blob: 05e1367c23d5727a74221239d24ac2b2d2d1e04c [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10#include <linux/kernel.h>
11#include <linux/sched.h>
12#include <linux/sched/task_stack.h>
13#include <linux/mm.h>
14#include <linux/smp.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/elf.h>
22#include <linux/regset.h>
23#include <linux/tracehook.h>
24#include <linux/seccomp.h>
25#include <linux/compat.h>
26#include <trace/syscall.h>
27#include <asm/page.h>
28#include <asm/pgtable.h>
29#include <asm/pgalloc.h>
30#include <linux/uaccess.h>
31#include <asm/unistd.h>
32#include <asm/switch_to.h>
33#include <asm/runtime_instr.h>
34#include <asm/facility.h>
35
36#include "entry.h"
37
38#ifdef CONFIG_COMPAT
39#include "compat_ptrace.h"
40#endif
41
42#define CREATE_TRACE_POINTS
43#include <trace/events/syscalls.h>
44
45void update_cr_regs(struct task_struct *task)
46{
47 struct pt_regs *regs = task_pt_regs(task);
48 struct thread_struct *thread = &task->thread;
49 struct per_regs old, new;
50 union ctlreg0 cr0_old, cr0_new;
51 union ctlreg2 cr2_old, cr2_new;
52 int cr0_changed, cr2_changed;
53
54 __ctl_store(cr0_old.val, 0, 0);
55 __ctl_store(cr2_old.val, 2, 2);
56 cr0_new = cr0_old;
57 cr2_new = cr2_old;
58 /* Take care of the enable/disable of transactional execution. */
59 if (MACHINE_HAS_TE) {
60 /* Set or clear transaction execution TXC bit 8. */
61 cr0_new.tcx = 1;
62 if (task->thread.per_flags & PER_FLAG_NO_TE)
63 cr0_new.tcx = 0;
64 /* Set or clear transaction execution TDC bits 62 and 63. */
65 cr2_new.tdc = 0;
66 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
67 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
68 cr2_new.tdc = 1;
69 else
70 cr2_new.tdc = 2;
71 }
72 }
73 /* Take care of enable/disable of guarded storage. */
74 if (MACHINE_HAS_GS) {
75 cr2_new.gse = 0;
76 if (task->thread.gs_cb)
77 cr2_new.gse = 1;
78 }
79 /* Load control register 0/2 iff changed */
80 cr0_changed = cr0_new.val != cr0_old.val;
81 cr2_changed = cr2_new.val != cr2_old.val;
82 if (cr0_changed)
83 __ctl_load(cr0_new.val, 0, 0);
84 if (cr2_changed)
85 __ctl_load(cr2_new.val, 2, 2);
86 /* Copy user specified PER registers */
87 new.control = thread->per_user.control;
88 new.start = thread->per_user.start;
89 new.end = thread->per_user.end;
90
91 /* merge TIF_SINGLE_STEP into user specified PER registers. */
92 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
93 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
94 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
95 new.control |= PER_EVENT_BRANCH;
96 else
97 new.control |= PER_EVENT_IFETCH;
98 new.control |= PER_CONTROL_SUSPENSION;
99 new.control |= PER_EVENT_TRANSACTION_END;
100 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101 new.control |= PER_EVENT_IFETCH;
102 new.start = 0;
103 new.end = -1UL;
104 }
105
106 /* Take care of the PER enablement bit in the PSW. */
107 if (!(new.control & PER_EVENT_MASK)) {
108 regs->psw.mask &= ~PSW_MASK_PER;
109 return;
110 }
111 regs->psw.mask |= PSW_MASK_PER;
112 __ctl_store(old, 9, 11);
113 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114 __ctl_load(new, 9, 11);
115}
116
117void user_enable_single_step(struct task_struct *task)
118{
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121}
122
123void user_disable_single_step(struct task_struct *task)
124{
125 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127}
128
129void user_enable_block_step(struct task_struct *task)
130{
131 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133}
134
135/*
136 * Called by kernel/ptrace.c when detaching..
137 *
138 * Clear all debugging related fields.
139 */
140void ptrace_disable(struct task_struct *task)
141{
142 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146 task->thread.per_flags = 0;
147}
148
149#define __ADDR_MASK 7
150
151static inline unsigned long __peek_user_per(struct task_struct *child,
152 addr_t addr)
153{
154 struct per_struct_kernel *dummy = NULL;
155
156 if (addr == (addr_t) &dummy->cr9)
157 /* Control bits of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 PER_EVENT_IFETCH : child->thread.per_user.control;
160 else if (addr == (addr_t) &dummy->cr10)
161 /* Start address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 0 : child->thread.per_user.start;
164 else if (addr == (addr_t) &dummy->cr11)
165 /* End address of the active per set. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 -1UL : child->thread.per_user.end;
168 else if (addr == (addr_t) &dummy->bits)
169 /* Single-step bit. */
170 return test_thread_flag(TIF_SINGLE_STEP) ?
171 (1UL << (BITS_PER_LONG - 1)) : 0;
172 else if (addr == (addr_t) &dummy->starting_addr)
173 /* Start address of the user specified per set. */
174 return child->thread.per_user.start;
175 else if (addr == (addr_t) &dummy->ending_addr)
176 /* End address of the user specified per set. */
177 return child->thread.per_user.end;
178 else if (addr == (addr_t) &dummy->perc_atmid)
179 /* PER code, ATMID and AI of the last PER trap */
180 return (unsigned long)
181 child->thread.per_event.cause << (BITS_PER_LONG - 16);
182 else if (addr == (addr_t) &dummy->address)
183 /* Address of the last PER trap */
184 return child->thread.per_event.address;
185 else if (addr == (addr_t) &dummy->access_id)
186 /* Access id of the last PER trap */
187 return (unsigned long)
188 child->thread.per_event.paid << (BITS_PER_LONG - 8);
189 return 0;
190}
191
192/*
193 * Read the word at offset addr from the user area of a process. The
194 * trouble here is that the information is littered over different
195 * locations. The process registers are found on the kernel stack,
196 * the floating point stuff and the trace settings are stored in
197 * the task structure. In addition the different structures in
198 * struct user contain pad bytes that should be read as zeroes.
199 * Lovely...
200 */
201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
202{
203 struct user *dummy = NULL;
204 addr_t offset, tmp;
205
206 if (addr < (addr_t) &dummy->regs.acrs) {
207 /*
208 * psw and gprs are stored on the stack
209 */
210 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211 if (addr == (addr_t) &dummy->regs.psw.mask) {
212 /* Return a clean psw mask. */
213 tmp &= PSW_MASK_USER | PSW_MASK_RI;
214 tmp |= PSW_USER_BITS;
215 }
216
217 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
218 /*
219 * access registers are stored in the thread structure
220 */
221 offset = addr - (addr_t) &dummy->regs.acrs;
222 /*
223 * Very special case: old & broken 64 bit gdb reading
224 * from acrs[15]. Result is a 64 bit value. Read the
225 * 32 bit acrs[15] value and shift it by 32. Sick...
