blob: 1778bc5971e753b3d7b0f848da3bceebae5d9601 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __ASM_SH_PGTABLE_64_H
3#define __ASM_SH_PGTABLE_64_H
4
5/*
6 * include/asm-sh/pgtable_64.h
7 *
8 * This file contains the functions and defines necessary to modify and use
9 * the SuperH page table tree.
10 *
11 * Copyright (C) 2000, 2001 Paolo Alberelli
12 * Copyright (C) 2003, 2004 Paul Mundt
13 * Copyright (C) 2003, 2004 Richard Curnow
14 */
15#include <linux/threads.h>
16#include <asm/processor.h>
17#include <asm/page.h>
18
19/*
20 * Error outputs.
21 */
22#define pte_ERROR(e) \
23 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
24#define pgd_ERROR(e) \
25 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
26
27/*
28 * Table setting routines. Used within arch/mm only.
29 */
30#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
31
32static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
33{
34 unsigned long long x = ((unsigned long long) pteval.pte_low);
35 unsigned long long *xp = (unsigned long long *) pteptr;
36 /*
37 * Sign-extend based on NPHYS.
38 */
39 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
40}
41#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
42
43/*
44 * PGD defines. Top level.
45 */
46
47/* To find an entry in a generic PGD. */
48#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
49#define __pgd_offset(address) pgd_index(address)
50#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
51
52/* To find an entry in a kernel PGD. */
53#define pgd_offset_k(address) pgd_offset(&init_mm, address)
54
55#define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
56#define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
57
58/*
59 * PMD level access routines. Same notes as above.
60 */
61#define _PMD_EMPTY 0x0
62/* Either the PMD is empty or present, it's not paged out */
63#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
64#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
65#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
66#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
67
68#define pmd_page_vaddr(pmd_entry) \
69 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
70
71#define pmd_page(pmd) \
72 (virt_to_page(pmd_val(pmd)))
73
74/* PMD to PTE dereferencing */
75#define pte_index(address) \
76 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
77
78#define __pte_offset(address) pte_index(address)
79
80#define pte_offset_kernel(dir, addr) \
81 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
82
83#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
84#define pte_unmap(pte) do { } while (0)
85
86#ifndef __ASSEMBLY__
87/*
88 * PTEL coherent flags.
89 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
90 */
91/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
92 positions, to avoid expensive bit shuffling on every refill. The remaining
93 bits are used for s/w purposes and masked out on each refill.
94
95 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
96 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
97 swapped out, and it must be placed so that it doesn't overlap either the
98 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
99 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
100 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
101 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
102 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
103#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
104#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
105#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
106#define _PAGE_PRESENT 0x004 /* software: page referenced */
107#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
108#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
109#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
110#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
111#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
112#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
113#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
114#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
115#define _PAGE_ACCESSED 0x800 /* software: page referenced */
116
117/* Wrapper for extended mode pgprot twiddling */
118#define _PAGE_EXT(x) ((unsigned long long)(x) << 32)
119
120/*
121 * We can use the sign-extended bits in the PTEL to get 32 bits of
122 * software flags. This works for now because no implementations uses
123 * anything above the PPN field.
124 */
125#define _PAGE_WIRED _PAGE_EXT(0x001) /* software: wire the tlb entry */
126#define _PAGE_SPECIAL _PAGE_EXT(0x002)
127
128#define _PAGE_CLEAR_FLAGS (_PAGE_PRESENT | _PAGE_SHARED | \
129 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_WIRED)
130
131/* Mask which drops software flags */
132#define _PAGE_FLAGS_HARDWARE_MASK (NEFF_MASK & ~(_PAGE_CLEAR_FLAGS))
133
134/*
135 * HugeTLB support
136 */
137#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
138#define _PAGE_SZHUGE (_PAGE_SIZE0)
139#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
140#define _PAGE_SZHUGE (_PAGE_SIZE1)
141#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
142#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
143#endif
144
145/*
146 * Stub out _PAGE_SZHUGE if we don't have a good definition for it,
147 * to make pte_mkhuge() happy.
148 */
149#ifndef _PAGE_SZHUGE
150# define _PAGE_SZHUGE (0)
151#endif
152
153/*
154 * Default flags for a Kernel page.
