREG; |
| 402 | if ((msr & MSR_VSX) != 0) { |
| 403 | err |= copy_vsx_from_user(tsk, v_regs); |
| 404 | tsk->thread.used_vsr = true; |
| 405 | } else { |
| 406 | for (i = 0; i < 32 ; i++) |
| 407 | tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| 408 | } |
| 409 | #endif |
| 410 | return err; |
| 411 | } |
| 412 | |
| 413 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 414 | /* |
| 415 | * Restore the two sigcontexts from the frame of a transactional processes. |
| 416 | */ |
| 417 | |
| 418 | static long restore_tm_sigcontexts(struct task_struct *tsk, |
| 419 | struct sigcontext __user *sc, |
| 420 | struct sigcontext __user *tm_sc) |
| 421 | { |
| 422 | #ifdef CONFIG_ALTIVEC |
| 423 | elf_vrreg_t __user *v_regs, *tm_v_regs; |
| 424 | #endif |
| 425 | unsigned long err = 0; |
| 426 | unsigned long msr; |
| 427 | struct pt_regs *regs = tsk->thread.regs; |
| 428 | #ifdef CONFIG_VSX |
| 429 | int i; |
| 430 | #endif |
| 431 | |
| 432 | BUG_ON(tsk != current); |
| 433 | |
| 434 | if (tm_suspend_disabled) |
| 435 | return -EINVAL; |
| 436 | |
| 437 | /* copy the GPRs */ |
| 438 | err |= __copy_from_user(regs->gpr, tm_sc->gp_regs, sizeof(regs->gpr)); |
| 439 | err |= __copy_from_user(&tsk->thread.ckpt_regs, sc->gp_regs, |
| 440 | sizeof(regs->gpr)); |
| 441 | |
| 442 | /* |
| 443 | * TFHAR is restored from the checkpointed 'wound-back' ucontext's NIP. |
| 444 | * TEXASR was set by the signal delivery reclaim, as was TFIAR. |
| 445 | * Users doing anything abhorrent like thread-switching w/ signals for |
| 446 | * TM-Suspended code will have to back TEXASR/TFIAR up themselves. |
| 447 | * For the case of getting a signal and simply returning from it, |
| 448 | * we don't need to re-copy them here. |
| 449 | */ |
| 450 | err |= __get_user(regs->nip, &tm_sc->gp_regs[PT_NIP]); |
| 451 | err |= __get_user(tsk->thread.tm_tfhar, &sc->gp_regs[PT_NIP]); |
| 452 | |
| 453 | /* get MSR separately, transfer the LE bit if doing signal return */ |
| 454 | err |= __get_user(msr, &sc->gp_regs[PT_MSR]); |
| 455 | /* Don't allow reserved mode. */ |
| 456 | if (MSR_TM_RESV(msr)) |
| 457 | return -EINVAL; |
| 458 | |
| 459 | /* pull in MSR LE from user context */ |
| 460 | regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE); |
| 461 | |
| 462 | /* The following non-GPR non-FPR non-VR state is also checkpointed: */ |
| 463 | err |= __get_user(regs->ctr, &tm_sc->gp_regs[PT_CTR]); |
| 464 | err |= __get_user(regs->link, &tm_sc->gp_regs[PT_LNK]); |
| 465 | err |= __get_user(regs->xer, &tm_sc->gp_regs[PT_XER]); |
| 466 | err |= __get_user(regs->ccr, &tm_sc->gp_regs[PT_CCR]); |
| 467 | err |= __get_user(tsk->thread.ckpt_regs.ctr, |
| 468 | &sc->gp_regs[PT_CTR]); |
| 469 | err |= __get_user(tsk->thread.ckpt_regs.link, |
| 470 | &sc->gp_regs[PT_LNK]); |
| 471 | err |= __get_user(tsk->thread.ckpt_regs.xer, |
| 472 | &sc->gp_regs[PT_XER]); |
| 473 | err |= __get_user(tsk->thread.ckpt_regs.ccr, |
| 474 | &sc->gp_regs[PT_CCR]); |
| 475 | |
| 476 | /* Don't allow userspace to set the trap value */ |
| 477 | regs->trap = 0; |
| 478 | |
| 479 | /* These regs are not checkpointed; they can go in 'regs'. */ |
| 480 | err |= __get_user(regs->dar, &sc->gp_regs[PT_DAR]); |
| 481 | err |= __get_user(regs->dsisr, &sc->gp_regs[PT_DSISR]); |
| 482 | err |= __get_user(regs->result, &sc->gp_regs[PT_RESULT]); |
| 483 | |
| 484 | /* |
| 485 | * Force reload of FP/VEC. |
| 486 | * This has to be done before copying stuff into tsk->thread.fpr/vr |