226 */
227 if (addr == (addr_t) &dummy->regs.acrs[15])
228 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229 else
230 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231
232 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233 /*
234 * orig_gpr2 is stored on the kernel stack
235 */
236 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237
238 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239 /*
240 * prevent reads of padding hole between
241 * orig_gpr2 and fp_regs on s390.
242 */
243 tmp = 0;
244
245 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
246 /*
247 * floating point control reg. is in the thread structure
248 */
249 tmp = child->thread.fpu.fpc;
250 tmp <<= BITS_PER_LONG - 32;
251
252 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
253 /*
254 * floating point regs. are either in child->thread.fpu
255 * or the child->thread.fpu.vxrs array
256 */
257 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
258 if (MACHINE_HAS_VX)
259 tmp = *(addr_t *)
260 ((addr_t) child->thread.fpu.vxrs + 2*offset);
261 else
262 tmp = *(addr_t *)
263 ((addr_t) child->thread.fpu.fprs + offset);
264
265 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
266 /*
267 * Handle access to the per_info structure.
268 */
269 addr -= (addr_t) &dummy->regs.per_info;
270 tmp = __peek_user_per(child, addr);
271
272 } else
273 tmp = 0;
274
275 return tmp;
276}
277
278static int
279peek_user(struct task_struct *child, addr_t addr, addr_t data)
280{
281 addr_t tmp, mask;
282
283 /*
284 * Stupid gdb peeks/pokes the access registers in 64 bit with
285 * an alignment of 4. Programmers from hell...
286 */
287 mask = __ADDR_MASK;
288 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
289 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
290 mask = 3;
291 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292 return -EIO;
293
294 tmp = __peek_user(child, addr);
295 return put_user(tmp, (addr_t __user *) data);
296}
297
298static inline void __poke_user_per(struct task_struct *child,
299 addr_t addr, addr_t data)
300{
301 struct per_struct_kernel *dummy = NULL;
302
303 /*
304 * There are only three fields in the per_info struct that the
305 * debugger user can write to.
306 * 1) cr9: the debugger wants to set a new PER event mask
307 * 2) starting_addr: the debugger wants to set a new starting
308 * address to use with the PER event mask.
309 * 3) ending_addr: the debugger wants to set a new ending
310 * address to use with the PER event mask.
311 * The user specified PER event mask and the start and end
312 * addresses are used only if single stepping is not in effect.
313 * Writes to any other field in per_info are ignored.
314 */
315 if (addr == (addr_t) &dummy->cr9)
316 /* PER event mask of the user specified per set. */
317 child->thread.per_user.control =
318 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
319 else if (addr == (addr_t) &dummy->starting_addr)
320 /* Starting address of the user specified per set. */
321 child->thread.per_user.start = data;
322 else if (addr == (addr_t) &dummy->ending_addr)
323 /* Ending address of the user specified per set. */
324 child->thread.per_user.end = data;
325}
326
327static void fixup_int_code(struct task_struct *child, addr_t data)
328{
329 struct pt_regs *regs = task_pt_regs(child);
330 int ilc = regs->int_code >> 16;
331 u16 insn;
332
333 if (ilc > 6)
334 return;
335
336 if (ptrace_access_vm(child, regs->psw.addr - (regs->int_code >> 16),
337 &insn, sizeof(insn), FOLL_FORCE) != sizeof(insn))
338 return;
339
340 /* double check that tracee stopped on svc instruction */
341 if ((insn >> 8) != 0xa)
342 return;
343
344 regs->int_code = 0x20000 | (data & 0xffff);
345}
346/*
347 * Write a word to the user area of a process at location addr. This
348 * operation does have an additional problem compared to peek_user.
349 * Stores to the program status word and on the floating point
350 * control register needs to get checked for validity.
351 */
352static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
353{
354 struct user *dummy = NULL;
355 addr_t offset;
356
357
358 if (addr < (addr_t) &dummy->regs.acrs) {
359 struct pt_regs *regs = task_pt_regs(child);
360 /*
361 * psw and gprs are stored on the stack
362 */
363 if (addr == (addr_t) &dummy->regs.psw.mask) {
364 unsigned long mask = PSW_MASK_USER;
365
366 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
367 if ((data ^ PSW_USER_BITS) & ~mask)
368 /* Invalid psw mask. */
369 return -EINVAL;
370 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
371 /* Invalid address-space-control bits */
372 return -EINVAL;
373 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
374 /* Invalid addressing mode bits */
375 return -EINVAL;
376 }
377
378 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
379 addr == offsetof(struct user, regs.gprs[2]))
380 fixup_int_code(child, data);
381 *(addr_t *)((addr_t) &regs->psw + addr) = data;
382
383 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
384 /*
385 * access registers are stored in the thread structure
386 */
387 offset = addr - (addr_t) &dummy->regs.acrs;
388 /*
389 * Very special case: old & broken 64 bit gdb writing
390 * to acrs[15] with a 64 bit value. Ignore the lower
391 * half of the value and write the upper 32 bit to
392 * acrs[15]. Sick...
393 */
394 if (addr == (addr_t) &dummy->regs.acrs[15])
395 child->thread.acrs[15] = (unsigned int) (data >> 32);
396 else
397 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
398
399 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
400 /*
401 * orig_gpr2 is stored on the kernel stack
402 */
403 task_pt_regs(child)->orig_gpr2 = data;
404
405 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
406 /*
407 * prevent writes of padding hole between
408 * orig_gpr2 and fp_regs on s390.
409 */
410 return 0;
411
412 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
413 /*
414 * floating point control reg. is in the thread structure
415 */
416 save_fpu_regs();
417 if ((unsigned int) data != 0 ||
418 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
419 return -EINVAL;
420 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
421
422 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
423 /*
424 * floating point regs. are either in child->thread.fpu
425 * or the child->thread.fpu.vxrs array
426 */
427 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
428 if (MACHINE_HAS_VX)
429 *(addr_t *)((addr_t)
430 child->thread.fpu.vxrs + 2*offset) = data;
431 else
432 *(addr_t *)((addr_t)
433 child->thread.fpu.fprs + offset) = data;
434
435 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
436 /*
437 * Handle access to the per_info structure.
438 */
439 addr -= (addr_t) &dummy->regs.per_info;
440 __poke_user_per(child, addr, data);
441
442 }
443
444 return 0;
445}
446
447static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
448{
449 addr_t mask;
450
451 /*
452 * Stupid gdb peeks/pokes the access registers in 64 bit with
453 * an alignment of 4. Programmers from hell indeed...
