blob: 368a36079cb6caf8366ad8b3d68ee77f4683003c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7#include <linux/kernel.h>
8#include <linux/kprobes.h>
9#include <linux/ptrace.h>
10#include <linux/prefetch.h>
11#include <asm/sstep.h>
12#include <asm/processor.h>
13#include <linux/uaccess.h>
14#include <asm/cpu_has_feature.h>
15#include <asm/cputable.h>
16
17extern char system_call_common[];
18
19#ifdef CONFIG_PPC64
20/* Bits in SRR1 that are copied from MSR */
21#define MSR_MASK 0xffffffff87c0ffffUL
22#else
23#define MSR_MASK 0x87c0ffff
24#endif
25
26/* Bits in XER */
27#define XER_SO 0x80000000U
28#define XER_OV 0x40000000U
29#define XER_CA 0x20000000U
30#define XER_OV32 0x00080000U
31#define XER_CA32 0x00040000U
32
33#ifdef CONFIG_PPC_FPU
34/*
35 * Functions in ldstfp.S
36 */
37extern void get_fpr(int rn, double *p);
38extern void put_fpr(int rn, const double *p);
39extern void get_vr(int rn, __vector128 *p);
40extern void put_vr(int rn, __vector128 *p);
41extern void load_vsrn(int vsr, const void *p);
42extern void store_vsrn(int vsr, void *p);
43extern void conv_sp_to_dp(const float *sp, double *dp);
44extern void conv_dp_to_sp(const double *dp, float *sp);
45#endif
46
47#ifdef __powerpc64__
48/*
49 * Functions in quad.S
50 */
51extern int do_lq(unsigned long ea, unsigned long *regs);
52extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
53extern int do_lqarx(unsigned long ea, unsigned long *regs);
54extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
55 unsigned int *crp);
56#endif
57
58#ifdef __LITTLE_ENDIAN__
59#define IS_LE 1
60#define IS_BE 0
61#else
62#define IS_LE 0
63#define IS_BE 1
64#endif
65
66/*
67 * Emulate the truncation of 64 bit values in 32-bit mode.
68 */
69static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
70 unsigned long val)
71{
72#ifdef __powerpc64__
73 if ((msr & MSR_64BIT) == 0)
74 val &= 0xffffffffUL;
75#endif
76 return val;
77}
78
79/*
80 * Determine whether a conditional branch instruction would branch.
81 */
82static nokprobe_inline int branch_taken(unsigned int instr,
83 const struct pt_regs *regs,
84 struct instruction_op *op)
85{
86 unsigned int bo = (instr >> 21) & 0x1f;
87 unsigned int bi;
88
89 if ((bo & 4) == 0) {
90 /* decrement counter */
91 op->type |= DECCTR;
92 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
93 return 0;
94 }
95 if ((bo & 0x10) == 0) {
96 /* check bit from CR */
97 bi = (instr >> 16) & 0x1f;
98 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
99 return 0;
100 }
101 return 1;
102}
103
104static nokprobe_inline long address_ok(struct pt_regs *regs,
105 unsigned long ea, int nb)
106{
107 if (!user_mode(regs))
108 return 1;
109 if (__access_ok(ea, nb, USER_DS))
110 return 1;
111 if (__access_ok(ea, 1, USER_DS))
112 /* Access overlaps the end of the user region */
113 regs->dar = USER_DS.seg;
114 else
115 regs->dar = ea;
116 return 0;
117}
118
119/*
120 * Calculate effective address for a D-form instruction
121 */
122static nokprobe_inline unsigned long dform_ea(unsigned int instr,
123 const struct pt_regs *regs)
124{
125 int ra;
126 unsigned long ea;
127
128 ra = (instr >> 16) & 0x1f;
129 ea = (signed short) instr; /* sign-extend */
130 if (ra)
131 ea += regs->gpr[ra];
132
133 return ea;
134}
135
136#ifdef __powerpc64__
137/*
138 * Calculate effective address for a DS-form instruction
139 */
140static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
141 const struct pt_regs *regs)
142{
143 int ra;
144 unsigned long ea;
145
146 ra = (instr >> 16) & 0x1f;
147 ea = (signed short) (instr & ~3); /* sign-extend */
148 if (ra)
149 ea += regs->gpr[ra];
150
151 return ea;
152}
153
154/*
155 * Calculate effective address for a DQ-form instruction
156 */
157static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
158 const struct pt_regs *regs)
159{
160 int ra;
161 unsigned long ea;
162
163 ra = (instr >> 16) & 0x1f;
164 ea = (signed short) (instr & ~0xf); /* sign-extend */
165 if (ra)
166 ea += regs->gpr[ra];
167
168 return ea;
169}
170#endif /* __powerpc64 */
171
172/*
173 * Calculate effective address for an X-form instruction
174 */
175static nokprobe_inline unsigned long xform_ea(unsigned int instr,
176 const struct pt_regs *regs)
177{
178 int ra, rb;
179 unsigned long ea;
180
181 ra = (instr >> 16) & 0x1f;
182 rb = (instr >> 11) & 0x1f;
183 ea = regs->gpr[rb];
184 if (ra)
185 ea += regs->gpr[ra];
186
187 return ea;
188}
189
190/*
191 * Return the largest power of 2, not greater than sizeof(unsigned long),
192 * such that x is a multiple of it.
193 */
194static nokprobe_inline unsigned long max_align(unsigned long x)
195{
196 x |= sizeof(unsigned long);
197 return x & -x; /* isolates rightmost bit */
198}
199
200static nokprobe_inline unsigned long byterev_2(unsigned long x)
201{
202 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
203}
204
205static nokprobe_inline unsigned long byterev_4(unsigned long x)
206{
207 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
208 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
209}
210
211#ifdef __powerpc64__
212static nokprobe_inline unsigned long byterev_8(unsigned long x)
213{
214 return (byterev_4(x) << 32) | byterev_4(x >> 32);
215}
216#endif
217
218static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
219{
220 switch (nb) {
221 case 2:
222 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
223 break;
224 case 4:
225 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
226 break;
227#ifdef __powerpc64__
228 case 8:
229 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
230 break;
231 case 16: {
232 unsigned long *up = (unsigned long *)ptr;
233 unsigned long tmp;
234 tmp = byterev_8(up[0]);
235 up[0] = byterev_8(up[1]);
236 up[1] = tmp;
237 break;
238 }
239#endif
240 default:
241 WARN_ON_ONCE(1);
242 }
243}
244
245static nokprobe_inline int read_mem_aligned(unsigned long *dest,
246 unsigned long ea, int nb,
247 struct pt_regs *regs)
248{
249 int err = 0;
250 unsigned long x = 0;
251
252 switch (nb) {
253 case 1:
254 err = __get_user(x, (unsigned char __user *) ea);
255 break;
256 case 2:
257 err = __get_user(x, (unsigned short __user *) ea);
258 break;
259 case 4:
260 err = __get_user(x, (unsigned int __user *) ea);
261 break;
262#ifdef __powerpc64__
263 case 8:
264 err = __get_user(x, (unsigned long __user *) ea);
265 break;
266#endif
267 }
268 if (!err)
269 *dest = x;
270 else
271 regs->dar = ea;
272 return err;
273}
274
275/*
276 * Copy from userspace to a buffer, using the largest possible
277 * aligned accesses, up to sizeof(long).
278 */
279static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
280 struct pt_regs *regs)
281{
282 int err = 0;
283 int c;
284
285 for (; nb > 0; nb -= c) {
286 c = max_align(ea);
287 if (c > nb)
288 c = max_align(nb);
289 switch (c) {
290 case 1:
291 err = __get_user(*dest, (unsigned char __user *) ea);
292 break;
293 case 2:
294 err = __get_user(*(u16 *)dest,
295 (unsigned short __user *) ea);
296 break;
297 case 4:
298 err = __get_user(*(u32 *)dest,
299 (unsigned int __user *) ea);
300 break;
301#ifdef __powerpc64__
302 case 8:
303 err = __get_user(*(unsigned long *)dest,
304 (unsigned long __user *) ea);
305 break;
306#endif
307 }
308 if (err) {
309 regs->dar = ea;
310 return err;
311 }
312 dest += c;
313 ea += c;
314 }
315 return 0;
316}
317
318static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
319 unsigned long ea, int nb,
320 struct pt_regs *regs)
321{
322 union {
323 unsigned long ul;
324 u8 b[sizeof(unsigned long)];
325 } u;
326 int i;
327 int err;
328
329 u.ul = 0;
330 i = IS_BE ? sizeof(unsigned long) - nb : 0;
331 err = copy_mem_in(&u.b[i], ea, nb, regs);
332 if (!err)
333 *dest = u.ul;
334 return err;
335}
336
337/*
338 * Read memory at address ea for nb bytes, return 0 for success
339 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
340 * If nb < sizeof(long), the result is right-justified on BE systems.
341 */
342static int read_mem(unsigned long *dest, unsigned long ea, int nb,
343 struct pt_regs *regs)
344{
345 if (!address_ok(regs, ea, nb))
346 return -EFAULT;
347 if ((ea & (nb - 1)) == 0)
348 return read_mem_aligned(dest, ea, nb, regs);
349 return read_mem_unaligned(dest, ea, nb, regs);
350}
351NOKPROBE_SYMBOL(read_mem);
352
353static nokprobe_inline int write_mem_aligned(unsigned long val,
354 unsigned long ea, int nb,
355 struct pt_regs *regs)
356{
357 int err = 0;
358
359 switch (nb) {
360 case 1:
361 err = __put_user(val, (unsigned char __user *) ea);
362 break;
363 case 2:
364 err = __put_user(val, (unsigned short __user *) ea);
365 break;
366 case 4:
367 err = __put_user(val, (unsigned int __user *) ea);
368 break;
369#ifdef __powerpc64__
370 case 8:
371 err = __put_user(val, (unsigned long __user *) ea);
372 break;
373#endif
374 }
375 if (err)
376 regs->dar = ea;
377 return err;
378}
379
380/*
381 * Copy from a buffer to userspace, using the largest possible
382 * aligned accesses, up to sizeof(long).
383 */
384static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
385 struct pt_regs *regs)
386{
387 int err = 0;
388 int c;
389
390 for (; nb > 0; nb -= c) {
391 c = max_align(ea);
392 if (c > nb)
393 c = max_align(nb);
394 switch (c) {
395 case 1:
396 err = __put_user(*dest, (unsigned char __user *) ea);
397 break;
398 case 2:
399 err = __put_user(*(u16 *)dest,
400 (unsigned short __user *) ea);
401 break;
402 case 4:
403 err = __put_user(*(u32 *)dest,
404 (unsigned int __user *) ea);
405 break;
406#ifdef __powerpc64__
407 case 8:
408 err = __put_user(*(unsigned long *)dest,
409 (unsigned long __user *) ea);
410 break;
411#endif
412 }
413 if (err) {
414 regs->dar = ea;
415 return err;
416 }
417 dest += c;
418 ea += c;
419 }
420 return 0;
421}
422
423static nokprobe_inline int write_mem_unaligned(unsigned long val,
424 unsigned long ea, int nb,
425 struct pt_regs *regs)
426{
427 union {
428 unsigned long ul;
429 u8 b[sizeof(unsigned long)];
430 } u;
431 int i;
432
433 u.ul = val;
434 i = IS_BE ? sizeof(unsigned long) - nb : 0;
435 return copy_mem_out(&u.b[i], ea, nb, regs);
436}
437
438/*
439 * Write memory at address ea for nb bytes, return 0 for success
440 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
441 */
442static int write_mem(unsigned long val, unsigned long ea, int nb,
443 struct pt_regs *regs)
444{
445 if (!address_ok(regs, ea, nb))
446 return -EFAULT;
447 if ((ea & (nb - 1)) == 0)
448 return write_mem_aligned(val, ea, nb, regs);
449 return write_mem_unaligned(val, ea, nb, regs);
450}
451NOKPROBE_SYMBOL(write_mem);
452
453#ifdef CONFIG_PPC_FPU
454/*
455 * These access either the real FP register or the image in the
456 * thread_struct, depending on regs->msr & MSR_FP.
