b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * Cell Broadband Engine Performance Monitor |
| 4 | * |
| 5 | * (C) Copyright IBM Corporation 2001,2006 |
| 6 | * |
| 7 | * Author: |
| 8 | * David Erb (djerb@us.ibm.com) |
| 9 | * Kevin Corry (kevcorry@us.ibm.com) |
| 10 | */ |
| 11 | |
| 12 | #include <linux/interrupt.h> |
| 13 | #include <linux/types.h> |
| 14 | #include <linux/export.h> |
| 15 | #include <asm/io.h> |
| 16 | #include <asm/irq_regs.h> |
| 17 | #include <asm/machdep.h> |
| 18 | #include <asm/pmc.h> |
| 19 | #include <asm/reg.h> |
| 20 | #include <asm/spu.h> |
| 21 | #include <asm/cell-regs.h> |
| 22 | |
| 23 | #include "interrupt.h" |
| 24 | |
| 25 | /* |
| 26 | * When writing to write-only mmio addresses, save a shadow copy. All of the |
| 27 | * registers are 32-bit, but stored in the upper-half of a 64-bit field in |
| 28 | * pmd_regs. |
| 29 | */ |
| 30 | |
| 31 | #define WRITE_WO_MMIO(reg, x) \ |
| 32 | do { \ |
| 33 | u32 _x = (x); \ |
| 34 | struct cbe_pmd_regs __iomem *pmd_regs; \ |
| 35 | struct cbe_pmd_shadow_regs *shadow_regs; \ |
| 36 | pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ |
| 37 | shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ |
| 38 | out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \ |
| 39 | shadow_regs->reg = _x; \ |
| 40 | } while (0) |
| 41 | |
| 42 | #define READ_SHADOW_REG(val, reg) \ |
| 43 | do { \ |
| 44 | struct cbe_pmd_shadow_regs *shadow_regs; \ |
| 45 | shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \ |
| 46 | (val) = shadow_regs->reg; \ |
| 47 | } while (0) |
| 48 | |
| 49 | #define READ_MMIO_UPPER32(val, reg) \ |
| 50 | do { \ |
| 51 | struct cbe_pmd_regs __iomem *pmd_regs; \ |
| 52 | pmd_regs = cbe_get_cpu_pmd_regs(cpu); \ |
| 53 | (val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \ |
| 54 | } while (0) |
| 55 | |
| 56 | /* |
| 57 | * Physical counter registers. |
| 58 | * Each physical counter can act as one 32-bit counter or two 16-bit counters. |
| 59 | */ |
| 60 | |
| 61 | u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr) |
| 62 | { |
| 63 | u32 val_in_latch, val = 0; |
| 64 | |
| 65 | if (phys_ctr < NR_PHYS_CTRS) { |
| 66 | READ_SHADOW_REG(val_in_latch, counter_value_in_latch); |
| 67 | |
| 68 | /* Read the latch or the actual counter, whichever is newer. */ |
| 69 | if (val_in_latch & (1 << phys_ctr)) { |
| 70 | READ_SHADOW_REG(val, pm_ctr[phys_ctr]); |
| 71 | } else { |
| 72 | READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | return val; |
| 77 | } |
| 78 | EXPORT_SYMBOL_GPL(cbe_read_phys_ctr); |
| 79 | |
| 80 | void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val) |
| 81 | { |
| 82 | struct cbe_pmd_shadow_regs *shadow_regs; |
| 83 | u32 pm_ctrl; |
| 84 | |
| 85 | if (phys_ctr < NR_PHYS_CTRS) { |
| 86 | /* Writing to a counter only writes to a hardware latch. |
| 87 | * The new value is not propagated to the actual counter |
| 88 | * until the performance monitor is enabled. |
| 89 | */ |
| 90 | WRITE_WO_MMIO(pm_ctr[phys_ctr], val); |
| 91 | |
| 92 | pm_ctrl = cbe_read_pm(cpu, pm_control); |
| 93 | if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) { |
| 94 | /* The counters are already active, so we need to |