| 487 | * for the reasons explained in the previous comment. |
| 488 | */ |
| 489 | regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1 | MSR_VEC | MSR_VSX); |
| 490 | |
| 491 | #ifdef CONFIG_ALTIVEC |
| 492 | err |= __get_user(v_regs, &sc->v_regs); |
| 493 | err |= __get_user(tm_v_regs, &tm_sc->v_regs); |
| 494 | if (err) |
| 495 | return err; |
| 496 | if (v_regs && !access_ok(v_regs, 34 * sizeof(vector128))) |
| 497 | return -EFAULT; |
| 498 | if (tm_v_regs && !access_ok(tm_v_regs, 34 * sizeof(vector128))) |
| 499 | return -EFAULT; |
| 500 | /* Copy 33 vec registers (vr0..31 and vscr) from the stack */ |
| 501 | if (v_regs != NULL && tm_v_regs != NULL && (msr & MSR_VEC) != 0) { |
| 502 | err |= __copy_from_user(&tsk->thread.ckvr_state, v_regs, |
| 503 | 33 * sizeof(vector128)); |
| 504 | err |= __copy_from_user(&tsk->thread.vr_state, tm_v_regs, |
| 505 | 33 * sizeof(vector128)); |
| 506 | current->thread.used_vr = true; |
| 507 | } |
| 508 | else if (tsk->thread.used_vr) { |
| 509 | memset(&tsk->thread.vr_state, 0, 33 * sizeof(vector128)); |
| 510 | memset(&tsk->thread.ckvr_state, 0, 33 * sizeof(vector128)); |
| 511 | } |
| 512 | /* Always get VRSAVE back */ |
| 513 | if (v_regs != NULL && tm_v_regs != NULL) { |
| 514 | err |= __get_user(tsk->thread.ckvrsave, |
| 515 | (u32 __user *)&v_regs[33]); |
| 516 | err |= __get_user(tsk->thread.vrsave, |
| 517 | (u32 __user *)&tm_v_regs[33]); |
| 518 | } |
| 519 | else { |
| 520 | tsk->thread.vrsave = 0; |
| 521 | tsk->thread.ckvrsave = 0; |
| 522 | } |
| 523 | if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| 524 | mtspr(SPRN_VRSAVE, tsk->thread.vrsave); |
| 525 | #endif /* CONFIG_ALTIVEC */ |
| 526 | /* restore floating point */ |
| 527 | err |= copy_fpr_from_user(tsk, &tm_sc->fp_regs); |
| 528 | err |= copy_ckfpr_from_user(tsk, &sc->fp_regs); |
| 529 | #ifdef CONFIG_VSX |
| 530 | /* |
| 531 | * Get additional VSX data. Update v_regs to point after the |
| 532 | * VMX data. Copy VSX low doubleword from userspace to local |
| 533 | * buffer for formatting, then into the taskstruct. |
| 534 | */ |
| 535 | if (v_regs && ((msr & MSR_VSX) != 0)) { |
| 536 | v_regs += ELF_NVRREG; |
| 537 | tm_v_regs += ELF_NVRREG; |
| 538 | err |= copy_vsx_from_user(tsk, tm_v_regs); |
| 539 | err |= copy_ckvsx_from_user(tsk, v_regs); |
| 540 | tsk->thread.used_vsr = true; |
| 541 | } else { |
| 542 | for (i = 0; i < 32 ; i++) { |
| 543 | tsk->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| 544 | tsk->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0; |
| 545 | } |
| 546 | } |
| 547 | #endif |
| 548 | tm_enable(); |
| 549 | /* Make sure the transaction is marked as failed */ |
| 550 | tsk->thread.tm_texasr |= TEXASR_FS; |
| 551 | |
| 552 | /* |
| 553 | * Disabling preemption, since it is unsafe to be preempted |
| 554 | * with MSR[TS] set without recheckpointing. |
| 555 | */ |
| 556 | preempt_disable(); |
| 557 | |
| 558 | /* pull in MSR TS bits from user context */ |
| 559 | regs->msr |= msr & MSR_TS_MASK; |
| 560 | |
| 561 | /* |
| 562 | * Ensure that TM is enabled in regs->msr before we leave the signal |
| 563 | * handler. It could be the case that (a) user disabled the TM bit |
| 564 | * through the manipulation of the MSR bits in uc_mcontext or (b) the |
| 565 | * TM bit was disabled because a sufficient number of context switches |
| 566 | * happened whilst in the signal handler and load_tm overflowed, |
| 567 | * disabling the TM bit. In either case we can end up with an illegal |