454 */
455 mask = __ADDR_MASK;
456 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
457 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
458 mask = 3;
459 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
460 return -EIO;
461
462 return __poke_user(child, addr, data);
463}
464
465long arch_ptrace(struct task_struct *child, long request,
466 unsigned long addr, unsigned long data)
467{
468 ptrace_area parea;
469 int copied, ret;
470
471 switch (request) {
472 case PTRACE_PEEKUSR:
473 /* read the word at location addr in the USER area. */
474 return peek_user(child, addr, data);
475
476 case PTRACE_POKEUSR:
477 /* write the word at location addr in the USER area */
478 return poke_user(child, addr, data);
479
480 case PTRACE_PEEKUSR_AREA:
481 case PTRACE_POKEUSR_AREA:
482 if (copy_from_user(&parea, (void __force __user *) addr,
483 sizeof(parea)))
484 return -EFAULT;
485 addr = parea.kernel_addr;
486 data = parea.process_addr;
487 copied = 0;
488 while (copied < parea.len) {
489 if (request == PTRACE_PEEKUSR_AREA)
490 ret = peek_user(child, addr, data);
491 else {
492 addr_t utmp;
493 if (get_user(utmp,
494 (addr_t __force __user *) data))
495 return -EFAULT;
496 ret = poke_user(child, addr, utmp);
497 }
498 if (ret)
499 return ret;
500 addr += sizeof(unsigned long);
501 data += sizeof(unsigned long);
502 copied += sizeof(unsigned long);
503 }
504 return 0;
505 case PTRACE_GET_LAST_BREAK:
506 return put_user(child->thread.last_break, (unsigned long __user *)data);
507 case PTRACE_ENABLE_TE:
508 if (!MACHINE_HAS_TE)
509 return -EIO;
510 child->thread.per_flags &= ~PER_FLAG_NO_TE;
511 return 0;
512 case PTRACE_DISABLE_TE:
513 if (!MACHINE_HAS_TE)
514 return -EIO;
515 child->thread.per_flags |= PER_FLAG_NO_TE;
516 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
517 return 0;
518 case PTRACE_TE_ABORT_RAND:
519 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
520 return -EIO;
521 switch (data) {
522 case 0UL:
523 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
524 break;
525 case 1UL:
526 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
527 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
528 break;
529 case 2UL:
530 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
531 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
532 break;
533 default:
534 return -EINVAL;
535 }
536 return 0;
537 default:
538 return ptrace_request(child, request, addr, data);
539 }
540}
541
542#ifdef CONFIG_COMPAT
543/*
544 * Now the fun part starts... a 31 bit program running in the
545 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
546 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
547 * to handle, the difference to the 64 bit versions of the requests
548 * is that the access is done in multiples of 4 byte instead of
549 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
550 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
551 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
552 * is a 31 bit program too, the content of struct user can be
553 * emulated. A 31 bit program peeking into the struct user of
554 * a 64 bit program is a no-no.
555 */
556
557/*
558 * Same as peek_user_per but for a 31 bit program.
559 */
560static inline __u32 __peek_user_per_compat(struct task_struct *child,
561 addr_t addr)
562{
563 struct compat_per_struct_kernel *dummy32 = NULL;
564
565 if (addr == (addr_t) &dummy32->cr9)
566 /* Control bits of the active per set. */
567 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
568 PER_EVENT_IFETCH : child->thread.per_user.control;
569 else if (addr == (addr_t) &dummy32->cr10)
570 /* Start address of the active per set. */
571 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
572 0 : child->thread.per_user.start;
573 else if (addr == (addr_t) &dummy32->cr11)
574 /* End address of the active per set. */
575 return test_thread_flag(TIF_SINGLE_STEP) ?
576 PSW32_ADDR_INSN : child->thread.per_user.end;
577 else if (addr == (addr_t) &dummy32->bits)
578 /* Single-step bit. */
579 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
580 0x80000000 : 0;
581 else if (addr == (addr_t) &dummy32->starting_addr)
582 /* Start address of the user specified per set. */
583 return (__u32) child->thread.per_user.start;
584 else if (addr == (addr_t) &dummy32->ending_addr)
585 /* End address of the user specified per set. */
586 return (__u32) child->thread.per_user.end;
587 else if (addr == (addr_t) &dummy32->perc_atmid)
588 /* PER code, ATMID and AI of the last PER trap */
589 return (__u32) child->thread.per_event.cause << 16;
590 else if (addr == (addr_t) &dummy32->address)
591 /* Address of the last PER trap */
592 return (__u32) child->thread.per_event.address;
593 else if (addr == (addr_t) &dummy32->access_id)
594 /* Access id of the last PER trap */
595 return (__u32) child->thread.per_event.paid << 24;
596 return 0;
597}
598
599/*
600 * Same as peek_user but for a 31 bit program.
601 */
602static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
603{
604 struct compat_user *dummy32 = NULL;
605 addr_t offset;
606 __u32 tmp;
607
608 if (addr < (addr_t) &dummy32->regs.acrs) {
609 struct pt_regs *regs = task_pt_regs(child);
610 /*
611 * psw and gprs are stored on the stack
612 */
613 if (addr == (addr_t) &dummy32->regs.psw.mask) {
614 /* Fake a 31 bit psw mask. */
615 tmp = (__u32)(regs->psw.mask >> 32);
616 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
617 tmp |= PSW32_USER_BITS;
618 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
619 /* Fake a 31 bit psw address. */
620 tmp = (__u32) regs->psw.addr |
621 (__u32)(regs->psw.mask & PSW_MASK_BA);
622 } else {
623 /* gpr 0-15 */
624 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
625 }
626 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
627 /*
628 * access registers are stored in the thread structure
629 */
630 offset = addr - (addr_t) &dummy32->regs.acrs;
631 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
632
633 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
634 /*
635 * orig_gpr2 is stored on the kernel stack
636 */
637 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
638
639 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
640 /*
641 * prevent reads of padding hole between
642 * orig_gpr2 and fp_regs on s390.
643 */
644 tmp = 0;
645
646 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
647 /*
648 * floating point control reg. is in the thread structure
649 */
650 tmp = child->thread.fpu.fpc;
651
652 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
653 /*
654 * floating point regs. are either in child->thread.fpu
655 * or the child->thread.fpu.vxrs array
656 */
657 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
658 if (MACHINE_HAS_VX)
659 tmp = *(__u32 *)
660 ((addr_t) child->thread.fpu.vxrs + 2*offset);
661 else
662 tmp = *(__u32 *)
663 ((addr_t) child->thread.fpu.fprs + offset);
664
665 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
666 /*
667 * Handle access to the per_info structure.
668 */
669 addr -= (addr_t) &dummy32->regs.per_info;
670 tmp = __peek_user_per_compat(child, addr);
671
672 } else
673 tmp = 0;
674
675 return tmp;
676}
677
678static int peek_user_compat(struct task_struct *child,
679 addr_t addr, addr_t data)
680{
681 __u32 tmp;
682
683 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
684 return -EIO;
685
686 tmp = __peek_user_compat(child, addr);
687 return put_user(tmp, (__u32 __user *) data);
688}
689
690/*
691 * Same as poke_user_per but for a 31 bit program.