| 95 | * rewrite the pm_control register to "re-enable" |
| 96 | * the PMU. |
| 97 | */ |
| 98 | cbe_write_pm(cpu, pm_control, pm_ctrl); |
| 99 | } else { |
| 100 | shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); |
| 101 | shadow_regs->counter_value_in_latch |= (1 << phys_ctr); |
| 102 | } |
| 103 | } |
| 104 | } |
| 105 | EXPORT_SYMBOL_GPL(cbe_write_phys_ctr); |
| 106 | |
| 107 | /* |
| 108 | * "Logical" counter registers. |
| 109 | * These will read/write 16-bits or 32-bits depending on the |
| 110 | * current size of the counter. Counters 4 - 7 are always 16-bit. |
| 111 | */ |
| 112 | |
| 113 | u32 cbe_read_ctr(u32 cpu, u32 ctr) |
| 114 | { |
| 115 | u32 val; |
| 116 | u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1); |
| 117 | |
| 118 | val = cbe_read_phys_ctr(cpu, phys_ctr); |
| 119 | |
| 120 | if (cbe_get_ctr_size(cpu, phys_ctr) == 16) |
| 121 | val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff); |
| 122 | |
| 123 | return val; |
| 124 | } |
| 125 | EXPORT_SYMBOL_GPL(cbe_read_ctr); |
| 126 | |
| 127 | void cbe_write_ctr(u32 cpu, u32 ctr, u32 val) |
| 128 | { |
| 129 | u32 phys_ctr; |
| 130 | u32 phys_val; |
| 131 | |
| 132 | phys_ctr = ctr & (NR_PHYS_CTRS - 1); |
| 133 | |
| 134 | if (cbe_get_ctr_size(cpu, phys_ctr) == 16) { |
| 135 | phys_val = cbe_read_phys_ctr(cpu, phys_ctr); |
| 136 | |
| 137 | if (ctr < NR_PHYS_CTRS) |
| 138 | val = (val << 16) | (phys_val & 0xffff); |
| 139 | else |
| 140 | val = (val & 0xffff) | (phys_val & 0xffff0000); |
| 141 | } |
| 142 | |
| 143 | cbe_write_phys_ctr(cpu, phys_ctr, val); |
| 144 | } |
| 145 | EXPORT_SYMBOL_GPL(cbe_write_ctr); |
| 146 | |
| 147 | /* |
| 148 | * Counter-control registers. |
| 149 | * Each "logical" counter has a corresponding control register. |
| 150 | */ |
| 151 | |
| 152 | u32 cbe_read_pm07_control(u32 cpu, u32 ctr) |
| 153 | { |
| 154 | u32 pm07_control = 0; |
| 155 | |
| 156 | if (ctr < NR_CTRS) |
| 157 | READ_SHADOW_REG(pm07_control, pm07_control[ctr]); |
| 158 | |
| 159 | return pm07_control; |
| 160 | } |
| 161 | EXPORT_SYMBOL_GPL(cbe_read_pm07_control); |
| 162 | |
| 163 | void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val) |
| 164 | { |
| 165 | if (ctr < NR_CTRS) |
| 166 | WRITE_WO_MMIO(pm07_control[ctr], val); |
| 167 | } |
| 168 | EXPORT_SYMBOL_GPL(cbe_write_pm07_control); |
| 169 | |
| 170 | /* |
| 171 | * Other PMU control registers. Most of these are write-only. |
| 172 | */ |
| 173 | |
| 174 | u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg) |
| 175 | { |
| 176 | u32 val = 0; |
| 177 | |
| 178 | switch (reg) { |
| 179 | case group_control: |
| 180 | READ_SHADOW_REG(val, group_control); |
| 181 | break; |
| 182 | |
| 183 | case debug_bus_control: |
| 184 | READ_SHADOW_REG(val, debug_bus_control); |
| 185 | break; |
| 186 | |
| 187 | case trace_address: |
| 188 | READ_MMIO_UPPER32(val, trace_address); |
| 189 | break; |
| 190 | |
| 191 | case ext_tr_timer: |
| 192 | READ_SHADOW_REG(val, ext_tr_timer); |
| 193 | break; |
| 194 | |
| 195 | case pm_status: |
| 196 | READ_MMIO_UPPER32(val, pm_status); |
| 197 | break; |
| 198 | |
| 199 | case pm_control: |