| 568 | * TM state leading to a TM Bad Thing when we return to userspace. |
| 569 | * |
| 570 | * CAUTION: |
| 571 | * After regs->MSR[TS] being updated, make sure that get_user(), |
| 572 | * put_user() or similar functions are *not* called. These |
| 573 | * functions can generate page faults which will cause the process |
| 574 | * to be de-scheduled with MSR[TS] set but without calling |
| 575 | * tm_recheckpoint(). This can cause a bug. |
| 576 | */ |
| 577 | regs->msr |= MSR_TM; |
| 578 | |
| 579 | /* This loads the checkpointed FP/VEC state, if used */ |
| 580 | tm_recheckpoint(&tsk->thread); |
| 581 | |
| 582 | msr_check_and_set(msr & (MSR_FP | MSR_VEC)); |
| 583 | if (msr & MSR_FP) { |
| 584 | load_fp_state(&tsk->thread.fp_state); |
| 585 | regs->msr |= (MSR_FP | tsk->thread.fpexc_mode); |
| 586 | } |
| 587 | if (msr & MSR_VEC) { |
| 588 | load_vr_state(&tsk->thread.vr_state); |
| 589 | regs->msr |= MSR_VEC; |
| 590 | } |
| 591 | |
| 592 | preempt_enable(); |
| 593 | |
| 594 | return err; |
| 595 | } |
| 596 | #endif |
| 597 | |
| 598 | /* |
| 599 | * Setup the trampoline code on the stack |
| 600 | */ |
| 601 | static long setup_trampoline(unsigned int syscall, unsigned int __user *tramp) |
| 602 | { |
| 603 | int i; |
| 604 | long err = 0; |
| 605 | |
| 606 | /* addi r1, r1, __SIGNAL_FRAMESIZE # Pop the dummy stackframe */ |
| 607 | err |= __put_user(PPC_INST_ADDI | __PPC_RT(R1) | __PPC_RA(R1) | |
| 608 | (__SIGNAL_FRAMESIZE & 0xffff), &tramp[0]); |
| 609 | /* li r0, __NR_[rt_]sigreturn| */ |
| 610 | err |= __put_user(PPC_INST_ADDI | (syscall & 0xffff), &tramp[1]); |
| 611 | /* sc */ |
| 612 | err |= __put_user(PPC_INST_SC, &tramp[2]); |
| 613 | |
| 614 | /* Minimal traceback info */ |
| 615 | for (i=TRAMP_TRACEBACK; i < TRAMP_SIZE ;i++) |
| 616 | err |= __put_user(0, &tramp[i]); |
| 617 | |
| 618 | if (!err) |
| 619 | flush_icache_range((unsigned long) &tramp[0], |
| 620 | (unsigned long) &tramp[TRAMP_SIZE]); |
| 621 | |
| 622 | return err; |
| 623 | } |
| 624 | |
| 625 | /* |
| 626 | * Userspace code may pass a ucontext which doesn't include VSX added |
| 627 | * at the end. We need to check for this case. |
| 628 | */ |
| 629 | #define UCONTEXTSIZEWITHOUTVSX \ |
| 630 | (sizeof(struct ucontext) - 32*sizeof(long)) |
| 631 | |
| 632 | /* |
| 633 | * Handle {get,set,swap}_context operations |
| 634 | */ |
| 635 | SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx, |
| 636 | struct ucontext __user *, new_ctx, long, ctx_size) |
| 637 | { |
| 638 | unsigned char tmp; |
| 639 | sigset_t set; |
| 640 | unsigned long new_msr = 0; |
| 641 | int ctx_has_vsx_region = 0; |
| 642 | |
| 643 | if (new_ctx && |
| 644 | get_user(new_msr, &new_ctx->uc_mcontext.gp_regs[PT_MSR])) |
| 645 | return -EFAULT; |
| 646 | /* |
| 647 | * Check that the context is not smaller than the original |
| 648 | * size (with VMX but without VSX) |
| 649 | */ |
| 650 | if (ctx_size < UCONTEXTSIZEWITHOUTVSX) |
| 651 | return -EINVAL; |
| 652 | /* |
| 653 | * If the new context state sets the MSR VSX bits but |
| 654 | * it doesn't provide VSX state. |
| 655 | */ |
| 656 | if ((ctx_size < sizeof(struct ucontext)) && |
| 657 | (new_msr & MSR_VSX)) |
| 658 | return -EINVAL; |
| 659 | /* Does the context have enough room to store VSX data? */ |
| 660 | if (ctx_size >= sizeof(struct ucontext)) |
| 661 | ctx_has_vsx_region = 1; |
| 662 | |
| 663 | if (old_ctx != NULL) { |
| 664 | if (!access_ok(old_ctx, ctx_size) |