692 */
693static inline void __poke_user_per_compat(struct task_struct *child,
694 addr_t addr, __u32 data)
695{
696 struct compat_per_struct_kernel *dummy32 = NULL;
697
698 if (addr == (addr_t) &dummy32->cr9)
699 /* PER event mask of the user specified per set. */
700 child->thread.per_user.control =
701 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
702 else if (addr == (addr_t) &dummy32->starting_addr)
703 /* Starting address of the user specified per set. */
704 child->thread.per_user.start = data;
705 else if (addr == (addr_t) &dummy32->ending_addr)
706 /* Ending address of the user specified per set. */
707 child->thread.per_user.end = data;
708}
709
710/*
711 * Same as poke_user but for a 31 bit program.
712 */
713static int __poke_user_compat(struct task_struct *child,
714 addr_t addr, addr_t data)
715{
716 struct compat_user *dummy32 = NULL;
717 __u32 tmp = (__u32) data;
718 addr_t offset;
719
720 if (addr < (addr_t) &dummy32->regs.acrs) {
721 struct pt_regs *regs = task_pt_regs(child);
722 /*
723 * psw, gprs, acrs and orig_gpr2 are stored on the stack
724 */
725 if (addr == (addr_t) &dummy32->regs.psw.mask) {
726 __u32 mask = PSW32_MASK_USER;
727
728 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
729 /* Build a 64 bit psw mask from 31 bit mask. */
730 if ((tmp ^ PSW32_USER_BITS) & ~mask)
731 /* Invalid psw mask. */
732 return -EINVAL;
733 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
734 /* Invalid address-space-control bits */
735 return -EINVAL;
736 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
737 (regs->psw.mask & PSW_MASK_BA) |
738 (__u64)(tmp & mask) << 32;
739 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
740 /* Build a 64 bit psw address from 31 bit address. */
741 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
742 /* Transfer 31 bit amode bit to psw mask. */
743 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
744 (__u64)(tmp & PSW32_ADDR_AMODE);
745 } else {
746
747 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
748 addr == offsetof(struct compat_user, regs.gprs[2]))
749 fixup_int_code(child, data);
750 /* gpr 0-15 */
751 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
752 }
753 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
754 /*
755 * access registers are stored in the thread structure
756 */
757 offset = addr - (addr_t) &dummy32->regs.acrs;
758 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
759
760 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
761 /*
762 * orig_gpr2 is stored on the kernel stack
763 */
764 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
765
766 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
767 /*
768 * prevent writess of padding hole between
769 * orig_gpr2 and fp_regs on s390.
770 */
771 return 0;
772
773 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
774 /*
775 * floating point control reg. is in the thread structure
776 */
777 save_fpu_regs();
778 if (test_fp_ctl(tmp))
779 return -EINVAL;
780 child->thread.fpu.fpc = data;
781
782 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
783 /*
784 * floating point regs. are either in child->thread.fpu
785 * or the child->thread.fpu.vxrs array
786 */
787 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
788 if (MACHINE_HAS_VX)
789 *(__u32 *)((addr_t)
790 child->thread.fpu.vxrs + 2*offset) = tmp;
791 else
792 *(__u32 *)((addr_t)
793 child->thread.fpu.fprs + offset) = tmp;
794
795 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
796 /*
797 * Handle access to the per_info structure.
798 */
799 addr -= (addr_t) &dummy32->regs.per_info;
800 __poke_user_per_compat(child, addr, data);
801 }
802
803 return 0;
804}
805
806static int poke_user_compat(struct task_struct *child,
807 addr_t addr, addr_t data)
808{
809 if (!is_compat_task() || (addr & 3) ||
810 addr > sizeof(struct compat_user) - 3)
811 return -EIO;
812
813 return __poke_user_compat(child, addr, data);
814}
815
816long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
817 compat_ulong_t caddr, compat_ulong_t cdata)
818{
819 unsigned long addr = caddr;
820 unsigned long data = cdata;
821 compat_ptrace_area parea;
822 int copied, ret;
823
824 switch (request) {
825 case PTRACE_PEEKUSR:
826 /* read the word at location addr in the USER area. */
827 return peek_user_compat(child, addr, data);
828
829 case PTRACE_POKEUSR:
830 /* write the word at location addr in the USER area */
831 return poke_user_compat(child, addr, data);
832
833 case PTRACE_PEEKUSR_AREA:
834 case PTRACE_POKEUSR_AREA:
835 if (copy_from_user(&parea, (void __force __user *) addr,
836 sizeof(parea)))
837 return -EFAULT;
838 addr = parea.kernel_addr;
839 data = parea.process_addr;
840 copied = 0;
841 while (copied < parea.len) {
842 if (request == PTRACE_PEEKUSR_AREA)
843 ret = peek_user_compat(child, addr, data);
844 else {
845 __u32 utmp;
846 if (get_user(utmp,
847 (__u32 __force __user *) data))
848 return -EFAULT;
849 ret = poke_user_compat(child, addr, utmp);
850 }
851 if (ret)
852 return ret;
853 addr += sizeof(unsigned int);
854 data += sizeof(unsigned int);
855 copied += sizeof(unsigned int);
856 }
857 return 0;
858 case PTRACE_GET_LAST_BREAK:
859 return put_user(child->thread.last_break, (unsigned int __user *)data);
860 }
861 return compat_ptrace_request(child, request, addr, data);
862}
863#endif
864
865asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
866{
867 unsigned long mask = -1UL;
868 long ret = -1;
869
870 /*
871 * The sysc_tracesys code in entry.S stored the system
872 * call number to gprs[2].
873 */
874 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
875 tracehook_report_syscall_entry(regs)) {
876 /*
877 * Tracing decided this syscall should not happen. Skip
878 * the system call and the system call restart handling.
879 */
880 goto skip;
881 }
882
883 /* Do the secure computing check after ptrace. */
884 if (secure_computing(NULL)) {
885 /* seccomp failures shouldn't expose any additional code. */
886 goto skip;
887 }
888
889 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
890 trace_sys_enter(regs, regs->int_code & 0xffff);
891
892 if (is_compat_task())
893 mask = 0xffffffff;
894
895 audit_syscall_entry(regs->int_code & 0xffff, regs->orig_gpr2 & mask,
896 regs->gprs[3] &mask, regs->gprs[4] &mask,
897 regs->gprs[5] &mask);
898
899 if ((signed long)regs->gprs[2] >= NR_syscalls) {
900 regs->gprs[2] = -ENOSYS;
901 ret = -ENOSYS;
902 }
903 return regs->gprs[2];
904skip:
905 clear_pt_regs_flag(regs, PIF_SYSCALL);
906 return ret;
907}
908
909asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
910{
911 audit_syscall_exit(regs);
912
913 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
914 trace_sys_exit(regs, regs->gprs[2]);
915
916 if (test_thread_flag(TIF_SYSCALL_TRACE))
917 tracehook_report_syscall_exit(regs, 0);
918}
919
920/*
921 * user_regset definitions.