457 */
458static int do_fp_load(struct instruction_op *op, unsigned long ea,
459 struct pt_regs *regs, bool cross_endian)
460{
461 int err, rn, nb;
462 union {
463 int i;
464 unsigned int u;
465 float f;
466 double d[2];
467 unsigned long l[2];
468 u8 b[2 * sizeof(double)];
469 } u;
470
471 nb = GETSIZE(op->type);
472 if (nb > sizeof(u))
473 return -EINVAL;
474 if (!address_ok(regs, ea, nb))
475 return -EFAULT;
476 rn = op->reg;
477 err = copy_mem_in(u.b, ea, nb, regs);
478 if (err)
479 return err;
480 if (unlikely(cross_endian)) {
481 do_byte_reverse(u.b, min(nb, 8));
482 if (nb == 16)
483 do_byte_reverse(&u.b[8], 8);
484 }
485 preempt_disable();
486 if (nb == 4) {
487 if (op->type & FPCONV)
488 conv_sp_to_dp(&u.f, &u.d[0]);
489 else if (op->type & SIGNEXT)
490 u.l[0] = u.i;
491 else
492 u.l[0] = u.u;
493 }
494 if (regs->msr & MSR_FP)
495 put_fpr(rn, &u.d[0]);
496 else
497 current->thread.TS_FPR(rn) = u.l[0];
498 if (nb == 16) {
499 /* lfdp */
500 rn |= 1;
501 if (regs->msr & MSR_FP)
502 put_fpr(rn, &u.d[1]);
503 else
504 current->thread.TS_FPR(rn) = u.l[1];
505 }
506 preempt_enable();
507 return 0;
508}
509NOKPROBE_SYMBOL(do_fp_load);
510
511static int do_fp_store(struct instruction_op *op, unsigned long ea,
512 struct pt_regs *regs, bool cross_endian)
513{
514 int rn, nb;
515 union {
516 unsigned int u;
517 float f;
518 double d[2];
519 unsigned long l[2];
520 u8 b[2 * sizeof(double)];
521 } u;
522
523 nb = GETSIZE(op->type);
524 if (nb > sizeof(u))
525 return -EINVAL;
526 if (!address_ok(regs, ea, nb))
527 return -EFAULT;
528 rn = op->reg;
529 preempt_disable();
530 if (regs->msr & MSR_FP)
531 get_fpr(rn, &u.d[0]);
532 else
533 u.l[0] = current->thread.TS_FPR(rn);
534 if (nb == 4) {
535 if (op->type & FPCONV)
536 conv_dp_to_sp(&u.d[0], &u.f);
537 else
538 u.u = u.l[0];
539 }
540 if (nb == 16) {
541 rn |= 1;
542 if (regs->msr & MSR_FP)
543 get_fpr(rn, &u.d[1]);
544 else
545 u.l[1] = current->thread.TS_FPR(rn);
546 }
547 preempt_enable();
548 if (unlikely(cross_endian)) {
549 do_byte_reverse(u.b, min(nb, 8));
550 if (nb == 16)
551 do_byte_reverse(&u.b[8], 8);
552 }
553 return copy_mem_out(u.b, ea, nb, regs);
554}
555NOKPROBE_SYMBOL(do_fp_store);
556#endif
557
558#ifdef CONFIG_ALTIVEC
559/* For Altivec/VMX, no need to worry about alignment */
560static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
561 int size, struct pt_regs *regs,
562 bool cross_endian)
563{
564 int err;
565 union {
566 __vector128 v;
567 u8 b[sizeof(__vector128)];
568 } u = {};
569
570 if (size > sizeof(u))
571 return -EINVAL;
572
573 if (!address_ok(regs, ea & ~0xfUL, 16))
574 return -EFAULT;
575 /* align to multiple of size */
576 ea &= ~(size - 1);
577 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
578 if (err)
579 return err;
580 if (unlikely(cross_endian))
581 do_byte_reverse(&u.b[ea & 0xf], size);
582 preempt_disable();
583 if (regs->msr & MSR_VEC)
584 put_vr(rn, &u.v);
585 else
586 current->thread.vr_state.vr[rn] = u.v;
587 preempt_enable();
588 return 0;
589}
590
591static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
592 int size, struct pt_regs *regs,
593 bool cross_endian)
594{
595 union {
596 __vector128 v;
597 u8 b[sizeof(__vector128)];
598 } u;
599
600 if (size > sizeof(u))
601 return -EINVAL;
602
603 if (!address_ok(regs, ea & ~0xfUL, 16))
604 return -EFAULT;
605 /* align to multiple of size */
606 ea &= ~(size - 1);
607
608 preempt_disable();
609 if (regs->msr & MSR_VEC)
610 get_vr(rn, &u.v);
611 else
612 u.v = current->thread.vr_state.vr[rn];
613 preempt_enable();
614 if (unlikely(cross_endian))
615 do_byte_reverse(&u.b[ea & 0xf], size);
616 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
617}
618#endif /* CONFIG_ALTIVEC */
619
620#ifdef __powerpc64__
621static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
622 int reg, bool cross_endian)
623{
624 int err;
625
626 if (!address_ok(regs, ea, 16))
627 return -EFAULT;
628 /* if aligned, should be atomic */
629 if ((ea & 0xf) == 0) {
630 err = do_lq(ea, &regs->gpr[reg]);
631 } else {
632 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
633 if (!err)
634 err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
635 }
636 if (!err && unlikely(cross_endian))
637 do_byte_reverse(&regs->gpr[reg], 16);
638 return err;
639}
640
641static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
642 int reg, bool cross_endian)
643{
644 int err;
645 unsigned long vals[2];
646
647 if (!address_ok(regs, ea, 16))
648 return -EFAULT;
649 vals[0] = regs->gpr[reg];
650 vals[1] = regs->gpr[reg + 1];
651 if (unlikely(cross_endian))
652 do_byte_reverse(vals, 16);
653
654 /* if aligned, should be atomic */
655 if ((ea & 0xf) == 0)
656 return do_stq(ea, vals[0], vals[1]);
657
658 err = write_mem(vals[IS_LE], ea, 8, regs);
659 if (!err)
660 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
661 return err;
662}
663#endif /* __powerpc64 */
664
665#ifdef CONFIG_VSX
666static nokprobe_inline void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
667 const void *mem, bool rev)
668{
669 int size, read_size;
670 int i, j;
671 const unsigned int *wp;
672 const unsigned short *hp;
673 const unsigned char *bp;
674
675 size = GETSIZE(op->type);
676 reg->d[0] = reg->d[1] = 0;
677
678 switch (op->element_size) {
679 case 16:
680 /* whole vector; lxv[x] or lxvl[l] */
681 if (size == 0)
682 break;
683 memcpy(reg, mem, size);
684 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
685 rev = !rev;
686 if (rev)
687 do_byte_reverse(reg, 16);
688 break;
689 case 8:
690 /* scalar loads, lxvd2x, lxvdsx */
691 read_size = (size >= 8) ? 8 : size;
692 i = IS_LE ? 8 : 8 - read_size;
693 memcpy(&reg->b[i], mem, read_size);
694 if (rev)
695 do_byte_reverse(&reg->b[i], 8);
696 if (size < 8) {
697 if (op->type & SIGNEXT) {
698 /* size == 4 is the only case here */
699 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
700 } else if (op->vsx_flags & VSX_FPCONV) {
701 preempt_disable();
702 conv_sp_to_dp(&reg->fp[1 + IS_LE],
703 &reg->dp[IS_LE]);
704 preempt_enable();
705 }
706 } else {
707 if (size == 16) {
708 unsigned long v = *(unsigned long *)(mem + 8);
709 reg->d[IS_BE] = !rev ? v : byterev_8(v);
710 } else if (op->vsx_flags & VSX_SPLAT)
711 reg->d[IS_BE] = reg->d[IS_LE];
712 }
713 break;
714 case 4:
715 /* lxvw4x, lxvwsx */
716 wp = mem;
717 for (j = 0; j < size / 4; ++j) {
718 i = IS_LE ? 3 - j : j;
719 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
720 }
721 if (op->vsx_flags & VSX_SPLAT) {
722 u32 val = reg->w[IS_LE ? 3 : 0];
723 for (; j < 4; ++j) {
724 i = IS_LE ? 3 - j : j;
725 reg->w[i] = val;
726 }
727 }
728 break;
729 case 2:
730 /* lxvh8x */
731 hp = mem;
732 for (j = 0; j < size / 2; ++j) {
733 i = IS_LE ? 7 - j : j;
734 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
735 }
736 break;
737 case 1:
738 /* lxvb16x */
739 bp = mem;
740 for (j = 0; j < size; ++j) {
741 i = IS_LE ? 15 - j : j;
742 reg->b[i] = *bp++;
743 }
744 break;
745 }
746}
747
748static nokprobe_inline void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
749 void *mem, bool rev)
750{
751 int size, write_size;
752 int i, j;
753 union vsx_reg buf;
754 unsigned int *wp;
755 unsigned short *hp;
756 unsigned char *bp;
757
758 size = GETSIZE(op->type);
759
760 switch (op->element_size) {
761 case 16:
762 /* stxv, stxvx, stxvl, stxvll */
763 if (size == 0)
764 break;
765 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
766 rev = !rev;
767 if (rev) {
768 /* reverse 16 bytes */
769 buf.d[0] = byterev_8(reg->d[1]);
770 buf.d[1] = byterev_8(reg->d[0]);
771 reg = &buf;
772 }
773 memcpy(mem, reg, size);
774 break;
775 case 8:
776 /* scalar stores, stxvd2x */
777 write_size = (size >= 8) ? 8 : size;
778 i = IS_LE ? 8 : 8 - write_size;
779 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
780 buf.d[0] = buf.d[1] = 0;
781 preempt_disable();
782 conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
783 preempt_enable();
784 reg = &buf;
785 }
786 memcpy(mem, &reg->b[i], write_size);
787 if (size == 16)
788 memcpy(mem + 8, &reg->d[IS_BE], 8);
789 if (unlikely(rev)) {
790 do_byte_reverse(mem, write_size);
791 if (size == 16)
792 do_byte_reverse(mem + 8, 8);
793 }
794 break;
795 case 4:
796 /* stxvw4x */
797 wp = mem;
798 for (j = 0; j < size / 4; ++j) {
799 i = IS_LE ? 3 - j : j;
800 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
801 }
802 break;
803 case 2:
804 /* stxvh8x */
805 hp = mem;
806 for (j = 0; j < size / 2; ++j) {
807 i = IS_LE ? 7 - j : j;
808 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
809 }
810 break;
811 case 1:
812 /* stvxb16x */
813 bp = mem;
814 for (j = 0; j < size; ++j) {
815 i = IS_LE ? 15 - j : j;
816 *bp++ = reg->b[i];
817 }
818 break;
819 }
820}
821
822static nokprobe_inline int do_vsx_load(struct instruction_op *op,
823 unsigned long ea, struct pt_regs *regs,
824 bool cross_endian)
825{
826 int reg = op->reg;
827 u8 mem[16];
828 union vsx_reg buf;
829 int size = GETSIZE(op->type);
830
831 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
832 return -EFAULT;
833
834 emulate_vsx_load(op, &buf, mem, cross_endian);
835 preempt_disable();
836 if (reg < 32) {
837 /* FP regs + extensions */
838 if (regs->msr & MSR_FP) {
839 load_vsrn(reg, &buf);
840 } else {
841 current->thread.fp_state.fpr[reg][0] = buf.d[0];
842 current->thread.fp_state.fpr[reg][1] = buf.d[1];
843 }
844 } else {
845 if (regs->msr & MSR_VEC)
846 load_vsrn(reg, &buf);
847 else
848 current->thread.vr_state.vr[reg - 32] = buf.v;
849 }
850 preempt_enable();
851 return 0;
852}
853
854static nokprobe_inline int do_vsx_store(struct instruction_op *op,
855 unsigned long ea, struct pt_regs *regs,
856 bool cross_endian)
857{
858 int reg = op->reg;
859 u8 mem[16];
860 union vsx_reg buf;
861 int size = GETSIZE(op->type);
862
863 if (!address_ok(regs, ea, size))
864 return -EFAULT;
865
866 preempt_disable();
867 if (reg < 32) {
868 /* FP regs + extensions */
869 if (regs->msr & MSR_FP) {
870 store_vsrn(reg, &buf);
871 } else {
872 buf.d[0] = current->thread.fp_state.fpr[reg][0];
873 buf.d[1] = current->thread.fp_state.fpr[reg][1];
874 }
875 } else {
876 if (regs->msr & MSR_VEC)
877 store_vsrn(reg, &buf);
878 else
879 buf.v = current->thread.vr_state.vr[reg - 32];
880 }
881 preempt_enable();
882 emulate_vsx_store(op, &buf, mem, cross_endian);
883 return copy_mem_out(mem, ea, size, regs);
884}
885#endif /* CONFIG_VSX */
886
887int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
888{
889 int err;
890 unsigned long i, size;
891
892#ifdef __powerpc64__
893 size = ppc64_caches.l1d.block_size;
894 if (!(regs->msr & MSR_64BIT))
895 ea &= 0xffffffffUL;
896#else
897 size = L1_CACHE_BYTES;
898#endif
899 ea &= ~(size - 1);
900 if (!address_ok(regs, ea, size))
901 return -EFAULT;
902 for (i = 0; i < size; i += sizeof(long)) {
903 err = __put_user(0, (unsigned long __user *) (ea + i));
904 if (err) {
905 regs->dar = ea;
906 return err;
907 }
908 }
909 return 0;
910}
911NOKPROBE_SYMBOL(emulate_dcbz);
912
913#define __put_user_asmx(x, addr, err, op, cr) \
914 __asm__ __volatile__( \
915 ".machine push\n" \
916 ".machine power8\n" \
917 "1: " op " %2,0,%3\n" \
918 ".machine pop\n" \
919 " mfcr %1\n" \
920 "2:\n" \
921 ".section .fixup,\"ax\"\n" \
922 "3: li %0,%4\n" \
923 " b 2b\n" \