| 665 | || setup_sigcontext(&old_ctx->uc_mcontext, current, 0, NULL, 0, |
| 666 | ctx_has_vsx_region) |
| 667 | || __copy_to_user(&old_ctx->uc_sigmask, |
| 668 | ¤t->blocked, sizeof(sigset_t))) |
| 669 | return -EFAULT; |
| 670 | } |
| 671 | if (new_ctx == NULL) |
| 672 | return 0; |
| 673 | if (!access_ok(new_ctx, ctx_size) |
| 674 | || __get_user(tmp, (u8 __user *) new_ctx) |
| 675 | || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1)) |
| 676 | return -EFAULT; |
| 677 | |
| 678 | /* |
| 679 | * If we get a fault copying the context into the kernel's |
| 680 | * image of the user's registers, we can't just return -EFAULT |
| 681 | * because the user's registers will be corrupted. For instance |
| 682 | * the NIP value may have been updated but not some of the |
| 683 | * other registers. Given that we have done the access_ok |
| 684 | * and successfully read the first and last bytes of the region |
| 685 | * above, this should only happen in an out-of-memory situation |
| 686 | * or if another thread unmaps the region containing the context. |
| 687 | * We kill the task with a SIGSEGV in this situation. |
| 688 | */ |
| 689 | |
| 690 | if (__copy_from_user(&set, &new_ctx->uc_sigmask, sizeof(set))) |
| 691 | do_exit(SIGSEGV); |
| 692 | set_current_blocked(&set); |
| 693 | if (restore_sigcontext(current, NULL, 0, &new_ctx->uc_mcontext)) |
| 694 | do_exit(SIGSEGV); |
| 695 | |
| 696 | /* This returns like rt_sigreturn */ |
| 697 | set_thread_flag(TIF_RESTOREALL); |
| 698 | return 0; |
| 699 | } |
| 700 | |
| 701 | |
| 702 | /* |
| 703 | * Do a signal return; undo the signal stack. |
| 704 | */ |
| 705 | |
| 706 | SYSCALL_DEFINE0(rt_sigreturn) |
| 707 | { |
| 708 | struct pt_regs *regs = current_pt_regs(); |
| 709 | struct ucontext __user *uc = (struct ucontext __user *)regs->gpr[1]; |
| 710 | sigset_t set; |
| 711 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 712 | unsigned long msr; |
| 713 | #endif |
| 714 | |
| 715 | /* Always make any pending restarted system calls return -EINTR */ |
| 716 | current->restart_block.fn = do_no_restart_syscall; |
| 717 | |
| 718 | if (!access_ok(uc, sizeof(*uc))) |
| 719 | goto badframe; |
| 720 | |
| 721 | if (__copy_from_user(&set, &uc->uc_sigmask, sizeof(set))) |
| 722 | goto badframe; |
| 723 | set_current_blocked(&set); |
| 724 | |
| 725 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 726 | /* |
| 727 | * If there is a transactional state then throw it away. |
| 728 | * The purpose of a sigreturn is to destroy all traces of the |
| 729 | * signal frame, this includes any transactional state created |
| 730 | * within in. We only check for suspended as we can never be |
| 731 | * active in the kernel, we are active, there is nothing better to |
| 732 | * do than go ahead and Bad Thing later. |
| 733 | * The cause is not important as there will never be a |
| 734 | * recheckpoint so it's not user visible. |
| 735 | */ |
| 736 | if (MSR_TM_SUSPENDED(mfmsr())) |
| 737 | tm_reclaim_current(0); |
| 738 | |
| 739 | /* |
| 740 | * Disable MSR[TS] bit also, so, if there is an exception in the |
| 741 | * code below (as a page fault in copy_ckvsx_to_user()), it does |
| 742 | * not recheckpoint this task if there was a context switch inside |
| 743 | * the exception. |
| 744 | * |
| 745 | * A major page fault can indirectly call schedule(). A reschedule |
| 746 | * process in the middle of an exception can have a side effect |
| 747 | * (Changing the CPU MSR[TS] state), since schedule() is called |