922 */
923
924static int s390_regs_get(struct task_struct *target,
925 const struct user_regset *regset,
926 unsigned int pos, unsigned int count,
927 void *kbuf, void __user *ubuf)
928{
929 if (target == current)
930 save_access_regs(target->thread.acrs);
931
932 if (kbuf) {
933 unsigned long *k = kbuf;
934 while (count > 0) {
935 *k++ = __peek_user(target, pos);
936 count -= sizeof(*k);
937 pos += sizeof(*k);
938 }
939 } else {
940 unsigned long __user *u = ubuf;
941 while (count > 0) {
942 if (__put_user(__peek_user(target, pos), u++))
943 return -EFAULT;
944 count -= sizeof(*u);
945 pos += sizeof(*u);
946 }
947 }
948 return 0;
949}
950
951static int s390_regs_set(struct task_struct *target,
952 const struct user_regset *regset,
953 unsigned int pos, unsigned int count,
954 const void *kbuf, const void __user *ubuf)
955{
956 int rc = 0;
957
958 if (target == current)
959 save_access_regs(target->thread.acrs);
960
961 if (kbuf) {
962 const unsigned long *k = kbuf;
963 while (count > 0 && !rc) {
964 rc = __poke_user(target, pos, *k++);
965 count -= sizeof(*k);
966 pos += sizeof(*k);
967 }
968 } else {
969 const unsigned long __user *u = ubuf;
970 while (count > 0 && !rc) {
971 unsigned long word;
972 rc = __get_user(word, u++);
973 if (rc)
974 break;
975 rc = __poke_user(target, pos, word);
976 count -= sizeof(*u);
977 pos += sizeof(*u);
978 }
979 }
980
981 if (rc == 0 && target == current)
982 restore_access_regs(target->thread.acrs);
983
984 return rc;
985}
986
987static int s390_fpregs_get(struct task_struct *target,
988 const struct user_regset *regset, unsigned int pos,
989 unsigned int count, void *kbuf, void __user *ubuf)
990{
991 _s390_fp_regs fp_regs;
992
993 if (target == current)
994 save_fpu_regs();
995
996 fp_regs.fpc = target->thread.fpu.fpc;
997 fpregs_store(&fp_regs, &target->thread.fpu);
998
999 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1000 &fp_regs, 0, -1);
1001}
1002
1003static int s390_fpregs_set(struct task_struct *target,
1004 const struct user_regset *regset, unsigned int pos,
1005 unsigned int count, const void *kbuf,
1006 const void __user *ubuf)
1007{
1008 int rc = 0;
1009 freg_t fprs[__NUM_FPRS];
1010
1011 save_fpu_regs();
1012 if (MACHINE_HAS_VX)
1013 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
1014 else
1015 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
1016
1017 /* If setting FPC, must validate it first. */
1018 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
1019 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
1020 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
1021 0, offsetof(s390_fp_regs, fprs));
1022 if (rc)
1023 return rc;
1024 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
1025 return -EINVAL;
1026 target->thread.fpu.fpc = ufpc[0];
1027 }
1028
1029 if (rc == 0 && count > 0)
1030 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1031 fprs, offsetof(s390_fp_regs, fprs), -1);
1032 if (rc)
1033 return rc;
1034
1035 if (MACHINE_HAS_VX)
1036 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1037 else
1038 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1039
1040 return rc;
1041}
1042
1043static int s390_last_break_get(struct task_struct *target,
1044 const struct user_regset *regset,
1045 unsigned int pos, unsigned int count,
1046 void *kbuf, void __user *ubuf)
1047{
1048 if (count > 0) {
1049 if (kbuf) {
1050 unsigned long *k = kbuf;
1051 *k = target->thread.last_break;
1052 } else {
1053 unsigned long __user *u = ubuf;
1054 if (__put_user(target->thread.last_break, u))
1055 return -EFAULT;
1056 }
1057 }
1058 return 0;
1059}
1060
1061static int s390_last_break_set(struct task_struct *target,
1062 const struct user_regset *regset,
1063 unsigned int pos, unsigned int count,
1064 const void *kbuf, const void __user *ubuf)
1065{
1066 return 0;
1067}
1068
1069static int s390_tdb_get(struct task_struct *target,
1070 const struct user_regset *regset,
1071 unsigned int pos, unsigned int count,
1072 void *kbuf, void __user *ubuf)
1073{
1074 struct pt_regs *regs = task_pt_regs(target);
1075 unsigned char *data;
1076
1077 if (!(regs->int_code & 0x200))
1078 return -ENODATA;
1079 data = target->thread.trap_tdb;
1080 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1081}
1082
1083static int s390_tdb_set(struct task_struct *target,
1084 const struct user_regset *regset,
1085 unsigned int pos, unsigned int count,
1086 const void *kbuf, const void __user *ubuf)
1087{
1088 return 0;
1089}
1090
1091static int s390_vxrs_low_get(struct task_struct *target,
1092 const struct user_regset *regset,
1093 unsigned int pos, unsigned int count,
1094 void *kbuf, void __user *ubuf)
1095{
1096 __u64 vxrs[__NUM_VXRS_LOW];
1097 int i;
1098
1099 if (!MACHINE_HAS_VX)
1100 return -ENODEV;
1101 if (target == current)
1102 save_fpu_regs();
1103 for (i = 0; i < __NUM_VXRS_LOW; i++)
1104 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1105 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1106}
1107
1108static int s390_vxrs_low_set(struct task_struct *target,
1109 const struct user_regset *regset,
1110 unsigned int pos, unsigned int count,
1111 const void *kbuf, const void __user *ubuf)
1112{
1113 __u64 vxrs[__NUM_VXRS_LOW];
1114 int i, rc;
1115
1116 if (!MACHINE_HAS_VX)
1117 return -ENODEV;
1118 if (target == current)
1119 save_fpu_regs();
1120
1121 for (i = 0; i < __NUM_VXRS_LOW; i++)
1122 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1123
1124 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1125 if (rc == 0)
1126 for (i = 0; i < __NUM_VXRS_LOW; i++)
1127 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1128
1129 return rc;
1130}
1131
1132static int s390_vxrs_high_get(struct task_struct *target,
1133 const struct user_regset *regset,
1134 unsigned int pos, unsigned int count,
1135 void *kbuf, void __user *ubuf)
1136{
1137 __vector128 vxrs[__NUM_VXRS_HIGH];
1138
1139 if (!MACHINE_HAS_VX)
1140 return -ENODEV;
1141 if (target == current)