| 200 | READ_SHADOW_REG(val, pm_control); |
| 201 | break; |
| 202 | |
| 203 | case pm_interval: |
| 204 | READ_MMIO_UPPER32(val, pm_interval); |
| 205 | break; |
| 206 | |
| 207 | case pm_start_stop: |
| 208 | READ_SHADOW_REG(val, pm_start_stop); |
| 209 | break; |
| 210 | } |
| 211 | |
| 212 | return val; |
| 213 | } |
| 214 | EXPORT_SYMBOL_GPL(cbe_read_pm); |
| 215 | |
| 216 | void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val) |
| 217 | { |
| 218 | switch (reg) { |
| 219 | case group_control: |
| 220 | WRITE_WO_MMIO(group_control, val); |
| 221 | break; |
| 222 | |
| 223 | case debug_bus_control: |
| 224 | WRITE_WO_MMIO(debug_bus_control, val); |
| 225 | break; |
| 226 | |
| 227 | case trace_address: |
| 228 | WRITE_WO_MMIO(trace_address, val); |
| 229 | break; |
| 230 | |
| 231 | case ext_tr_timer: |
| 232 | WRITE_WO_MMIO(ext_tr_timer, val); |
| 233 | break; |
| 234 | |
| 235 | case pm_status: |
| 236 | WRITE_WO_MMIO(pm_status, val); |
| 237 | break; |
| 238 | |
| 239 | case pm_control: |
| 240 | WRITE_WO_MMIO(pm_control, val); |
| 241 | break; |
| 242 | |
| 243 | case pm_interval: |
| 244 | WRITE_WO_MMIO(pm_interval, val); |
| 245 | break; |
| 246 | |
| 247 | case pm_start_stop: |
| 248 | WRITE_WO_MMIO(pm_start_stop, val); |
| 249 | break; |
| 250 | } |
| 251 | } |
| 252 | EXPORT_SYMBOL_GPL(cbe_write_pm); |
| 253 | |
| 254 | /* |
| 255 | * Get/set the size of a physical counter to either 16 or 32 bits. |
| 256 | */ |
| 257 | |
| 258 | u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr) |
| 259 | { |
| 260 | u32 pm_ctrl, size = 0; |
| 261 | |
| 262 | if (phys_ctr < NR_PHYS_CTRS) { |
| 263 | pm_ctrl = cbe_read_pm(cpu, pm_control); |
| 264 | size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32; |
| 265 | } |
| 266 | |
| 267 | return size; |
| 268 | } |
| 269 | EXPORT_SYMBOL_GPL(cbe_get_ctr_size); |
| 270 | |
| 271 | void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size) |
| 272 | { |
| 273 | u32 pm_ctrl; |
| 274 | |
| 275 | if (phys_ctr < NR_PHYS_CTRS) { |
| 276 | pm_ctrl = cbe_read_pm(cpu, pm_control); |
| 277 | switch (ctr_size) { |
| 278 | case 16: |
| 279 | pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr); |
| 280 | break; |
| 281 | |
| 282 | case 32: |
| 283 | pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr); |
| 284 | break; |
| 285 | } |
| 286 | cbe_write_pm(cpu, pm_control, pm_ctrl); |
| 287 | } |
| 288 | } |
| 289 | EXPORT_SYMBOL_GPL(cbe_set_ctr_size); |
| 290 | |
| 291 | /* |
| 292 | * Enable/disable the entire performance monitoring unit. |
| 293 | * When we enable the PMU, all pending writes to counters get committed. |
| 294 | */ |
| 295 | |
| 296 | void cbe_enable_pm(u32 cpu) |
| 297 | { |
| 298 | struct cbe_pmd_shadow_regs *shadow_regs; |
| 299 | u32 pm_ctrl; |
| 300 | |
| 301 | shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); |
| 302 | shadow_regs->counter_value_in_latch = 0; |
| 303 | |
| 304 | pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON; |
| 305 | cbe_write_pm(cpu, pm_control, pm_ctrl); |
| 306 | } |
| 307 | EXPORT_SYMBOL_GPL(cbe_enable_pm); |
| 308 | |
| 309 | void cbe_disable_pm(u32 cpu) |
| 310 | { |
| 311 | u32 pm_ctrl; |