| 748 | * with the CPU MSR[TS] disable and returns with MSR[TS]=Suspended |
| 749 | * (switch_to() calls tm_recheckpoint() for the 'new' process). In |
| 750 | * this case, the process continues to be the same in the CPU, but |
| 751 | * the CPU state just changed. |
| 752 | * |
| 753 | * This can cause a TM Bad Thing, since the MSR in the stack will |
| 754 | * have the MSR[TS]=0, and this is what will be used to RFID. |
| 755 | * |
| 756 | * Clearing MSR[TS] state here will avoid a recheckpoint if there |
| 757 | * is any process reschedule in kernel space. The MSR[TS] state |
| 758 | * does not need to be saved also, since it will be replaced with |
| 759 | * the MSR[TS] that came from user context later, at |
| 760 | * restore_tm_sigcontexts. |
| 761 | */ |
| 762 | regs->msr &= ~MSR_TS_MASK; |
| 763 | |
| 764 | if (__get_user(msr, &uc->uc_mcontext.gp_regs[PT_MSR])) |
| 765 | goto badframe; |
| 766 | if (MSR_TM_ACTIVE(msr)) { |
| 767 | /* We recheckpoint on return. */ |
| 768 | struct ucontext __user *uc_transact; |
| 769 | |
| 770 | /* Trying to start TM on non TM system */ |
| 771 | if (!cpu_has_feature(CPU_FTR_TM)) |
| 772 | goto badframe; |
| 773 | |
| 774 | if (__get_user(uc_transact, &uc->uc_link)) |
| 775 | goto badframe; |
| 776 | if (restore_tm_sigcontexts(current, &uc->uc_mcontext, |
| 777 | &uc_transact->uc_mcontext)) |
| 778 | goto badframe; |
| 779 | } else |
| 780 | #endif |
| 781 | { |
| 782 | /* |
| 783 | * Fall through, for non-TM restore |
| 784 | * |
| 785 | * Unset MSR[TS] on the thread regs since MSR from user |
| 786 | * context does not have MSR active, and recheckpoint was |
| 787 | * not called since restore_tm_sigcontexts() was not called |
| 788 | * also. |
| 789 | * |
| 790 | * If not unsetting it, the code can RFID to userspace with |
| 791 | * MSR[TS] set, but without CPU in the proper state, |
| 792 | * causing a TM bad thing. |
| 793 | */ |
| 794 | current->thread.regs->msr &= ~MSR_TS_MASK; |
| 795 | if (restore_sigcontext(current, NULL, 1, &uc->uc_mcontext)) |
| 796 | goto badframe; |
| 797 | } |
| 798 | |
| 799 | if (restore_altstack(&uc->uc_stack)) |
| 800 | goto badframe; |
| 801 | |
| 802 | set_thread_flag(TIF_RESTOREALL); |
| 803 | return 0; |
| 804 | |
| 805 | badframe: |
| 806 | if (show_unhandled_signals) |
| 807 | printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, |
| 808 | current->comm, current->pid, "rt_sigreturn", |
| 809 | (long)uc, regs->nip, regs->link); |
| 810 | |
| 811 | force_sig(SIGSEGV); |
| 812 | return 0; |
| 813 | } |
| 814 | |
| 815 | int handle_rt_signal64(struct ksignal *ksig, sigset_t *set, |
| 816 | struct task_struct *tsk) |
| 817 | { |
| 818 | struct rt_sigframe __user *frame; |
| 819 | unsigned long newsp = 0; |
| 820 | long err = 0; |
| 821 | struct pt_regs *regs = tsk->thread.regs; |
| 822 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 823 | /* Save the thread's msr before get_tm_stackpointer() changes it */ |
| 824 | unsigned long msr = regs->msr; |
| 825 | #endif |
| 826 | |
| 827 | BUG_ON(tsk != current); |
| 828 | |
| 829 | frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 0); |
| 830 | if (unlikely(frame == NULL)) |
| 831 | goto badframe; |
| 832 | |
| 833 | err |= __put_user(&frame->info, &frame->pinfo); |
| 834 | err |= __put_user(&frame->uc, &frame->puc); |
| 835 | err |= copy_siginfo_to_user(&frame->info, &ksig->info); |
| 836 | if (err) |
| 837 | goto badframe; |
| 838 | |
| 839 | /* Create the ucontext. */ |