924 ".previous\n" \
925 EX_TABLE(1b, 3b) \
926 : "=r" (err), "=r" (cr) \
927 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
928
929#define __get_user_asmx(x, addr, err, op) \
930 __asm__ __volatile__( \
931 ".machine push\n" \
932 ".machine power8\n" \
933 "1: "op" %1,0,%2\n" \
934 ".machine pop\n" \
935 "2:\n" \
936 ".section .fixup,\"ax\"\n" \
937 "3: li %0,%3\n" \
938 " b 2b\n" \
939 ".previous\n" \
940 EX_TABLE(1b, 3b) \
941 : "=r" (err), "=r" (x) \
942 : "r" (addr), "i" (-EFAULT), "0" (err))
943
944#define __cacheop_user_asmx(addr, err, op) \
945 __asm__ __volatile__( \
946 "1: "op" 0,%1\n" \
947 "2:\n" \
948 ".section .fixup,\"ax\"\n" \
949 "3: li %0,%3\n" \
950 " b 2b\n" \
951 ".previous\n" \
952 EX_TABLE(1b, 3b) \
953 : "=r" (err) \
954 : "r" (addr), "i" (-EFAULT), "0" (err))
955
956static nokprobe_inline void set_cr0(const struct pt_regs *regs,
957 struct instruction_op *op)
958{
959 long val = op->val;
960
961 op->type |= SETCC;
962 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
963#ifdef __powerpc64__
964 if (!(regs->msr & MSR_64BIT))
965 val = (int) val;
966#endif
967 if (val < 0)
968 op->ccval |= 0x80000000;
969 else if (val > 0)
970 op->ccval |= 0x40000000;
971 else
972 op->ccval |= 0x20000000;
973}
974
975static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
976{
977 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
978 if (val)
979 op->xerval |= XER_CA32;
980 else
981 op->xerval &= ~XER_CA32;
982 }
983}
984
985static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
986 struct instruction_op *op, int rd,
987 unsigned long val1, unsigned long val2,
988 unsigned long carry_in)
989{
990 unsigned long val = val1 + val2;
991
992 if (carry_in)
993 ++val;
994 op->type = COMPUTE + SETREG + SETXER;
995 op->reg = rd;
996 op->val = val;
997#ifdef __powerpc64__
998 if (!(regs->msr & MSR_64BIT)) {
999 val = (unsigned int) val;
1000 val1 = (unsigned int) val1;
1001 }
1002#endif
1003 op->xerval = regs->xer;
1004 if (val < val1 || (carry_in && val == val1))
1005 op->xerval |= XER_CA;
1006 else
1007 op->xerval &= ~XER_CA;
1008
1009 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1010 (carry_in && (unsigned int)val == (unsigned int)val1));
1011}
1012
1013static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1014 struct instruction_op *op,
1015 long v1, long v2, int crfld)
1016{
1017 unsigned int crval, shift;
1018
1019 op->type = COMPUTE + SETCC;
1020 crval = (regs->xer >> 31) & 1; /* get SO bit */
1021 if (v1 < v2)
1022 crval |= 8;
1023 else if (v1 > v2)
1024 crval |= 4;
1025 else
1026 crval |= 2;
1027 shift = (7 - crfld) * 4;
1028 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1029}
1030
1031static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1032 struct instruction_op *op,
1033 unsigned long v1,
1034 unsigned long v2, int crfld)
1035{
1036 unsigned int crval, shift;
1037
1038 op->type = COMPUTE + SETCC;
1039 crval = (regs->xer >> 31) & 1; /* get SO bit */
1040 if (v1 < v2)
1041 crval |= 8;
1042 else if (v1 > v2)
1043 crval |= 4;
1044 else
1045 crval |= 2;
1046 shift = (7 - crfld) * 4;
1047 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1048}
1049
1050static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1051 struct instruction_op *op,
1052 unsigned long v1, unsigned long v2)
1053{
1054 unsigned long long out_val, mask;
1055 int i;
1056
1057 out_val = 0;
1058 for (i = 0; i < 8; i++) {
1059 mask = 0xffUL << (i * 8);
1060 if ((v1 & mask) == (v2 & mask))
1061 out_val |= mask;
1062 }
1063 op->val = out_val;
1064}
1065
1066/*
1067 * The size parameter is used to adjust the equivalent popcnt instruction.
1068 * popcntb = 8, popcntw = 32, popcntd = 64
1069 */
1070static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1071 struct instruction_op *op,
1072 unsigned long v1, int size)
1073{
1074 unsigned long long out = v1;
1075
1076 out -= (out >> 1) & 0x5555555555555555ULL;
1077 out = (0x3333333333333333ULL & out) +
1078 (0x3333333333333333ULL & (out >> 2));
1079 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1080
1081 if (size == 8) { /* popcntb */
1082 op->val = out;
1083 return;
1084 }
1085 out += out >> 8;
1086 out += out >> 16;
1087 if (size == 32) { /* popcntw */
1088 op->val = out & 0x0000003f0000003fULL;
1089 return;
1090 }
1091
1092 out = (out + (out >> 32)) & 0x7f;
1093 op->val = out; /* popcntd */
1094}
1095
1096#ifdef CONFIG_PPC64
1097static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1098 struct instruction_op *op,
1099 unsigned long v1, unsigned long v2)
1100{
1101 unsigned char perm, idx;
1102 unsigned int i;
1103
1104 perm = 0;
1105 for (i = 0; i < 8; i++) {
1106 idx = (v1 >> (i * 8)) & 0xff;
1107 if (idx < 64)
1108 if (v2 & PPC_BIT(idx))
1109 perm |= 1 << i;
1110 }
1111 op->val = perm;
1112}
1113#endif /* CONFIG_PPC64 */
1114/*
1115 * The size parameter adjusts the equivalent prty instruction.
1116 * prtyw = 32, prtyd = 64
1117 */
1118static nokprobe_inline void do_prty(const struct pt_regs *regs,
1119 struct instruction_op *op,
1120 unsigned long v, int size)
1121{
1122 unsigned long long res = v ^ (v >> 8);
1123
1124 res ^= res >> 16;
1125 if (size == 32) { /* prtyw */
1126 op->val = res & 0x0000000100000001ULL;
1127 return;
1128 }
1129
1130 res ^= res >> 32;
1131 op->val = res & 1; /*prtyd */
1132}
1133
1134static nokprobe_inline int trap_compare(long v1, long v2)
1135{
1136 int ret = 0;
1137
1138 if (v1 < v2)
1139 ret |= 0x10;
1140 else if (v1 > v2)
1141 ret |= 0x08;
1142 else
1143 ret |= 0x04;
1144 if ((unsigned long)v1 < (unsigned long)v2)
1145 ret |= 0x02;
1146 else if ((unsigned long)v1 > (unsigned long)v2)
1147 ret |= 0x01;
1148 return ret;
1149}
1150
1151/*
1152 * Elements of 32-bit rotate and mask instructions.
1153 */
1154#define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1155 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1156#ifdef __powerpc64__
1157#define MASK64_L(mb) (~0UL >> (mb))
1158#define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1159#define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1160#define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1161#else
1162#define DATA32(x) (x)
1163#endif
1164#define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1165
1166/*
1167 * Decode an instruction, and return information about it in *op
1168 * without changing *regs.
1169 * Integer arithmetic and logical instructions, branches, and barrier
1170 * instructions can be emulated just using the information in *op.
1171 *
1172 * Return value is 1 if the instruction can be emulated just by
1173 * updating *regs with the information in *op, -1 if we need the
1174 * GPRs but *regs doesn't contain the full register set, or 0
1175 * otherwise.
1176 */
1177int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1178 unsigned int instr)
1179{
1180 unsigned int opcode, ra, rb, rc, rd, spr, u;
1181 unsigned long int imm;
1182 unsigned long int val, val2;
1183 unsigned int mb, me, sh;
1184 long ival;
1185
1186 op->type = COMPUTE;
1187
1188 opcode = instr >> 26;
1189 switch (opcode) {
1190 case 16: /* bc */
1191 op->type = BRANCH;
1192 imm = (signed short)(instr & 0xfffc);
1193 if ((instr & 2) == 0)
1194 imm += regs->nip;
1195 op->val = truncate_if_32bit(regs->msr, imm);
1196 if (instr & 1)
1197 op->type |= SETLK;
1198 if (branch_taken(instr, regs, op))
1199 op->type |= BRTAKEN;
1200 return 1;
1201#ifdef CONFIG_PPC64
1202 case 17: /* sc */
1203 if ((instr & 0xfe2) == 2)
1204 op->type = SYSCALL;
1205 else
1206 op->type = UNKNOWN;
1207 return 0;
1208#endif
1209 case 18: /* b */
1210 op->type = BRANCH | BRTAKEN;
1211 imm = instr & 0x03fffffc;
1212 if (imm & 0x02000000)
1213 imm -= 0x04000000;
1214 if ((instr & 2) == 0)
1215 imm += regs->nip;
1216 op->val = truncate_if_32bit(regs->msr, imm);
1217 if (instr & 1)
1218 op->type |= SETLK;
1219 return 1;
1220 case 19:
1221 switch ((instr >> 1) & 0x3ff) {
1222 case 0: /* mcrf */
1223 op->type = COMPUTE + SETCC;
1224 rd = 7 - ((instr >> 23) & 0x7);
1225 ra = 7 - ((instr >> 18) & 0x7);
1226 rd *= 4;
1227 ra *= 4;
1228 val = (regs->ccr >> ra) & 0xf;
1229 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1230 return 1;
1231
1232 case 16: /* bclr */
1233 case 528: /* bcctr */
1234 op->type = BRANCH;
1235 imm = (instr & 0x400)? regs->ctr: regs->link;
1236 op->val = truncate_if_32bit(regs->msr, imm);
1237 if (instr & 1)
1238 op->type |= SETLK;
1239 if (branch_taken(instr, regs, op))
1240 op->type |= BRTAKEN;
1241 return 1;
1242
1243 case 18: /* rfid, scary */
1244 if (regs->msr & MSR_PR)
1245 goto priv;
1246 op->type = RFI;
1247 return 0;
1248
1249 case 150: /* isync */
1250 op->type = BARRIER | BARRIER_ISYNC;
1251 return 1;
1252
1253 case 33: /* crnor */
1254 case 129: /* crandc */
1255 case 193: /* crxor */
1256 case 225: /* crnand */
1257 case 257: /* crand */
1258 case 289: /* creqv */
1259 case 417: /* crorc */
1260 case 449: /* cror */
1261 op->type = COMPUTE + SETCC;
1262 ra = (instr >> 16) & 0x1f;
1263 rb = (instr >> 11) & 0x1f;
1264 rd = (instr >> 21) & 0x1f;
1265 ra = (regs->ccr >> (31 - ra)) & 1;
1266 rb = (regs->ccr >> (31 - rb)) & 1;
1267 val = (instr >> (6 + ra * 2 + rb)) & 1;
1268 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1269 (val << (31 - rd));
1270 return 1;
1271 }
1272 break;
1273 case 31:
1274 switch ((instr >> 1) & 0x3ff) {
1275 case 598: /* sync */
1276 op->type = BARRIER + BARRIER_SYNC;
1277#ifdef __powerpc64__
1278 switch ((instr >> 21) & 3) {
1279 case 1: /* lwsync */
1280 op->type = BARRIER + BARRIER_LWSYNC;
1281 break;
1282 case 2: /* ptesync */
1283 op->type = BARRIER + BARRIER_PTESYNC;
1284 break;
1285 }
1286#endif
1287 return 1;
1288
1289 case 854: /* eieio */
1290 op->type = BARRIER + BARRIER_EIEIO;
1291 return 1;
1292 }
1293 break;
1294 }
1295
1296 /* Following cases refer to regs->gpr[], so we need all regs */
1297 if (!FULL_REGS(regs))
1298 return -1;
1299
1300 rd = (instr >> 21) & 0x1f;
1301 ra = (instr >> 16) & 0x1f;
1302 rb = (instr >> 11) & 0x1f;
1303 rc = (instr >> 6) & 0x1f;
1304
1305 switch (opcode) {
1306#ifdef __powerpc64__
1307 case 2: /* tdi */
1308 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1309 goto trap;
1310 return 1;
1311#endif
1312 case 3: /* twi */
1313 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1314 goto trap;
1315 return 1;
1316
1317#ifdef __powerpc64__
1318 case 4:
1319 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1320 return -1;
1321
1322 switch (instr & 0x3f) {
1323 case 48: /* maddhd */
1324 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1325 "=r" (op->val) : "r" (regs->gpr[ra]),
1326 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1327 goto compute_done;
1328
1329 case 49: /* maddhdu */
1330 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1331 "=r" (op->val) : "r" (regs->gpr[ra]),
1332 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1333 goto compute_done;
1334
1335 case 51: /* maddld */
1336 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1337 "=r" (op->val) : "r" (regs->gpr[ra]),
1338 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1339 goto compute_done;
1340 }
1341
1342 /*
1343 * There are other instructions from ISA 3.0 with the same
1344 * primary opcode which do not have emulation support yet.