| 312 | pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON; |
| 313 | cbe_write_pm(cpu, pm_control, pm_ctrl); |
| 314 | } |
| 315 | EXPORT_SYMBOL_GPL(cbe_disable_pm); |
| 316 | |
| 317 | /* |
| 318 | * Reading from the trace_buffer. |
| 319 | * The trace buffer is two 64-bit registers. Reading from |
| 320 | * the second half automatically increments the trace_address. |
| 321 | */ |
| 322 | |
| 323 | void cbe_read_trace_buffer(u32 cpu, u64 *buf) |
| 324 | { |
| 325 | struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu); |
| 326 | |
| 327 | *buf++ = in_be64(&pmd_regs->trace_buffer_0_63); |
| 328 | *buf++ = in_be64(&pmd_regs->trace_buffer_64_127); |
| 329 | } |
| 330 | EXPORT_SYMBOL_GPL(cbe_read_trace_buffer); |
| 331 | |
| 332 | /* |
| 333 | * Enabling/disabling interrupts for the entire performance monitoring unit. |
| 334 | */ |
| 335 | |
| 336 | u32 cbe_get_and_clear_pm_interrupts(u32 cpu) |
| 337 | { |
| 338 | /* Reading pm_status clears the interrupt bits. */ |
| 339 | return cbe_read_pm(cpu, pm_status); |
| 340 | } |
| 341 | EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts); |
| 342 | |
| 343 | void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask) |
| 344 | { |
| 345 | /* Set which node and thread will handle the next interrupt. */ |
| 346 | iic_set_interrupt_routing(cpu, thread, 0); |
| 347 | |
| 348 | /* Enable the interrupt bits in the pm_status register. */ |
| 349 | if (mask) |
| 350 | cbe_write_pm(cpu, pm_status, mask); |
| 351 | } |
| 352 | EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts); |
| 353 | |
| 354 | void cbe_disable_pm_interrupts(u32 cpu) |
| 355 | { |
| 356 | cbe_get_and_clear_pm_interrupts(cpu); |
| 357 | cbe_write_pm(cpu, pm_status, 0); |
| 358 | } |
| 359 | EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts); |
| 360 | |
| 361 | static irqreturn_t cbe_pm_irq(int irq, void *dev_id) |
| 362 | { |
| 363 | perf_irq(get_irq_regs()); |
| 364 | return IRQ_HANDLED; |
| 365 | } |
| 366 | |
| 367 | static int __init cbe_init_pm_irq(void) |
| 368 | { |
| 369 | unsigned int irq; |
| 370 | int rc, node; |
| 371 | |
| 372 | for_each_online_node(node) { |
| 373 | irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI | |
| 374 | (node << IIC_IRQ_NODE_SHIFT)); |
| 375 | if (!irq) { |
| 376 | printk("ERROR: Unable to allocate irq for node %d\n", |
| 377 | node); |
| 378 | return -EINVAL; |
| 379 | } |
| 380 | |
| 381 | rc = request_irq(irq, cbe_pm_irq, |
| 382 | 0, "cbe-pmu-0", NULL); |
| 383 | if (rc) { |
| 384 | printk("ERROR: Request for irq on node %d failed\n", |
| 385 | node); |
| 386 | return rc; |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | machine_arch_initcall(cell, cbe_init_pm_irq); |
| 393 | |
| 394 | void cbe_sync_irq(int node) |
| 395 | { |
| 396 | unsigned int irq; |
| 397 | |
| 398 | irq = irq_find_mapping(NULL, |
| 399 | IIC_IRQ_IOEX_PMI |
| 400 | | (node << IIC_IRQ_NODE_SHIFT)); |
| 401 | |
| 402 | if (!irq) { |
| 403 | printk(KERN_WARNING "ERROR, unable to get existing irq %d " \ |
| 404 | "for node %d\n", irq, node); |
| 405 | return; |
| 406 | } |
| 407 | |
| 408 | synchronize_irq(irq); |
| 409 | } |
| 410 | EXPORT_SYMBOL_GPL(cbe_sync_irq); |
| 411 | |