1142 save_fpu_regs();
1143 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1144
1145 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1146}
1147
1148static int s390_vxrs_high_set(struct task_struct *target,
1149 const struct user_regset *regset,
1150 unsigned int pos, unsigned int count,
1151 const void *kbuf, const void __user *ubuf)
1152{
1153 int rc;
1154
1155 if (!MACHINE_HAS_VX)
1156 return -ENODEV;
1157 if (target == current)
1158 save_fpu_regs();
1159
1160 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1161 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1162 return rc;
1163}
1164
1165static int s390_system_call_get(struct task_struct *target,
1166 const struct user_regset *regset,
1167 unsigned int pos, unsigned int count,
1168 void *kbuf, void __user *ubuf)
1169{
1170 unsigned int *data = &target->thread.system_call;
1171 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1172 data, 0, sizeof(unsigned int));
1173}
1174
1175static int s390_system_call_set(struct task_struct *target,
1176 const struct user_regset *regset,
1177 unsigned int pos, unsigned int count,
1178 const void *kbuf, const void __user *ubuf)
1179{
1180 unsigned int *data = &target->thread.system_call;
1181 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1182 data, 0, sizeof(unsigned int));
1183}
1184
1185static int s390_gs_cb_get(struct task_struct *target,
1186 const struct user_regset *regset,
1187 unsigned int pos, unsigned int count,
1188 void *kbuf, void __user *ubuf)
1189{
1190 struct gs_cb *data = target->thread.gs_cb;
1191
1192 if (!MACHINE_HAS_GS)
1193 return -ENODEV;
1194 if (!data)
1195 return -ENODATA;
1196 if (target == current)
1197 save_gs_cb(data);
1198 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1199 data, 0, sizeof(struct gs_cb));
1200}
1201
1202static int s390_gs_cb_set(struct task_struct *target,
1203 const struct user_regset *regset,
1204 unsigned int pos, unsigned int count,
1205 const void *kbuf, const void __user *ubuf)
1206{
1207 struct gs_cb gs_cb = { }, *data = NULL;
1208 int rc;
1209
1210 if (!MACHINE_HAS_GS)
1211 return -ENODEV;
1212 if (!target->thread.gs_cb) {
1213 data = kzalloc(sizeof(*data), GFP_KERNEL);
1214 if (!data)
1215 return -ENOMEM;
1216 }
1217 if (!target->thread.gs_cb)
1218 gs_cb.gsd = 25;
1219 else if (target == current)
1220 save_gs_cb(&gs_cb);
1221 else
1222 gs_cb = *target->thread.gs_cb;
1223 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1224 &gs_cb, 0, sizeof(gs_cb));
1225 if (rc) {
1226 kfree(data);
1227 return -EFAULT;
1228 }
1229 preempt_disable();
1230 if (!target->thread.gs_cb)
1231 target->thread.gs_cb = data;
1232 *target->thread.gs_cb = gs_cb;
1233 if (target == current) {
1234 __ctl_set_bit(2, 4);
1235 restore_gs_cb(target->thread.gs_cb);
1236 }
1237 preempt_enable();
1238 return rc;
1239}
1240
1241static int s390_gs_bc_get(struct task_struct *target,
1242 const struct user_regset *regset,
1243 unsigned int pos, unsigned int count,
1244 void *kbuf, void __user *ubuf)
1245{
1246 struct gs_cb *data = target->thread.gs_bc_cb;
1247
1248 if (!MACHINE_HAS_GS)
1249 return -ENODEV;
1250 if (!data)
1251 return -ENODATA;
1252 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1253 data, 0, sizeof(struct gs_cb));
1254}
1255
1256static int s390_gs_bc_set(struct task_struct *target,
1257 const struct user_regset *regset,
1258 unsigned int pos, unsigned int count,
1259 const void *kbuf, const void __user *ubuf)
1260{
1261 struct gs_cb *data = target->thread.gs_bc_cb;
1262
1263 if (!MACHINE_HAS_GS)
1264 return -ENODEV;
1265 if (!data) {
1266 data = kzalloc(sizeof(*data), GFP_KERNEL);
1267 if (!data)
1268 return -ENOMEM;
1269 target->thread.gs_bc_cb = data;
1270 }
1271 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1272 data, 0, sizeof(struct gs_cb));
1273}
1274
1275static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1276{
1277 return (cb->rca & 0x1f) == 0 &&
1278 (cb->roa & 0xfff) == 0 &&
1279 (cb->rla & 0xfff) == 0xfff &&
1280 cb->s == 1 &&
1281 cb->k == 1 &&
1282 cb->h == 0 &&
1283 cb->reserved1 == 0 &&
1284 cb->ps == 1 &&
1285 cb->qs == 0 &&
1286 cb->pc == 1 &&
1287 cb->qc == 0 &&
1288 cb->reserved2 == 0 &&
1289 cb->reserved3 == 0 &&
1290 cb->reserved4 == 0 &&
1291 cb->reserved5 == 0 &&
1292 cb->reserved6 == 0 &&
1293 cb->reserved7 == 0 &&
1294 cb->reserved8 == 0 &&
1295 cb->rla >= cb->roa &&
1296 cb->rca >= cb->roa &&
1297 cb->rca <= cb->rla+1 &&
1298 cb->m < 3;
1299}
1300
1301static int s390_runtime_instr_get(struct task_struct *target,
1302 const struct user_regset *regset,
1303 unsigned int pos, unsigned int count,
1304 void *kbuf, void __user *ubuf)
1305{
1306 struct runtime_instr_cb *data = target->thread.ri_cb;
1307
1308 if (!test_facility(64))
1309 return -ENODEV;
1310 if (!data)
1311 return -ENODATA;
1312
1313 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1314 data, 0, sizeof(struct runtime_instr_cb));
1315}
1316
1317static int s390_runtime_instr_set(struct task_struct *target,
1318 const struct user_regset *regset,
1319 unsigned int pos, unsigned int count,
1320 const void *kbuf, const void __user *ubuf)
1321{
1322 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1323 int rc;
1324
1325 if (!test_facility(64))
1326 return -ENODEV;
1327
1328 if (!target->thread.ri_cb) {
1329 data = kzalloc(sizeof(*data), GFP_KERNEL);
1330 if (!data)
1331 return -ENOMEM;
1332 }
1333
1334 if (target->thread.ri_cb) {
1335 if (target == current)
1336 store_runtime_instr_cb(&ri_cb);
1337 else
1338 ri_cb = *target->thread.ri_cb;
1339 }
1340
1341 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1342 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1343 if (rc) {
1344 kfree(data);
1345 return -EFAULT;
1346 }
1347
1348 if (!is_ri_cb_valid(&ri_cb)) {
1349 kfree(data);
1350 return -EINVAL;
1351 }
1352 /*
1353 * Override access key in any case, since user space should
1354 * not be able to set it, nor should it care about it.