1345 */
1346 return -1;
1347#endif
1348
1349 case 7: /* mulli */
1350 op->val = regs->gpr[ra] * (short) instr;
1351 goto compute_done;
1352
1353 case 8: /* subfic */
1354 imm = (short) instr;
1355 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1356 return 1;
1357
1358 case 10: /* cmpli */
1359 imm = (unsigned short) instr;
1360 val = regs->gpr[ra];
1361#ifdef __powerpc64__
1362 if ((rd & 1) == 0)
1363 val = (unsigned int) val;
1364#endif
1365 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1366 return 1;
1367
1368 case 11: /* cmpi */
1369 imm = (short) instr;
1370 val = regs->gpr[ra];
1371#ifdef __powerpc64__
1372 if ((rd & 1) == 0)
1373 val = (int) val;
1374#endif
1375 do_cmp_signed(regs, op, val, imm, rd >> 2);
1376 return 1;
1377
1378 case 12: /* addic */
1379 imm = (short) instr;
1380 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1381 return 1;
1382
1383 case 13: /* addic. */
1384 imm = (short) instr;
1385 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1386 set_cr0(regs, op);
1387 return 1;
1388
1389 case 14: /* addi */
1390 imm = (short) instr;
1391 if (ra)
1392 imm += regs->gpr[ra];
1393 op->val = imm;
1394 goto compute_done;
1395
1396 case 15: /* addis */
1397 imm = ((short) instr) << 16;
1398 if (ra)
1399 imm += regs->gpr[ra];
1400 op->val = imm;
1401 goto compute_done;
1402
1403 case 19:
1404 if (((instr >> 1) & 0x1f) == 2) {
1405 /* addpcis */
1406 imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1407 imm |= (instr >> 15) & 0x3e; /* d1 field */
1408 op->val = regs->nip + (imm << 16) + 4;
1409 goto compute_done;
1410 }
1411 op->type = UNKNOWN;
1412 return 0;
1413
1414 case 20: /* rlwimi */
1415 mb = (instr >> 6) & 0x1f;
1416 me = (instr >> 1) & 0x1f;
1417 val = DATA32(regs->gpr[rd]);
1418 imm = MASK32(mb, me);
1419 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1420 goto logical_done;
1421
1422 case 21: /* rlwinm */
1423 mb = (instr >> 6) & 0x1f;
1424 me = (instr >> 1) & 0x1f;
1425 val = DATA32(regs->gpr[rd]);
1426 op->val = ROTATE(val, rb) & MASK32(mb, me);
1427 goto logical_done;
1428
1429 case 23: /* rlwnm */
1430 mb = (instr >> 6) & 0x1f;
1431 me = (instr >> 1) & 0x1f;
1432 rb = regs->gpr[rb] & 0x1f;
1433 val = DATA32(regs->gpr[rd]);
1434 op->val = ROTATE(val, rb) & MASK32(mb, me);
1435 goto logical_done;
1436
1437 case 24: /* ori */
1438 op->val = regs->gpr[rd] | (unsigned short) instr;
1439 goto logical_done_nocc;
1440
1441 case 25: /* oris */
1442 imm = (unsigned short) instr;
1443 op->val = regs->gpr[rd] | (imm << 16);
1444 goto logical_done_nocc;
1445
1446 case 26: /* xori */
1447 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1448 goto logical_done_nocc;
1449
1450 case 27: /* xoris */
1451 imm = (unsigned short) instr;
1452 op->val = regs->gpr[rd] ^ (imm << 16);
1453 goto logical_done_nocc;
1454
1455 case 28: /* andi. */
1456 op->val = regs->gpr[rd] & (unsigned short) instr;
1457 set_cr0(regs, op);
1458 goto logical_done_nocc;
1459
1460 case 29: /* andis. */
1461 imm = (unsigned short) instr;
1462 op->val = regs->gpr[rd] & (imm << 16);
1463 set_cr0(regs, op);
1464 goto logical_done_nocc;
1465
1466#ifdef __powerpc64__
1467 case 30: /* rld* */
1468 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1469 val = regs->gpr[rd];
1470 if ((instr & 0x10) == 0) {
1471 sh = rb | ((instr & 2) << 4);
1472 val = ROTATE(val, sh);
1473 switch ((instr >> 2) & 3) {
1474 case 0: /* rldicl */
1475 val &= MASK64_L(mb);
1476 break;
1477 case 1: /* rldicr */
1478 val &= MASK64_R(mb);
1479 break;
1480 case 2: /* rldic */
1481 val &= MASK64(mb, 63 - sh);
1482 break;
1483 case 3: /* rldimi */
1484 imm = MASK64(mb, 63 - sh);
1485 val = (regs->gpr[ra] & ~imm) |
1486 (val & imm);
1487 }
1488 op->val = val;
1489 goto logical_done;
1490 } else {
1491 sh = regs->gpr[rb] & 0x3f;
1492 val = ROTATE(val, sh);
1493 switch ((instr >> 1) & 7) {
1494 case 0: /* rldcl */
1495 op->val = val & MASK64_L(mb);
1496 goto logical_done;
1497 case 1: /* rldcr */
1498 op->val = val & MASK64_R(mb);
1499 goto logical_done;
1500 }
1501 }
1502#endif
1503 op->type = UNKNOWN; /* illegal instruction */
1504 return 0;
1505
1506 case 31:
1507 /* isel occupies 32 minor opcodes */
1508 if (((instr >> 1) & 0x1f) == 15) {
1509 mb = (instr >> 6) & 0x1f; /* bc field */
1510 val = (regs->ccr >> (31 - mb)) & 1;
1511 val2 = (ra) ? regs->gpr[ra] : 0;
1512
1513 op->val = (val) ? val2 : regs->gpr[rb];
1514 goto compute_done;
1515 }
1516
1517 switch ((instr >> 1) & 0x3ff) {
1518 case 4: /* tw */
1519 if (rd == 0x1f ||
1520 (rd & trap_compare((int)regs->gpr[ra],
1521 (int)regs->gpr[rb])))
1522 goto trap;
1523 return 1;
1524#ifdef __powerpc64__
1525 case 68: /* td */
1526 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1527 goto trap;
1528 return 1;
1529#endif
1530 case 83: /* mfmsr */
1531 if (regs->msr & MSR_PR)
1532 goto priv;
1533 op->type = MFMSR;
1534 op->reg = rd;
1535 return 0;
1536 case 146: /* mtmsr */
1537 if (regs->msr & MSR_PR)
1538 goto priv;
1539 op->type = MTMSR;
1540 op->reg = rd;
1541 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1542 return 0;
1543#ifdef CONFIG_PPC64
1544 case 178: /* mtmsrd */
1545 if (regs->msr & MSR_PR)
1546 goto priv;
1547 op->type = MTMSR;
1548 op->reg = rd;
1549 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1550 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1551 imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1552 op->val = imm;
1553 return 0;
1554#endif
1555
1556 case 19: /* mfcr */
1557 imm = 0xffffffffUL;
1558 if ((instr >> 20) & 1) {
1559 imm = 0xf0000000UL;
1560 for (sh = 0; sh < 8; ++sh) {
1561 if (instr & (0x80000 >> sh))
1562 break;
1563 imm >>= 4;
1564 }
1565 }
1566 op->val = regs->ccr & imm;
1567 goto compute_done;
1568
1569 case 144: /* mtcrf */
1570 op->type = COMPUTE + SETCC;
1571 imm = 0xf0000000UL;
1572 val = regs->gpr[rd];
1573 op->ccval = regs->ccr;
1574 for (sh = 0; sh < 8; ++sh) {
1575 if (instr & (0x80000 >> sh))
1576 op->ccval = (op->ccval & ~imm) |
1577 (val & imm);
1578 imm >>= 4;
1579 }
1580 return 1;
1581
1582 case 339: /* mfspr */
1583 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1584 op->type = MFSPR;
1585 op->reg = rd;
1586 op->spr = spr;
1587 if (spr == SPRN_XER || spr == SPRN_LR ||
1588 spr == SPRN_CTR)
1589 return 1;
1590 return 0;
1591
1592 case 467: /* mtspr */
1593 spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1594 op->type = MTSPR;
1595 op->val = regs->gpr[rd];
1596 op->spr = spr;
1597 if (spr == SPRN_XER || spr == SPRN_LR ||
1598 spr == SPRN_CTR)
1599 return 1;
1600 return 0;
1601
1602/*
1603 * Compare instructions
1604 */
1605 case 0: /* cmp */
1606 val = regs->gpr[ra];
1607 val2 = regs->gpr[rb];
1608#ifdef __powerpc64__
1609 if ((rd & 1) == 0) {
1610 /* word (32-bit) compare */
1611 val = (int) val;
1612 val2 = (int) val2;
1613 }
1614#endif
1615 do_cmp_signed(regs, op, val, val2, rd >> 2);
1616 return 1;
1617
1618 case 32: /* cmpl */
1619 val = regs->gpr[ra];
1620 val2 = regs->gpr[rb];
1621#ifdef __powerpc64__
1622 if ((rd & 1) == 0) {
1623 /* word (32-bit) compare */
1624 val = (unsigned int) val;
1625 val2 = (unsigned int) val2;
1626 }
1627#endif
1628 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1629 return 1;
1630
1631 case 508: /* cmpb */
1632 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1633 goto logical_done_nocc;
1634
1635/*
1636 * Arithmetic instructions
1637 */
1638 case 8: /* subfc */
1639 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1640 regs->gpr[rb], 1);
1641 goto arith_done;
1642#ifdef __powerpc64__
1643 case 9: /* mulhdu */
1644 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1645 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1646 goto arith_done;
1647#endif
1648 case 10: /* addc */
1649 add_with_carry(regs, op, rd, regs->gpr[ra],
1650 regs->gpr[rb], 0);
1651 goto arith_done;
1652
1653 case 11: /* mulhwu */
1654 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1655 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1656 goto arith_done;
1657
1658 case 40: /* subf */
1659 op->val = regs->gpr[rb] - regs->gpr[ra];
1660 goto arith_done;
1661#ifdef __powerpc64__
1662 case 73: /* mulhd */
1663 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1664 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1665 goto arith_done;
1666#endif
1667 case 75: /* mulhw */
1668 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1669 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1670 goto arith_done;
1671
1672 case 104: /* neg */
1673 op->val = -regs->gpr[ra];
1674 goto arith_done;
1675
1676 case 136: /* subfe */
1677 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1678 regs->gpr[rb], regs->xer & XER_CA);
1679 goto arith_done;
1680
1681 case 138: /* adde */
1682 add_with_carry(regs, op, rd, regs->gpr[ra],
1683 regs->gpr[rb], regs->xer & XER_CA);
1684 goto arith_done;
1685
1686 case 200: /* subfze */
1687 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1688 regs->xer & XER_CA);
1689 goto arith_done;
1690
1691 case 202: /* addze */