155 * This is fundametally also SHARED because the main use of this define
156 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
157 * contextless.
158 *
159 * _PAGE_EXECUTE is required for modules
160 *
161 */
162#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
163 _PAGE_EXECUTE | \
164 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
165 _PAGE_SHARED)
166
167/* Default flags for a User page */
168#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
169
170#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
171 _PAGE_SPECIAL)
172
173/*
174 * We have full permissions (Read/Write/Execute/Shared).
175 */
176#define _PAGE_COMMON (_PAGE_PRESENT | _PAGE_USER | \
177 _PAGE_CACHABLE | _PAGE_ACCESSED)
178
179#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
180#define PAGE_SHARED __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_WRITE | \
181 _PAGE_SHARED)
182#define PAGE_EXECREAD __pgprot(_PAGE_COMMON | _PAGE_READ | _PAGE_EXECUTE)
183
184/*
185 * We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
186 * protection mode for the stack.
187 */
188#define PAGE_COPY PAGE_EXECREAD
189
190#define PAGE_READONLY __pgprot(_PAGE_COMMON | _PAGE_READ)
191#define PAGE_WRITEONLY __pgprot(_PAGE_COMMON | _PAGE_WRITE)
192#define PAGE_RWX __pgprot(_PAGE_COMMON | _PAGE_READ | \
193 _PAGE_WRITE | _PAGE_EXECUTE)
194#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
195
196#define PAGE_KERNEL_NOCACHE \
197 __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
198 _PAGE_EXECUTE | _PAGE_ACCESSED | \
199 _PAGE_DIRTY | _PAGE_SHARED)
200
201/* Make it a device mapping for maximum safety (e.g. for mapping device
202 registers into user-space via /dev/map). */
203#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
204#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
205
206/*
207 * PTE level access routines.
208 *
209 * Note1:
210 * It's the tree walk leaf. This is physical address to be stored.
211 *
212 * Note 2:
213 * Regarding the choice of _PTE_EMPTY:
214
215 We must choose a bit pattern that cannot be valid, whether or not the page
216 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
217 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
218 left for us to select. If we force bit[7]==0 when swapped out, we could use
219 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
220 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
221 empty. This is convenient, because the page tables get cleared to zero
222 when they are allocated.
223
224 */
225#define _PTE_EMPTY 0x0
226#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
227#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
228#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
229
230/*
231 * Some definitions to translate between mem_map, PTEs, and page
232 * addresses:
233 */
234
235/*
236 * Given a PTE, return the index of the mem_map[] entry corresponding
237 * to the page frame the PTE. Get the absolute physical address, make
238 * a relative physical address and translate it to an index.
239 */
240#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
241 __MEMORY_START) >> PAGE_SHIFT)
242
243/*
244 * Given a PTE, return the "struct page *".
245 */
246#define pte_page(x) (mem_map + pte_pagenr(x))
247
248/*
249 * Return number of (down rounded) MB corresponding to x pages.
250 */
251#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
252
253
254/*
255 * The following have defined behavior only work if pte_present() is true.
256 */
257static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
258static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
259static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
260static inline int pte_special(pte_t pte){ return pte_val(pte) & _PAGE_SPECIAL; }
261
262static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
263static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
264static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
265static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
266static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
267static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
268static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
269static inline pte_t pte_mkspecial(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SPECIAL)); return pte; }
270
271/*
272 * Conversion functions: convert a page and protection to a page entry.
273 *
274 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
275 */
276#define mk_pte(page,pgprot) \
277({ \
278 pte_t __pte; \
279 \
280 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
281 __MEMORY_START | pgprot_val((pgprot)))); \
282 __pte; \
283})
284
285/*
286 * This takes a (absolute) physical page address that is used
287 * by the remapping functions
288 */
289#define mk_pte_phys(physpage, pgprot) \
290({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
291
292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
294
295/* Encode and decode a swap entry */
296#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
297#define __swp_offset(x) ((x).val >> 8)
298#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
299#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
300#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
301
302#endif /* !__ASSEMBLY__ */
303
304#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
305#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
306
307#endif /* __ASM_SH_PGTABLE_64_H */