1355 */
1356 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1357 preempt_disable();
1358 if (!target->thread.ri_cb)
1359 target->thread.ri_cb = data;
1360 *target->thread.ri_cb = ri_cb;
1361 if (target == current)
1362 load_runtime_instr_cb(target->thread.ri_cb);
1363 preempt_enable();
1364
1365 return 0;
1366}
1367
1368static const struct user_regset s390_regsets[] = {
1369 {
1370 .core_note_type = NT_PRSTATUS,
1371 .n = sizeof(s390_regs) / sizeof(long),
1372 .size = sizeof(long),
1373 .align = sizeof(long),
1374 .get = s390_regs_get,
1375 .set = s390_regs_set,
1376 },
1377 {
1378 .core_note_type = NT_PRFPREG,
1379 .n = sizeof(s390_fp_regs) / sizeof(long),
1380 .size = sizeof(long),
1381 .align = sizeof(long),
1382 .get = s390_fpregs_get,
1383 .set = s390_fpregs_set,
1384 },
1385 {
1386 .core_note_type = NT_S390_SYSTEM_CALL,
1387 .n = 1,
1388 .size = sizeof(unsigned int),
1389 .align = sizeof(unsigned int),
1390 .get = s390_system_call_get,
1391 .set = s390_system_call_set,
1392 },
1393 {
1394 .core_note_type = NT_S390_LAST_BREAK,
1395 .n = 1,
1396 .size = sizeof(long),
1397 .align = sizeof(long),
1398 .get = s390_last_break_get,
1399 .set = s390_last_break_set,
1400 },
1401 {
1402 .core_note_type = NT_S390_TDB,
1403 .n = 1,
1404 .size = 256,
1405 .align = 1,
1406 .get = s390_tdb_get,
1407 .set = s390_tdb_set,
1408 },
1409 {
1410 .core_note_type = NT_S390_VXRS_LOW,
1411 .n = __NUM_VXRS_LOW,
1412 .size = sizeof(__u64),
1413 .align = sizeof(__u64),
1414 .get = s390_vxrs_low_get,
1415 .set = s390_vxrs_low_set,
1416 },
1417 {
1418 .core_note_type = NT_S390_VXRS_HIGH,
1419 .n = __NUM_VXRS_HIGH,
1420 .size = sizeof(__vector128),
1421 .align = sizeof(__vector128),
1422 .get = s390_vxrs_high_get,
1423 .set = s390_vxrs_high_set,
1424 },
1425 {
1426 .core_note_type = NT_S390_GS_CB,
1427 .n = sizeof(struct gs_cb) / sizeof(__u64),
1428 .size = sizeof(__u64),
1429 .align = sizeof(__u64),
1430 .get = s390_gs_cb_get,
1431 .set = s390_gs_cb_set,
1432 },
1433 {
1434 .core_note_type = NT_S390_GS_BC,
1435 .n = sizeof(struct gs_cb) / sizeof(__u64),
1436 .size = sizeof(__u64),
1437 .align = sizeof(__u64),
1438 .get = s390_gs_bc_get,
1439 .set = s390_gs_bc_set,
1440 },
1441 {
1442 .core_note_type = NT_S390_RI_CB,
1443 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1444 .size = sizeof(__u64),
1445 .align = sizeof(__u64),
1446 .get = s390_runtime_instr_get,
1447 .set = s390_runtime_instr_set,
1448 },
1449};
1450
1451static const struct user_regset_view user_s390_view = {
1452 .name = UTS_MACHINE,
1453 .e_machine = EM_S390,
1454 .regsets = s390_regsets,
1455 .n = ARRAY_SIZE(s390_regsets)
1456};
1457
1458#ifdef CONFIG_COMPAT
1459static int s390_compat_regs_get(struct task_struct *target,
1460 const struct user_regset *regset,
1461 unsigned int pos, unsigned int count,
1462 void *kbuf, void __user *ubuf)
1463{
1464 if (target == current)
1465 save_access_regs(target->thread.acrs);
1466
1467 if (kbuf) {
1468 compat_ulong_t *k = kbuf;
1469 while (count > 0) {
1470 *k++ = __peek_user_compat(target, pos);
1471 count -= sizeof(*k);
1472 pos += sizeof(*k);
1473 }
1474 } else {
1475 compat_ulong_t __user *u = ubuf;
1476 while (count > 0) {
1477 if (__put_user(__peek_user_compat(target, pos), u++))
1478 return -EFAULT;
1479 count -= sizeof(*u);
1480 pos += sizeof(*u);
1481 }
1482 }
1483 return 0;
1484}
1485
1486static int s390_compat_regs_set(struct task_struct *target,
1487 const struct user_regset *regset,
1488 unsigned int pos, unsigned int count,
1489 const void *kbuf, const void __user *ubuf)
1490{
1491 int rc = 0;
1492
1493 if (target == current)
1494 save_access_regs(target->thread.acrs);
1495
1496 if (kbuf) {
1497 const compat_ulong_t *k = kbuf;
1498 while (count > 0 && !rc) {
1499 rc = __poke_user_compat(target, pos, *k++);
1500 count -= sizeof(*k);
1501 pos += sizeof(*k);
1502 }
1503 } else {
1504 const compat_ulong_t __user *u = ubuf;
1505 while (count > 0 && !rc) {
1506 compat_ulong_t word;
1507 rc = __get_user(word, u++);
1508 if (rc)
1509 break;
1510 rc = __poke_user_compat(target, pos, word);
1511 count -= sizeof(*u);
1512 pos += sizeof(*u);
1513 }
1514 }
1515
1516 if (rc == 0 && target == current)
1517 restore_access_regs(target->thread.acrs);
1518
1519 return rc;
1520}
1521
1522static int s390_compat_regs_high_get(struct task_struct *target,
1523 const struct user_regset *regset,
1524 unsigned int pos, unsigned int count,
1525 void *kbuf, void __user *ubuf)
1526{
1527 compat_ulong_t *gprs_high;
1528
1529 gprs_high = (compat_ulong_t *)
1530 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1531 if (kbuf) {
1532 compat_ulong_t *k = kbuf;
1533 while (count > 0) {
1534 *k++ = *gprs_high;
1535 gprs_high += 2;
1536 count -= sizeof(*k);
1537 }
1538 } else {
1539 compat_ulong_t __user *u = ubuf;
1540 while (count > 0) {
1541 if (__put_user(*gprs_high, u++))
1542 return -EFAULT;
1543 gprs_high += 2;
1544 count -= sizeof(*u);
1545 }
1546 }
1547 return 0;
1548}
1549
1550static int s390_compat_regs_high_set(struct task_struct *target,
1551 const struct user_regset *regset,
1552 unsigned int pos, unsigned int count,
1553 const void *kbuf, const void __user *ubuf)
1554{
1555 compat_ulong_t *gprs_high;
1556 int rc = 0;
1557
1558 gprs_high = (compat_ulong_t *)
1559 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1560 if (kbuf) {
1561 const compat_ulong_t *k = kbuf;
1562 while (count > 0) {
1563 *gprs_high = *k++;
1564 *gprs_high += 2;
1565 count -= sizeof(*k);
1566 }
1567 } else {