1692 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1693 regs->xer & XER_CA);
1694 goto arith_done;
1695
1696 case 232: /* subfme */
1697 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1698 regs->xer & XER_CA);
1699 goto arith_done;
1700#ifdef __powerpc64__
1701 case 233: /* mulld */
1702 op->val = regs->gpr[ra] * regs->gpr[rb];
1703 goto arith_done;
1704#endif
1705 case 234: /* addme */
1706 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1707 regs->xer & XER_CA);
1708 goto arith_done;
1709
1710 case 235: /* mullw */
1711 op->val = (long)(int) regs->gpr[ra] *
1712 (int) regs->gpr[rb];
1713
1714 goto arith_done;
1715#ifdef __powerpc64__
1716 case 265: /* modud */
1717 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1718 return -1;
1719 op->val = regs->gpr[ra] % regs->gpr[rb];
1720 goto compute_done;
1721#endif
1722 case 266: /* add */
1723 op->val = regs->gpr[ra] + regs->gpr[rb];
1724 goto arith_done;
1725
1726 case 267: /* moduw */
1727 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1728 return -1;
1729 op->val = (unsigned int) regs->gpr[ra] %
1730 (unsigned int) regs->gpr[rb];
1731 goto compute_done;
1732#ifdef __powerpc64__
1733 case 457: /* divdu */
1734 op->val = regs->gpr[ra] / regs->gpr[rb];
1735 goto arith_done;
1736#endif
1737 case 459: /* divwu */
1738 op->val = (unsigned int) regs->gpr[ra] /
1739 (unsigned int) regs->gpr[rb];
1740 goto arith_done;
1741#ifdef __powerpc64__
1742 case 489: /* divd */
1743 op->val = (long int) regs->gpr[ra] /
1744 (long int) regs->gpr[rb];
1745 goto arith_done;
1746#endif
1747 case 491: /* divw */
1748 op->val = (int) regs->gpr[ra] /
1749 (int) regs->gpr[rb];
1750 goto arith_done;
1751
1752 case 755: /* darn */
1753 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1754 return -1;
1755 switch (ra & 0x3) {
1756 case 0:
1757 /* 32-bit conditioned */
1758 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1759 goto compute_done;
1760
1761 case 1:
1762 /* 64-bit conditioned */
1763 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1764 goto compute_done;
1765
1766 case 2:
1767 /* 64-bit raw */
1768 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1769 goto compute_done;
1770 }
1771
1772 return -1;
1773#ifdef __powerpc64__
1774 case 777: /* modsd */
1775 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1776 return -1;
1777 op->val = (long int) regs->gpr[ra] %
1778 (long int) regs->gpr[rb];
1779 goto compute_done;
1780#endif
1781 case 779: /* modsw */
1782 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1783 return -1;
1784 op->val = (int) regs->gpr[ra] %
1785 (int) regs->gpr[rb];
1786 goto compute_done;
1787
1788
1789/*
1790 * Logical instructions
1791 */
1792 case 26: /* cntlzw */
1793 val = (unsigned int) regs->gpr[rd];
1794 op->val = ( val ? __builtin_clz(val) : 32 );
1795 goto logical_done;
1796#ifdef __powerpc64__
1797 case 58: /* cntlzd */
1798 val = regs->gpr[rd];
1799 op->val = ( val ? __builtin_clzl(val) : 64 );
1800 goto logical_done;
1801#endif
1802 case 28: /* and */
1803 op->val = regs->gpr[rd] & regs->gpr[rb];
1804 goto logical_done;
1805
1806 case 60: /* andc */
1807 op->val = regs->gpr[rd] & ~regs->gpr[rb];
1808 goto logical_done;
1809
1810 case 122: /* popcntb */
1811 do_popcnt(regs, op, regs->gpr[rd], 8);
1812 goto logical_done_nocc;
1813
1814 case 124: /* nor */
1815 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1816 goto logical_done;
1817
1818 case 154: /* prtyw */
1819 do_prty(regs, op, regs->gpr[rd], 32);
1820 goto logical_done_nocc;
1821
1822 case 186: /* prtyd */
1823 do_prty(regs, op, regs->gpr[rd], 64);
1824 goto logical_done_nocc;
1825#ifdef CONFIG_PPC64
1826 case 252: /* bpermd */
1827 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1828 goto logical_done_nocc;
1829#endif
1830 case 284: /* xor */
1831 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1832 goto logical_done;
1833
1834 case 316: /* xor */
1835 op->val = regs->gpr[rd] ^ regs->gpr[rb];
1836 goto logical_done;
1837
1838 case 378: /* popcntw */
1839 do_popcnt(regs, op, regs->gpr[rd], 32);
1840 goto logical_done_nocc;
1841
1842 case 412: /* orc */
1843 op->val = regs->gpr[rd] | ~regs->gpr[rb];
1844 goto logical_done;
1845
1846 case 444: /* or */
1847 op->val = regs->gpr[rd] | regs->gpr[rb];
1848 goto logical_done;
1849
1850 case 476: /* nand */
1851 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1852 goto logical_done;
1853#ifdef CONFIG_PPC64
1854 case 506: /* popcntd */
1855 do_popcnt(regs, op, regs->gpr[rd], 64);
1856 goto logical_done_nocc;
1857#endif
1858 case 538: /* cnttzw */
1859 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1860 return -1;
1861 val = (unsigned int) regs->gpr[rd];
1862 op->val = (val ? __builtin_ctz(val) : 32);
1863 goto logical_done;
1864#ifdef __powerpc64__
1865 case 570: /* cnttzd */
1866 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1867 return -1;
1868 val = regs->gpr[rd];
1869 op->val = (val ? __builtin_ctzl(val) : 64);
1870 goto logical_done;
1871#endif
1872 case 922: /* extsh */
1873 op->val = (signed short) regs->gpr[rd];
1874 goto logical_done;
1875
1876 case 954: /* extsb */
1877 op->val = (signed char) regs->gpr[rd];
1878 goto logical_done;
1879#ifdef __powerpc64__
1880 case 986: /* extsw */
1881 op->val = (signed int) regs->gpr[rd];
1882 goto logical_done;
1883#endif
1884
1885/*
1886 * Shift instructions
1887 */
1888 case 24: /* slw */
1889 sh = regs->gpr[rb] & 0x3f;
1890 if (sh < 32)
1891 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1892 else
1893 op->val = 0;
1894 goto logical_done;
1895
1896 case 536: /* srw */
1897 sh = regs->gpr[rb] & 0x3f;
1898 if (sh < 32)
1899 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1900 else
1901 op->val = 0;
1902 goto logical_done;
1903
1904 case 792: /* sraw */
1905 op->type = COMPUTE + SETREG + SETXER;
1906 sh = regs->gpr[rb] & 0x3f;
1907 ival = (signed int) regs->gpr[rd];
1908 op->val = ival >> (sh < 32 ? sh : 31);
1909 op->xerval = regs->xer;
1910 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1911 op->xerval |= XER_CA;
1912 else
1913 op->xerval &= ~XER_CA;
1914 set_ca32(op, op->xerval & XER_CA);
1915 goto logical_done;
1916
1917 case 824: /* srawi */
1918 op->type = COMPUTE + SETREG + SETXER;
1919 sh = rb;
1920 ival = (signed int) regs->gpr[rd];
1921 op->val = ival >> sh;
1922 op->xerval = regs->xer;
1923 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1924 op->xerval |= XER_CA;
1925 else
1926 op->xerval &= ~XER_CA;
1927 set_ca32(op, op->xerval & XER_CA);
1928 goto logical_done;
1929
1930#ifdef __powerpc64__
1931 case 27: /* sld */
1932 sh = regs->gpr[rb] & 0x7f;
1933 if (sh < 64)
1934 op->val = regs->gpr[rd] << sh;
1935 else
1936 op->val = 0;
1937 goto logical_done;
1938
1939 case 539: /* srd */
1940 sh = regs->gpr[rb] & 0x7f;
1941 if (sh < 64)
1942 op->val = regs->gpr[rd] >> sh;
1943 else
1944 op->val = 0;
1945 goto logical_done;
1946
1947 case 794: /* srad */
1948 op->type = COMPUTE + SETREG + SETXER;
1949 sh = regs->gpr[rb] & 0x7f;
1950 ival = (signed long int) regs->gpr[rd];
1951 op->val = ival >> (sh < 64 ? sh : 63);
1952 op->xerval = regs->xer;
1953 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1954 op->xerval |= XER_CA;
1955 else
1956 op->xerval &= ~XER_CA;
1957 set_ca32(op, op->xerval & XER_CA);
1958 goto logical_done;
1959
1960 case 826: /* sradi with sh_5 = 0 */
1961 case 827: /* sradi with sh_5 = 1 */
1962 op->type = COMPUTE + SETREG + SETXER;
1963 sh = rb | ((instr & 2) << 4);
1964 ival = (signed long int) regs->gpr[rd];
1965 op->val = ival >> sh;
1966 op->xerval = regs->xer;
1967 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1968 op->xerval |= XER_CA;
1969 else
1970 op->xerval &= ~XER_CA;
1971 set_ca32(op, op->xerval & XER_CA);
1972 goto logical_done;
1973
1974 case 890: /* extswsli with sh_5 = 0 */
1975 case 891: /* extswsli with sh_5 = 1 */
1976 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1977 return -1;
1978 op->type = COMPUTE + SETREG;
1979 sh = rb | ((instr & 2) << 4);
1980 val = (signed int) regs->gpr[rd];
1981 if (sh)
1982 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1983 else
1984 op->val = val;
1985 goto logical_done;
1986
1987#endif /* __powerpc64__ */
1988
1989/*
1990 * Cache instructions
1991 */
1992 case 54: /* dcbst */
1993 op->type = MKOP(CACHEOP, DCBST, 0);
1994 op->ea = xform_ea(instr, regs);
1995 return 0;
1996
1997 case 86: /* dcbf */
1998 op->type = MKOP(CACHEOP, DCBF, 0);
1999 op->ea = xform_ea(instr, regs);
2000 return 0;
2001
2002 case 246: /* dcbtst */
2003 op->type = MKOP(CACHEOP, DCBTST, 0);
2004 op->ea = xform_ea(instr, regs);
2005 op->reg = rd;
2006 return 0;
2007
2008 case 278: /* dcbt */
2009 op->type = MKOP(CACHEOP, DCBTST, 0);
2010 op->ea = xform_ea(instr, regs);
2011 op->reg = rd;
2012 return 0;
2013
2014 case 982: /* icbi */
2015 op->type = MKOP(CACHEOP, ICBI, 0);
2016 op->ea = xform_ea(instr, regs);
2017 return 0;
2018
2019 case 1014: /* dcbz */
2020 op->type = MKOP(CACHEOP, DCBZ, 0);
2021 op->ea = xform_ea(instr, regs);
2022 return 0;
2023 }
2024 break;
2025 }
2026
2027/*
2028 * Loads and stores.