| 840 | err |= __put_user(0, &frame->uc.uc_flags); |
| 841 | err |= __save_altstack(&frame->uc.uc_stack, regs->gpr[1]); |
| 842 | #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| 843 | if (MSR_TM_ACTIVE(msr)) { |
| 844 | /* The ucontext_t passed to userland points to the second |
| 845 | * ucontext_t (for transactional state) with its uc_link ptr. |
| 846 | */ |
| 847 | err |= __put_user(&frame->uc_transact, &frame->uc.uc_link); |
| 848 | err |= setup_tm_sigcontexts(&frame->uc.uc_mcontext, |
| 849 | &frame->uc_transact.uc_mcontext, |
| 850 | tsk, ksig->sig, NULL, |
| 851 | (unsigned long)ksig->ka.sa.sa_handler, |
| 852 | msr); |
| 853 | } else |
| 854 | #endif |
| 855 | { |
| 856 | err |= __put_user(0, &frame->uc.uc_link); |
| 857 | err |= setup_sigcontext(&frame->uc.uc_mcontext, tsk, ksig->sig, |
| 858 | NULL, (unsigned long)ksig->ka.sa.sa_handler, |
| 859 | 1); |
| 860 | } |
| 861 | err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); |
| 862 | if (err) |
| 863 | goto badframe; |
| 864 | |
| 865 | /* Make sure signal handler doesn't get spurious FP exceptions */ |
| 866 | tsk->thread.fp_state.fpscr = 0; |
| 867 | |
| 868 | /* Set up to return from userspace. */ |
| 869 | if (vdso64_rt_sigtramp && tsk->mm->context.vdso_base) { |
| 870 | regs->link = tsk->mm->context.vdso_base + vdso64_rt_sigtramp; |
| 871 | } else { |
| 872 | err |= setup_trampoline(__NR_rt_sigreturn, &frame->tramp[0]); |
| 873 | if (err) |
| 874 | goto badframe; |
| 875 | regs->link = (unsigned long) &frame->tramp[0]; |
| 876 | } |
| 877 | |
| 878 | /* Allocate a dummy caller frame for the signal handler. */ |
| 879 | newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE; |
| 880 | err |= put_user(regs->gpr[1], (unsigned long __user *)newsp); |
| 881 | |
| 882 | /* Set up "regs" so we "return" to the signal handler. */ |
| 883 | if (is_elf2_task()) { |
| 884 | regs->nip = (unsigned long) ksig->ka.sa.sa_handler; |
| 885 | regs->gpr[12] = regs->nip; |
| 886 | } else { |
| 887 | /* Handler is *really* a pointer to the function descriptor for |
| 888 | * the signal routine. The first entry in the function |
| 889 | * descriptor is the entry address of signal and the second |
| 890 | * entry is the TOC value we need to use. |
| 891 | */ |
| 892 | func_descr_t __user *funct_desc_ptr = |
| 893 | (func_descr_t __user *) ksig->ka.sa.sa_handler; |
| 894 | |
| 895 | err |= get_user(regs->nip, &funct_desc_ptr->entry); |
| 896 | err |= get_user(regs->gpr[2], &funct_desc_ptr->toc); |
| 897 | } |
| 898 | |
| 899 | /* enter the signal handler in native-endian mode */ |
| 900 | regs->msr &= ~MSR_LE; |
| 901 | regs->msr |= (MSR_KERNEL & MSR_LE); |
| 902 | regs->gpr[1] = newsp; |
| 903 | regs->gpr[3] = ksig->sig; |
| 904 | regs->result = 0; |
| 905 | if (ksig->ka.sa.sa_flags & SA_SIGINFO) { |
| 906 | err |= get_user(regs->gpr[4], (unsigned long __user *)&frame->pinfo); |
| 907 | err |= get_user(regs->gpr[5], (unsigned long __user *)&frame->puc); |
| 908 | regs->gpr[6] = (unsigned long) frame; |
| 909 | } else { |
| 910 | regs->gpr[4] = (unsigned long)&frame->uc.uc_mcontext; |
| 911 | } |
| 912 | if (err) |
| 913 | goto badframe; |
| 914 | |
| 915 | return 0; |
| 916 | |
| 917 | badframe: |
| 918 | if (show_unhandled_signals) |
| 919 | printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32, |
| 920 | tsk->comm, tsk->pid, "setup_rt_frame", |
| 921 | (long)frame, regs->nip, regs->link); |
| 922 | |
| 923 | return 1; |
| 924 | } |