1568 const compat_ulong_t __user *u = ubuf;
1569 while (count > 0 && !rc) {
1570 unsigned long word;
1571 rc = __get_user(word, u++);
1572 if (rc)
1573 break;
1574 *gprs_high = word;
1575 *gprs_high += 2;
1576 count -= sizeof(*u);
1577 }
1578 }
1579
1580 return rc;
1581}
1582
1583static int s390_compat_last_break_get(struct task_struct *target,
1584 const struct user_regset *regset,
1585 unsigned int pos, unsigned int count,
1586 void *kbuf, void __user *ubuf)
1587{
1588 compat_ulong_t last_break;
1589
1590 if (count > 0) {
1591 last_break = target->thread.last_break;
1592 if (kbuf) {
1593 unsigned long *k = kbuf;
1594 *k = last_break;
1595 } else {
1596 unsigned long __user *u = ubuf;
1597 if (__put_user(last_break, u))
1598 return -EFAULT;
1599 }
1600 }
1601 return 0;
1602}
1603
1604static int s390_compat_last_break_set(struct task_struct *target,
1605 const struct user_regset *regset,
1606 unsigned int pos, unsigned int count,
1607 const void *kbuf, const void __user *ubuf)
1608{
1609 return 0;
1610}
1611
1612static const struct user_regset s390_compat_regsets[] = {
1613 {
1614 .core_note_type = NT_PRSTATUS,
1615 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1616 .size = sizeof(compat_long_t),
1617 .align = sizeof(compat_long_t),
1618 .get = s390_compat_regs_get,
1619 .set = s390_compat_regs_set,
1620 },
1621 {
1622 .core_note_type = NT_PRFPREG,
1623 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1624 .size = sizeof(compat_long_t),
1625 .align = sizeof(compat_long_t),
1626 .get = s390_fpregs_get,
1627 .set = s390_fpregs_set,
1628 },
1629 {
1630 .core_note_type = NT_S390_SYSTEM_CALL,
1631 .n = 1,
1632 .size = sizeof(compat_uint_t),
1633 .align = sizeof(compat_uint_t),
1634 .get = s390_system_call_get,
1635 .set = s390_system_call_set,
1636 },
1637 {
1638 .core_note_type = NT_S390_LAST_BREAK,
1639 .n = 1,
1640 .size = sizeof(long),
1641 .align = sizeof(long),
1642 .get = s390_compat_last_break_get,
1643 .set = s390_compat_last_break_set,
1644 },
1645 {
1646 .core_note_type = NT_S390_TDB,
1647 .n = 1,
1648 .size = 256,
1649 .align = 1,
1650 .get = s390_tdb_get,
1651 .set = s390_tdb_set,
1652 },
1653 {
1654 .core_note_type = NT_S390_VXRS_LOW,
1655 .n = __NUM_VXRS_LOW,
1656 .size = sizeof(__u64),
1657 .align = sizeof(__u64),
1658 .get = s390_vxrs_low_get,
1659 .set = s390_vxrs_low_set,
1660 },
1661 {
1662 .core_note_type = NT_S390_VXRS_HIGH,
1663 .n = __NUM_VXRS_HIGH,
1664 .size = sizeof(__vector128),
1665 .align = sizeof(__vector128),
1666 .get = s390_vxrs_high_get,
1667 .set = s390_vxrs_high_set,
1668 },
1669 {
1670 .core_note_type = NT_S390_HIGH_GPRS,
1671 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1672 .size = sizeof(compat_long_t),
1673 .align = sizeof(compat_long_t),
1674 .get = s390_compat_regs_high_get,
1675 .set = s390_compat_regs_high_set,
1676 },
1677 {
1678 .core_note_type = NT_S390_GS_CB,
1679 .n = sizeof(struct gs_cb) / sizeof(__u64),
1680 .size = sizeof(__u64),
1681 .align = sizeof(__u64),
1682 .get = s390_gs_cb_get,
1683 .set = s390_gs_cb_set,
1684 },
1685 {
1686 .core_note_type = NT_S390_GS_BC,
1687 .n = sizeof(struct gs_cb) / sizeof(__u64),
1688 .size = sizeof(__u64),
1689 .align = sizeof(__u64),
1690 .get = s390_gs_bc_get,
1691 .set = s390_gs_bc_set,
1692 },
1693 {
1694 .core_note_type = NT_S390_RI_CB,
1695 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1696 .size = sizeof(__u64),
1697 .align = sizeof(__u64),
1698 .get = s390_runtime_instr_get,
1699 .set = s390_runtime_instr_set,
1700 },
1701};
1702
1703static const struct user_regset_view user_s390_compat_view = {
1704 .name = "s390",
1705 .e_machine = EM_S390,
1706 .regsets = s390_compat_regsets,
1707 .n = ARRAY_SIZE(s390_compat_regsets)
1708};
1709#endif
1710
1711const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1712{
1713#ifdef CONFIG_COMPAT
1714 if (test_tsk_thread_flag(task, TIF_31BIT))
1715 return &user_s390_compat_view;
1716#endif
1717 return &user_s390_view;
1718}
1719
1720static const char *gpr_names[NUM_GPRS] = {
1721 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1722 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1723};
1724
1725unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1726{
1727 if (offset >= NUM_GPRS)
1728 return 0;
1729 return regs->gprs[offset];
1730}
1731
1732int regs_query_register_offset(const char *name)
1733{
1734 unsigned long offset;
1735
1736 if (!name || *name != 'r')
1737 return -EINVAL;
1738 if (kstrtoul(name + 1, 10, &offset))
1739 return -EINVAL;
1740 if (offset >= NUM_GPRS)
1741 return -EINVAL;
1742 return offset;
1743}
1744
1745const char *regs_query_register_name(unsigned int offset)
1746{
1747 if (offset >= NUM_GPRS)
1748 return NULL;
1749 return gpr_names[offset];
1750}
1751
1752static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1753{
1754 unsigned long ksp = kernel_stack_pointer(regs);
1755
1756 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1757}
1758
1759/**
1760 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1761 * @regs:pt_regs which contains kernel stack pointer.
1762 * @n:stack entry number.
1763 *
1764 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1765 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1766 * this returns 0.
1767 */
1768unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1769{
1770 unsigned long addr;
1771
1772 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1773 if (!regs_within_kernel_stack(regs, addr))
1774 return 0;
1775 return *(unsigned long *)addr;
1776}