2029 */
2030 op->type = UNKNOWN;
2031 op->update_reg = ra;
2032 op->reg = rd;
2033 op->val = regs->gpr[rd];
2034 u = (instr >> 20) & UPDATE;
2035 op->vsx_flags = 0;
2036
2037 switch (opcode) {
2038 case 31:
2039 u = instr & UPDATE;
2040 op->ea = xform_ea(instr, regs);
2041 switch ((instr >> 1) & 0x3ff) {
2042 case 20: /* lwarx */
2043 op->type = MKOP(LARX, 0, 4);
2044 break;
2045
2046 case 150: /* stwcx. */
2047 op->type = MKOP(STCX, 0, 4);
2048 break;
2049
2050#ifdef __powerpc64__
2051 case 84: /* ldarx */
2052 op->type = MKOP(LARX, 0, 8);
2053 break;
2054
2055 case 214: /* stdcx. */
2056 op->type = MKOP(STCX, 0, 8);
2057 break;
2058
2059 case 52: /* lbarx */
2060 op->type = MKOP(LARX, 0, 1);
2061 break;
2062
2063 case 694: /* stbcx. */
2064 op->type = MKOP(STCX, 0, 1);
2065 break;
2066
2067 case 116: /* lharx */
2068 op->type = MKOP(LARX, 0, 2);
2069 break;
2070
2071 case 726: /* sthcx. */
2072 op->type = MKOP(STCX, 0, 2);
2073 break;
2074
2075 case 276: /* lqarx */
2076 if (!((rd & 1) || rd == ra || rd == rb))
2077 op->type = MKOP(LARX, 0, 16);
2078 break;
2079
2080 case 182: /* stqcx. */
2081 if (!(rd & 1))
2082 op->type = MKOP(STCX, 0, 16);
2083 break;
2084#endif
2085
2086 case 23: /* lwzx */
2087 case 55: /* lwzux */
2088 op->type = MKOP(LOAD, u, 4);
2089 break;
2090
2091 case 87: /* lbzx */
2092 case 119: /* lbzux */
2093 op->type = MKOP(LOAD, u, 1);
2094 break;
2095
2096#ifdef CONFIG_ALTIVEC
2097 /*
2098 * Note: for the load/store vector element instructions,
2099 * bits of the EA say which field of the VMX register to use.
2100 */
2101 case 7: /* lvebx */
2102 op->type = MKOP(LOAD_VMX, 0, 1);
2103 op->element_size = 1;
2104 break;
2105
2106 case 39: /* lvehx */
2107 op->type = MKOP(LOAD_VMX, 0, 2);
2108 op->element_size = 2;
2109 break;
2110
2111 case 71: /* lvewx */
2112 op->type = MKOP(LOAD_VMX, 0, 4);
2113 op->element_size = 4;
2114 break;
2115
2116 case 103: /* lvx */
2117 case 359: /* lvxl */
2118 op->type = MKOP(LOAD_VMX, 0, 16);
2119 op->element_size = 16;
2120 break;
2121
2122 case 135: /* stvebx */
2123 op->type = MKOP(STORE_VMX, 0, 1);
2124 op->element_size = 1;
2125 break;
2126
2127 case 167: /* stvehx */
2128 op->type = MKOP(STORE_VMX, 0, 2);
2129 op->element_size = 2;
2130 break;
2131
2132 case 199: /* stvewx */
2133 op->type = MKOP(STORE_VMX, 0, 4);
2134 op->element_size = 4;
2135 break;
2136
2137 case 231: /* stvx */
2138 case 487: /* stvxl */
2139 op->type = MKOP(STORE_VMX, 0, 16);
2140 break;
2141#endif /* CONFIG_ALTIVEC */
2142
2143#ifdef __powerpc64__
2144 case 21: /* ldx */
2145 case 53: /* ldux */
2146 op->type = MKOP(LOAD, u, 8);
2147 break;
2148
2149 case 149: /* stdx */
2150 case 181: /* stdux */
2151 op->type = MKOP(STORE, u, 8);
2152 break;
2153#endif
2154
2155 case 151: /* stwx */
2156 case 183: /* stwux */
2157 op->type = MKOP(STORE, u, 4);
2158 break;
2159
2160 case 215: /* stbx */
2161 case 247: /* stbux */
2162 op->type = MKOP(STORE, u, 1);
2163 break;
2164
2165 case 279: /* lhzx */
2166 case 311: /* lhzux */
2167 op->type = MKOP(LOAD, u, 2);
2168 break;
2169
2170#ifdef __powerpc64__
2171 case 341: /* lwax */
2172 case 373: /* lwaux */
2173 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2174 break;
2175#endif
2176
2177 case 343: /* lhax */
2178 case 375: /* lhaux */
2179 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2180 break;
2181
2182 case 407: /* sthx */
2183 case 439: /* sthux */
2184 op->type = MKOP(STORE, u, 2);
2185 break;
2186
2187#ifdef __powerpc64__
2188 case 532: /* ldbrx */
2189 op->type = MKOP(LOAD, BYTEREV, 8);
2190 break;
2191
2192#endif
2193 case 533: /* lswx */
2194 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2195 break;
2196
2197 case 534: /* lwbrx */
2198 op->type = MKOP(LOAD, BYTEREV, 4);
2199 break;
2200
2201 case 597: /* lswi */
2202 if (rb == 0)
2203 rb = 32; /* # bytes to load */
2204 op->type = MKOP(LOAD_MULTI, 0, rb);
2205 op->ea = ra ? regs->gpr[ra] : 0;
2206 break;
2207
2208#ifdef CONFIG_PPC_FPU
2209 case 535: /* lfsx */
2210 case 567: /* lfsux */
2211 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2212 break;
2213
2214 case 599: /* lfdx */
2215 case 631: /* lfdux */
2216 op->type = MKOP(LOAD_FP, u, 8);
2217 break;
2218
2219 case 663: /* stfsx */
2220 case 695: /* stfsux */
2221 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2222 break;
2223
2224 case 727: /* stfdx */
2225 case 759: /* stfdux */
2226 op->type = MKOP(STORE_FP, u, 8);
2227 break;
2228
2229#ifdef __powerpc64__
2230 case 791: /* lfdpx */
2231 op->type = MKOP(LOAD_FP, 0, 16);
2232 break;
2233
2234 case 855: /* lfiwax */
2235 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2236 break;
2237
2238 case 887: /* lfiwzx */
2239 op->type = MKOP(LOAD_FP, 0, 4);
2240 break;
2241
2242 case 919: /* stfdpx */
2243 op->type = MKOP(STORE_FP, 0, 16);
2244 break;
2245
2246 case 983: /* stfiwx */
2247 op->type = MKOP(STORE_FP, 0, 4);
2248 break;
2249#endif /* __powerpc64 */
2250#endif /* CONFIG_PPC_FPU */
2251
2252#ifdef __powerpc64__
2253 case 660: /* stdbrx */
2254 op->type = MKOP(STORE, BYTEREV, 8);
2255 op->val = byterev_8(regs->gpr[rd]);
2256 break;
2257
2258#endif
2259 case 661: /* stswx */
2260 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2261 break;
2262
2263 case 662: /* stwbrx */
2264 op->type = MKOP(STORE, BYTEREV, 4);
2265 op->val = byterev_4(regs->gpr[rd]);
2266 break;
2267
2268 case 725: /* stswi */
2269 if (rb == 0)
2270 rb = 32; /* # bytes to store */
2271 op->type = MKOP(STORE_MULTI, 0, rb);
2272 op->ea = ra ? regs->gpr[ra] : 0;
2273 break;
2274
2275 case 790: /* lhbrx */
2276 op->type = MKOP(LOAD, BYTEREV, 2);
2277 break;
2278
2279 case 918: /* sthbrx */
2280 op->type = MKOP(STORE, BYTEREV, 2);
2281 op->val = byterev_2(regs->gpr[rd]);
2282 break;
2283
2284#ifdef CONFIG_VSX
2285 case 12: /* lxsiwzx */
2286 op->reg = rd | ((instr & 1) << 5);
2287 op->type = MKOP(LOAD_VSX, 0, 4);
2288 op->element_size = 8;
2289 break;
2290
2291 case 76: /* lxsiwax */
2292 op->reg = rd | ((instr & 1) << 5);
2293 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2294 op->element_size = 8;
2295 break;
2296
2297 case 140: /* stxsiwx */
2298 op->reg = rd | ((instr & 1) << 5);
2299 op->type = MKOP(STORE_VSX, 0, 4);
2300 op->element_size = 8;
2301 break;
2302
2303 case 268: /* lxvx */
2304 op->reg = rd | ((instr & 1) << 5);
2305 op->type = MKOP(LOAD_VSX, 0, 16);
2306 op->element_size = 16;
2307 op->vsx_flags = VSX_CHECK_VEC;
2308 break;
2309
2310 case 269: /* lxvl */
2311 case 301: { /* lxvll */
2312 int nb;
2313 op->reg = rd | ((instr & 1) << 5);
2314 op->ea = ra ? regs->gpr[ra] : 0;
2315 nb = regs->gpr[rb] & 0xff;
2316 if (nb > 16)
2317 nb = 16;
2318 op->type = MKOP(LOAD_VSX, 0, nb);
2319 op->element_size = 16;
2320 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2321 VSX_CHECK_VEC;
2322 break;
2323 }
2324 case 332: /* lxvdsx */
2325 op->reg = rd | ((instr & 1) << 5);
2326 op->type = MKOP(LOAD_VSX, 0, 8);
2327 op->element_size = 8;
2328 op->vsx_flags = VSX_SPLAT;
2329 break;
2330
2331 case 364: /* lxvwsx */
2332 op->reg = rd | ((instr & 1) << 5);
2333 op->type = MKOP(LOAD_VSX, 0, 4);
2334 op->element_size = 4;
2335 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2336 break;
2337
2338 case 396: /* stxvx */
2339 op->reg = rd | ((instr & 1) << 5);
2340 op->type = MKOP(STORE_VSX, 0, 16);
2341 op->element_size = 16;
2342 op->vsx_flags = VSX_CHECK_VEC;
2343 break;
2344
2345 case 397: /* stxvl */
2346 case 429: { /* stxvll */
2347 int nb;
2348 op->reg = rd | ((instr & 1) << 5);
2349 op->ea = ra ? regs->gpr[ra] : 0;
2350 nb = regs->gpr[rb] & 0xff;
2351 if (nb > 16)
2352 nb = 16;
2353 op->type = MKOP(STORE_VSX, 0, nb);
2354 op->element_size = 16;
2355 op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2356 VSX_CHECK_VEC;
2357 break;
2358 }
2359 case 524: /* lxsspx */
2360 op->reg = rd | ((instr & 1) << 5);
2361 op->type = MKOP(LOAD_VSX, 0, 4);
2362 op->element_size = 8;
2363 op->vsx_flags = VSX_FPCONV;
2364 break;
2365
2366 case 588: /* lxsdx */
2367 op->reg = rd | ((instr & 1) << 5);
2368 op->type = MKOP(LOAD_VSX, 0, 8);
2369 op->element_size = 8;
2370 break;
2371
2372 case 652: /* stxsspx */
2373 op->reg = rd | ((instr & 1) << 5);
2374 op->type = MKOP(STORE_VSX, 0, 4);
2375 op->element_size = 8;
2376 op->vsx_flags = VSX_FPCONV;
2377 break;
2378
2379 case 716: /* stxsdx */
2380 op->reg = rd | ((instr & 1) << 5);
2381 op->type = MKOP(STORE_VSX, 0, 8);
2382 op->element_size = 8;
2383 break;
2384
2385 case 780: /* lxvw4x */
2386 op->reg = rd | ((instr & 1) << 5);
2387 op->type = MKOP(LOAD_VSX, 0, 16);
2388 op->element_size = 4;
2389 break;
2390
2391 case 781: /* lxsibzx */
2392 op->reg = rd | ((instr & 1) << 5);
2393 op->type = MKOP(LOAD_VSX, 0, 1);
2394 op->element_size = 8;
2395 op->vsx_flags = VSX_CHECK_VEC;
2396 break;
2397
2398 case 812: /* lxvh8x */
2399 op->reg = rd | ((instr & 1) << 5);
2400 op->type = MKOP(LOAD_VSX, 0, 16);
2401 op->element_size = 2;
2402 op->vsx_flags = VSX_CHECK_VEC;
2403 break;
2404
2405 case 813: /* lxsihzx */
2406 op->reg = rd | ((instr & 1) << 5);
2407 op->type = MKOP(LOAD_VSX, 0, 2);
2408 op->element_size = 8;
2409 op->vsx_flags = VSX_CHECK_VEC;
2410 break;
2411
2412 case 844: /* lxvd2x */
2413 op->reg = rd | ((instr & 1) << 5);
2414 op->type = MKOP(LOAD_VSX, 0, 16);
2415 op->element_size = 8;
2416 break;
2417
2418 case 876: /* lxvb16x */
2419 op->reg = rd | ((instr & 1) << 5);
2420 op->type = MKOP(LOAD_VSX, 0, 16);
2421 op->element_size = 1;
2422 op->vsx_flags = VSX_CHECK_VEC;
2423 break;
2424
2425 case 908: /* stxvw4x */
2426 op->reg = rd | ((instr & 1) << 5);
2427 op->type = MKOP(STORE_VSX, 0, 16);
2428 op->element_size = 4;
2429 break;
2430
2431 case 909: /* stxsibx */
2432 op->reg = rd | ((instr & 1) << 5);
2433 op->type = MKOP(STORE_VSX, 0, 1);
2434 op->element_size = 8;
2435 op->vsx_flags = VSX_CHECK_VEC;
2436 break;
2437
2438 case 940: /* stxvh8x */
2439 op->reg = rd | ((instr & 1) << 5);
2440 op->type = MKOP(STORE_VSX, 0, 16);
2441 op->element_size = 2;
2442 op->vsx_flags = VSX_CHECK_VEC;
2443 break;
2444
2445 case 941: /* stxsihx */
2446 op->reg = rd | ((instr & 1) << 5);
2447 op->type = MKOP(STORE_VSX, 0, 2);
2448 op->element_size = 8;
2449 op->vsx_flags = VSX_CHECK_VEC;
2450 break;
2451
2452 case 972: /* stxvd2x */
2453 op->reg = rd | ((instr & 1) << 5);
2454 op->type = MKOP(STORE_VSX, 0, 16);
2455 op->element_size = 8;
2456 break;
2457
2458 case 1004: /* stxvb16x */
2459 op->reg = rd | ((instr & 1) << 5);
2460 op->type = MKOP(STORE_VSX, 0, 16);
2461 op->element_size = 1;
2462 op->vsx_flags = VSX_CHECK_VEC;
2463 break;
2464
2465#endif /* CONFIG_VSX */
2466 }
2467 break;
2468
2469 case 32: /* lwz */
2470 case 33: /* lwzu */
2471 op->type = MKOP(LOAD, u, 4);
2472 op->ea = dform_ea(instr, regs);
2473 break;
2474
2475 case 34: /* lbz */
2476 case 35: /* lbzu */
2477 op->type = MKOP(LOAD, u, 1);
2478 op->ea = dform_ea(instr, regs);
2479 break;
2480
2481 case 36: /* stw */
2482 case 37: /* stwu */
2483 op->type = MKOP(STORE, u, 4);
2484 op->ea = dform_ea(instr, regs);
2485 break;
2486
2487 case 38: /* stb */
2488 case 39: /* stbu */
2489 op->type = MKOP(STORE, u, 1);
2490 op->ea = dform_ea(instr, regs);
2491 break;
2492
2493 case 40: /* lhz */
2494 case 41: /* lhzu */
2495 op->type = MKOP(LOAD, u, 2);
2496 op->ea = dform_ea(instr, regs);
2497 break;
2498
2499 case 42: /* lha */
2500 case 43: /* lhau */
2501 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2502 op->ea = dform_ea(instr, regs);
2503 break;
2504
2505 case 44: /* sth */
2506 case 45: /* sthu */
2507 op->type = MKOP(STORE, u, 2);
2508 op->ea = dform_ea(instr, regs);
2509 break;
2510
2511 case 46: /* lmw */
2512 if (ra >= rd)
2513 break; /* invalid form, ra in range to load */
2514 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2515 op->ea = dform_ea(instr, regs);
2516 break;
2517
2518 case 47: /* stmw */
2519 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2520 op->ea = dform_ea(instr, regs);
2521 break;
2522
2523#ifdef CONFIG_PPC_FPU
2524 case 48: /* lfs */
2525 case 49: /* lfsu */
2526 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2527 op->ea = dform_ea(instr, regs);
2528 break;
2529
2530 case 50: /* lfd */
2531 case 51: /* lfdu */
2532 op->type = MKOP(LOAD_FP, u, 8);
2533 op->ea = dform_ea(instr, regs);
2534 break;
2535
2536 case 52: /* stfs */
2537 case 53: /* stfsu */
2538 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2539 op->ea = dform_ea(instr, regs);
2540 break;
2541
2542 case 54: /* stfd */
2543 case 55: /* stfdu */
2544 op->type = MKOP(STORE_FP, u, 8);
2545 op->ea = dform_ea(instr, regs);
2546 break;
2547#endif
2548
2549#ifdef __powerpc64__
2550 case 56: /* lq */
2551 if (!((rd & 1) || (rd == ra)))
2552 op->type = MKOP(LOAD, 0, 16);
2553 op->ea = dqform_ea(instr, regs);
2554 break;
2555#endif
2556
2557#ifdef CONFIG_VSX
2558 case 57: /* lfdp, lxsd, lxssp */
2559 op->ea = dsform_ea(instr, regs);
2560 switch (instr & 3) {
2561 case 0: /* lfdp */
2562 if (rd & 1)
2563 break; /* reg must be even */
2564 op->type = MKOP(LOAD_FP, 0, 16);
2565 break;
2566 case 2: /* lxsd */
2567 op->reg = rd + 32;
2568 op->type = MKOP(LOAD_VSX, 0, 8);
2569 op->element_size = 8;
2570 op->vsx_flags = VSX_CHECK_VEC;
2571 break;
2572 case 3: /* lxssp */
2573 op->reg = rd + 32;
2574 op->type = MKOP(LOAD_VSX, 0, 4);
2575 op->element_size = 8;
2576 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2577 break;
2578 }
2579 break;
2580#endif /* CONFIG_VSX */
2581
2582#ifdef __powerpc64__
2583 case 58: /* ld[u], lwa */
2584 op->ea = dsform_ea(instr, regs);
2585 switch (instr & 3) {
2586 case 0: /* ld */
2587 op->type = MKOP(LOAD, 0, 8);
2588 break;
2589 case 1: /* ldu */
2590 op->type = MKOP(LOAD, UPDATE, 8);
2591 break;
2592 case 2: /* lwa */
2593 op->type = MKOP(LOAD, SIGNEXT, 4);
2594 break;
2595 }
2596 break;
2597#endif
2598
2599#ifdef CONFIG_VSX
2600 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2601 switch (instr & 7) {
2602 case 0: /* stfdp with LSB of DS field = 0 */
2603 case 4: /* stfdp with LSB of DS field = 1 */
2604 op->ea = dsform_ea(instr, regs);
2605 op->type = MKOP(STORE_FP, 0, 16);
2606 break;
2607
2608 case 1: /* lxv */
2609 op->ea = dqform_ea(instr, regs);
2610 if (instr & 8)
2611 op->reg = rd + 32;
2612 op->type = MKOP(LOAD_VSX, 0, 16);
2613 op->element_size = 16;
2614 op->vsx_flags = VSX_CHECK_VEC;
2615 break;
2616
2617 case 2: /* stxsd with LSB of DS field = 0 */
2618 case 6: /* stxsd with LSB of DS field = 1 */
2619 op->ea = dsform_ea(instr, regs);
2620 op->reg = rd + 32;
2621 op->type = MKOP(STORE_VSX, 0, 8);
2622 op->element_size = 8;
2623 op->vsx_flags = VSX_CHECK_VEC;
2624 break;
2625
2626 case 3: /* stxssp with LSB of DS field = 0 */
2627 case 7: /* stxssp with LSB of DS field = 1 */
2628 op->ea = dsform_ea(instr, regs);
2629 op->reg = rd + 32;
2630 op->type = MKOP(STORE_VSX, 0, 4);
2631 op->element_size = 8;
2632 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2633 break;
2634
2635 case 5: /* stxv */
2636 op->ea = dqform_ea(instr, regs);
2637 if (instr & 8)
2638 op->reg = rd + 32;
2639 op->type = MKOP(STORE_VSX, 0, 16);
2640 op->element_size = 16;
2641 op->vsx_flags = VSX_CHECK_VEC;
2642 break;
2643 }
2644 break;
2645#endif /* CONFIG_VSX */
2646
2647#ifdef __powerpc64__
2648 case 62: /* std[u] */
2649 op->ea = dsform_ea(instr, regs);
2650 switch (instr & 3) {
2651 case 0: /* std */
2652 op->type = MKOP(STORE, 0, 8);
2653 break;
2654 case 1: /* stdu */
2655 op->type = MKOP(STORE, UPDATE, 8);
2656 break;
2657 case 2: /* stq */
2658 if (!(rd & 1))
2659 op->type = MKOP(STORE, 0, 16);
2660 break;
2661 }
2662 break;
2663#endif /* __powerpc64__ */
2664
2665 }
2666
2667#ifdef CONFIG_VSX
2668 if ((GETTYPE(op->type) == LOAD_VSX ||
2669 GETTYPE(op->type) == STORE_VSX) &&
2670 !cpu_has_feature(CPU_FTR_VSX)) {
2671 return -1;
2672 }
2673#endif /* CONFIG_VSX */
2674
2675 return 0;
2676
2677 logical_done:
2678 if (instr & 1)
2679 set_cr0(regs, op);
2680 logical_done_nocc:
2681 op->reg = ra;
2682 op->type |= SETREG;
2683 return 1;
2684
2685 arith_done:
2686 if (instr & 1)
2687 set_cr0(regs, op);
2688 compute_done:
2689 op->reg = rd;
2690 op->type |= SETREG;
2691 return 1;
2692
2693 priv:
2694 op->type = INTERRUPT | 0x700;
2695 op->val = SRR1_PROGPRIV;
2696 return 0;
2697
2698 trap:
2699 op->type = INTERRUPT | 0x700;
2700 op->val = SRR1_PROGTRAP;
2701 return 0;
2702}
2703EXPORT_SYMBOL_GPL(analyse_instr);
2704NOKPROBE_SYMBOL(analyse_instr);
2705
2706/*
2707 * For PPC32 we always use stwu with r1 to change the stack pointer.
2708 * So this emulated store may corrupt the exception frame, now we
2709 * have to provide the exception frame trampoline, which is pushed
2710 * below the kprobed function stack. So we only update gpr[1] but
2711 * don't emulate the real store operation. We will do real store
2712 * operation safely in exception return code by checking this flag.
2713 */
2714static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2715{
2716#ifdef CONFIG_PPC32
2717 /*
2718 * Check if we will touch kernel stack overflow
2719 */
2720 if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2721 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2722 return -EINVAL;
2723 }
2724#endif /* CONFIG_PPC32 */
2725 /*
2726 * Check if we already set since that means we'll
2727 * lose the previous value.
2728 */
2729 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2730 set_thread_flag(TIF_EMULATE_STACK_STORE);
2731 return 0;
2732}
2733
2734static nokprobe_inline void do_signext(unsigned long *valp, int size)
2735{
2736 switch (size) {
2737 case 2:
2738 *valp = (signed short) *valp;
2739 break;
2740 case 4:
2741 *valp = (signed int) *valp;
2742 break;
2743 }
2744}
2745
2746static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2747{
2748 switch (size) {
2749 case 2:
2750 *valp = byterev_2(*valp);
2751 break;
2752 case 4:
2753 *valp = byterev_4(*valp);
2754 break;
2755#ifdef __powerpc64__
2756 case 8:
2757 *valp = byterev_8(*valp);
2758 break;
2759#endif
2760 }
2761}
2762
2763/*
2764 * Emulate an instruction that can be executed just by updating
2765 * fields in *regs.
2766 */
2767void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2768{
2769 unsigned long next_pc;
2770
2771 next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2772 switch (GETTYPE(op->type)) {
2773 case COMPUTE:
2774 if (op->type & SETREG)
2775 regs->gpr[op->reg] = op->val;
2776 if (op->type & SETCC)
2777 regs->ccr = op->ccval;
2778 if (op->type & SETXER)
2779 regs->xer = op->xerval;
2780 break;
2781
2782 case BRANCH:
2783 if (op->type & SETLK)
2784 regs->link = next_pc;
2785 if (op->type & BRTAKEN)
2786 next_pc = op->val;
2787 if (op->type & DECCTR)
2788 --regs->ctr;
2789 break;
2790
2791 case BARRIER:
2792 switch (op->type & BARRIER_MASK) {
2793 case BARRIER_SYNC:
2794 mb();
2795 break;
2796 case BARRIER_ISYNC:
2797 isync();
2798 break;
2799 case BARRIER_EIEIO:
2800 eieio();
2801 break;
2802#ifdef CONFIG_PPC64
2803 case BARRIER_LWSYNC:
2804 asm volatile("lwsync" : : : "memory");
2805 break;
2806 case BARRIER_PTESYNC:
2807 asm volatile("ptesync" : : : "memory");
2808 break;
2809#endif
2810 }
2811 break;
2812
2813 case MFSPR:
2814 switch (op->spr) {
2815 case SPRN_XER:
2816 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2817 break;
2818 case SPRN_LR:
2819 regs->gpr[op->reg] = regs->link;
2820 break;
2821 case SPRN_CTR:
2822 regs->gpr[op->reg] = regs->ctr;
2823 break;
2824 default:
2825 WARN_ON_ONCE(1);
2826 }
2827 break;
2828
2829 case MTSPR:
2830 switch (op->spr) {
2831 case SPRN_XER:
2832 regs->xer = op->val & 0xffffffffUL;
2833 break;
2834 case SPRN_LR:
2835 regs->link = op->val;
2836 break;
2837 case SPRN_CTR:
2838 regs->ctr = op->val;
2839 break;
2840 default:
2841 WARN_ON_ONCE(1);
2842 }
2843 break;
2844
2845 default:
2846 WARN_ON_ONCE(1);
2847 }
2848 regs->nip = next_pc;
2849}
2850NOKPROBE_SYMBOL(emulate_update_regs);
2851
2852/*
2853 * Emulate a previously-analysed load or store instruction.
2854 * Return values are:
2855 * 0 = instruction emulated successfully
2856 * -EFAULT = address out of range or access faulted (regs->dar
2857 * contains the faulting address)
2858 * -EACCES = misaligned access, instruction requires alignment
2859 * -EINVAL = unknown operation in *op
2860 */
2861int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2862{
2863 int err, size, type;
2864 int i, rd, nb;
2865 unsigned int cr;
2866 unsigned long val;
2867 unsigned long ea;
2868 bool cross_endian;
2869
2870 err = 0;
2871 size = GETSIZE(op->type);
2872 type = GETTYPE(op->type);
2873 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2874 ea = truncate_if_32bit(regs->msr, op->ea);
2875
2876 switch (type) {
2877 case LARX:
2878 if (ea & (size - 1))
2879 return -EACCES; /* can't handle misaligned */
2880 if (!address_ok(regs, ea, size))
2881 return -EFAULT;
2882 err = 0;
2883 val = 0;
2884 switch (size) {
2885#ifdef __powerpc64__
2886 case 1:
2887 __get_user_asmx(val, ea, err, "lbarx");
2888 break;
2889 case 2:
2890 __get_user_asmx(val, ea, err, "lharx");
2891 break;
2892#endif
2893 case 4:
2894 __get_user_asmx(val, ea, err, "lwarx");
2895 break;
2896#ifdef __powerpc64__
2897 case 8:
2898 __get_user_asmx(val, ea, err, "ldarx");
2899 break;
2900 case 16:
2901 err = do_lqarx(ea, &regs->gpr[op->reg]);
2902 break;
2903#endif
2904 default:
2905 return -EINVAL;
2906 }
2907 if (err) {
2908 regs->dar = ea;
2909 break;
2910 }
2911 if (size < 16)
2912 regs->gpr[op->reg] = val;
2913 break;
2914
2915 case STCX:
2916 if (ea & (size - 1))
2917 return -EACCES; /* can't handle misaligned */
2918 if (!address_ok(regs, ea, size))
2919 return -EFAULT;
2920 err = 0;
2921 switch (size) {
2922#ifdef __powerpc64__
2923 case 1:
2924 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2925 break;
2926 case 2:
2927 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
2928 break;
2929#endif
2930 case 4:
2931 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2932 break;
2933#ifdef __powerpc64__
2934 case 8:
2935 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2936 break;
2937 case 16:
2938 err = do_stqcx(ea, regs->gpr[op->reg],
2939 regs->gpr[op->reg + 1], &cr);
2940 break;
2941#endif
2942 default:
2943 return -EINVAL;
2944 }
2945 if (!err)
2946 regs->ccr = (regs->ccr & 0x0fffffff) |
2947 (cr & 0xe0000000) |
2948 ((regs->xer >> 3) & 0x10000000);
2949 else
2950 regs->dar = ea;
2951 break;
2952
2953 case LOAD:
2954#ifdef __powerpc64__
2955 if (size == 16) {
2956 err = emulate_lq(regs, ea, op->reg, cross_endian);
2957 break;
2958 }
2959#endif
2960 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2961 if (!err) {
2962 if (op->type & SIGNEXT)
2963 do_signext(&regs->gpr[op->reg], size);
2964 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2965 do_byterev(&regs->gpr[op->reg], size);
2966 }
2967 break;
2968
2969#ifdef CONFIG_PPC_FPU
2970 case LOAD_FP:
2971 /*
2972 * If the instruction is in userspace, we can emulate it even
2973 * if the VMX state is not live, because we have the state
2974 * stored in the thread_struct. If the instruction is in
2975 * the kernel, we must not touch the state in the thread_struct.
2976 */
2977 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2978 return 0;
2979 err = do_fp_load(op, ea, regs, cross_endian);
2980 break;
2981#endif
2982#ifdef CONFIG_ALTIVEC
2983 case LOAD_VMX:
2984 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2985 return 0;
2986 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2987 break;
2988#endif
2989#ifdef CONFIG_VSX
2990 case LOAD_VSX: {
2991 unsigned long msrbit = MSR_VSX;
2992
2993 /*
2994 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2995 * when the target of the instruction is a vector register.
2996 */
2997 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2998 msrbit = MSR_VEC;
2999 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3000 return 0;
3001 err = do_vsx_load(op, ea, regs, cross_endian);
3002 break;
3003 }
3004#endif
3005 case LOAD_MULTI:
3006 if (!address_ok(regs, ea, size))
3007 return -EFAULT;
3008 rd = op->reg;
3009 for (i = 0; i < size; i += 4) {
3010 unsigned int v32 = 0;
3011
3012 nb = size - i;
3013 if (nb > 4)
3014 nb = 4;
3015 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3016 if (err)
3017 break;
3018 if (unlikely(cross_endian))
3019 v32 = byterev_4(v32);
3020 regs->gpr[rd] = v32;
3021 ea += 4;
3022 /* reg number wraps from 31 to 0 for lsw[ix] */
3023 rd = (rd + 1) & 0x1f;
3024 }
3025 break;
3026
3027 case STORE:
3028#ifdef __powerpc64__
3029 if (size == 16) {
3030 err = emulate_stq(regs, ea, op->reg, cross_endian);
3031 break;
3032 }
3033#endif
3034 if ((op->type & UPDATE) && size == sizeof(long) &&
3035 op->reg == 1 && op->update_reg == 1 &&
3036 !(regs->msr & MSR_PR) &&
3037 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3038 err = handle_stack_update(ea, regs);
3039 break;
3040 }
3041 if (unlikely(cross_endian))
3042 do_byterev(&op->val, size);
3043 err = write_mem(op->val, ea, size, regs);
3044 break;
3045
3046#ifdef CONFIG_PPC_FPU
3047 case STORE_FP:
3048 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3049 return 0;
3050 err = do_fp_store(op, ea, regs, cross_endian);
3051 break;
3052#endif
3053#ifdef CONFIG_ALTIVEC
3054 case STORE_VMX:
3055 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3056 return 0;
3057 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3058 break;
3059#endif
3060#ifdef CONFIG_VSX
3061 case STORE_VSX: {
3062 unsigned long msrbit = MSR_VSX;
3063
3064 /*
3065 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3066 * when the target of the instruction is a vector register.
3067 */
3068 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3069 msrbit = MSR_VEC;
3070 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3071 return 0;
3072 err = do_vsx_store(op, ea, regs, cross_endian);
3073 break;
3074 }
3075#endif
3076 case STORE_MULTI:
3077 if (!address_ok(regs, ea, size))
3078 return -EFAULT;
3079 rd = op->reg;
3080 for (i = 0; i < size; i += 4) {
3081 unsigned int v32 = regs->gpr[rd];
3082
3083 nb = size - i;
3084 if (nb > 4)
3085 nb = 4;
3086 if (unlikely(cross_endian))
3087 v32 = byterev_4(v32);
3088 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3089 if (err)
3090 break;
3091 ea += 4;
3092 /* reg number wraps from 31 to 0 for stsw[ix] */
3093 rd = (rd + 1) & 0x1f;
3094 }
3095 break;
3096
3097 default:
3098 return -EINVAL;
3099 }
3100
3101 if (err)
3102 return err;
3103
3104 if (op->type & UPDATE)
3105 regs->gpr[op->update_reg] = op->ea;
3106
3107 return 0;
3108}
3109NOKPROBE_SYMBOL(emulate_loadstore);
3110
3111/*
3112 * Emulate instructions that cause a transfer of control,
3113 * loads and stores, and a few other instructions.
3114 * Returns 1 if the step was emulated, 0 if not,
3115 * or -1 if the instruction is one that should not be stepped,
3116 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3117 */
3118int emulate_step(struct pt_regs *regs, unsigned int instr)
3119{
3120 struct instruction_op op;
3121 int r, err, type;
3122 unsigned long val;
3123 unsigned long ea;
3124
3125 r = analyse_instr(&op, regs, instr);
3126 if (r < 0)
3127 return r;
3128 if (r > 0) {
3129 emulate_update_regs(regs, &op);
3130 return 1;
3131 }
3132
3133 err = 0;
3134 type = GETTYPE(op.type);
3135
3136 if (OP_IS_LOAD_STORE(type)) {
3137 err = emulate_loadstore(regs, &op);
3138 if (err)
3139 return 0;
3140 goto instr_done;
3141 }
3142
3143 switch (type) {
3144 case CACHEOP:
3145 ea = truncate_if_32bit(regs->msr, op.ea);
3146 if (!address_ok(regs, ea, 8))
3147 return 0;
3148 switch (op.type & CACHEOP_MASK) {
3149 case DCBST:
3150 __cacheop_user_asmx(ea, err, "dcbst");
3151 break;
3152 case DCBF:
3153 __cacheop_user_asmx(ea, err, "dcbf");
3154 break;
3155 case DCBTST:
3156 if (op.reg == 0)
3157 prefetchw((void *) ea);
3158 break;
3159 case DCBT:
3160 if (op.reg == 0)
3161 prefetch((void *) ea);
3162 break;
3163 case ICBI:
3164 __cacheop_user_asmx(ea, err, "icbi");
3165 break;
3166 case DCBZ:
3167 err = emulate_dcbz(ea, regs);
3168 break;
3169 }
3170 if (err) {
3171 regs->dar = ea;
3172 return 0;
3173 }
3174 goto instr_done;
3175
3176 case MFMSR:
3177 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3178 goto instr_done;
3179
3180 case MTMSR:
3181 val = regs->gpr[op.reg];
3182 if ((val & MSR_RI) == 0)
3183 /* can't step mtmsr[d] that would clear MSR_RI */
3184 return -1;
3185 /* here op.val is the mask of bits to change */
3186 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3187 goto instr_done;
3188
3189#ifdef CONFIG_PPC64
3190 case SYSCALL: /* sc */
3191 /*
3192 * N.B. this uses knowledge about how the syscall
3193 * entry code works. If that is changed, this will
3194 * need to be changed also.
3195 */
3196 if (regs->gpr[0] == 0x1ebe &&
3197 cpu_has_feature(CPU_FTR_REAL_LE)) {
3198 regs->msr ^= MSR_LE;
3199 goto instr_done;
3200 }
3201 regs->gpr[9] = regs->gpr[13];
3202 regs->gpr[10] = MSR_KERNEL;
3203 regs->gpr[11] = regs->nip + 4;
3204 regs->gpr[12] = regs->msr & MSR_MASK;
3205 regs->gpr[13] = (unsigned long) get_paca();
3206 regs->nip = (unsigned long) &system_call_common;
3207 regs->msr = MSR_KERNEL;
3208 return 1;
3209
3210 case RFI:
3211 return -1;
3212#endif
3213 }
3214 return 0;
3215
3216 instr_done:
3217 regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3218 return 1;
3219}
3220NOKPROBE_SYMBOL(emulate_step);