b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * Copyright (C) 1994 Linus Torvalds |
| 4 | * |
| 5 | * Pentium III FXSR, SSE support |
| 6 | * General FPU state handling cleanups |
| 7 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
| 8 | * x86-64 work by Andi Kleen 2002 |
| 9 | */ |
| 10 | |
| 11 | #ifndef _ASM_X86_FPU_INTERNAL_H |
| 12 | #define _ASM_X86_FPU_INTERNAL_H |
| 13 | |
| 14 | #include <linux/compat.h> |
| 15 | #include <linux/sched.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/mm.h> |
| 18 | |
| 19 | #include <asm/user.h> |
| 20 | #include <asm/fpu/api.h> |
| 21 | #include <asm/fpu/xstate.h> |
| 22 | #include <asm/cpufeature.h> |
| 23 | #include <asm/trace/fpu.h> |
| 24 | |
| 25 | /* |
| 26 | * High level FPU state handling functions: |
| 27 | */ |
| 28 | extern void fpu__prepare_read(struct fpu *fpu); |
| 29 | extern void fpu__prepare_write(struct fpu *fpu); |
| 30 | extern void fpu__save(struct fpu *fpu); |
| 31 | extern int fpu__restore_sig(void __user *buf, int ia32_frame); |
| 32 | extern void fpu__drop(struct fpu *fpu); |
| 33 | extern int fpu__copy(struct task_struct *dst, struct task_struct *src); |
| 34 | extern void fpu__clear(struct fpu *fpu); |
| 35 | extern int fpu__exception_code(struct fpu *fpu, int trap_nr); |
| 36 | extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate); |
| 37 | |
| 38 | /* |
| 39 | * Boot time FPU initialization functions: |
| 40 | */ |
| 41 | extern void fpu__init_cpu(void); |
| 42 | extern void fpu__init_system_xstate(void); |
| 43 | extern void fpu__init_cpu_xstate(void); |
| 44 | extern void fpu__init_system(void); |
| 45 | extern void fpu__init_check_bugs(void); |
| 46 | extern void fpu__resume_cpu(void); |
| 47 | extern u64 fpu__get_supported_xfeatures_mask(void); |
| 48 | |
| 49 | /* |
| 50 | * Debugging facility: |
| 51 | */ |
| 52 | #ifdef CONFIG_X86_DEBUG_FPU |
| 53 | # define WARN_ON_FPU(x) WARN_ON_ONCE(x) |
| 54 | #else |
| 55 | # define WARN_ON_FPU(x) ({ (void)(x); 0; }) |
| 56 | #endif |
| 57 | |
| 58 | /* |
| 59 | * FPU related CPU feature flag helper routines: |
| 60 | */ |
| 61 | static __always_inline __pure bool use_xsaveopt(void) |
| 62 | { |
| 63 | return static_cpu_has(X86_FEATURE_XSAVEOPT); |
| 64 | } |
| 65 | |
| 66 | static __always_inline __pure bool use_xsave(void) |
| 67 | { |
| 68 | return static_cpu_has(X86_FEATURE_XSAVE); |
| 69 | } |
| 70 | |
| 71 | static __always_inline __pure bool use_fxsr(void) |
| 72 | { |
| 73 | return static_cpu_has(X86_FEATURE_FXSR); |
| 74 | } |
| 75 | |
| 76 | /* |
| 77 | * fpstate handling functions: |
| 78 | */ |
| 79 | |
| 80 | extern union fpregs_state init_fpstate; |
| 81 | |
| 82 | extern void fpstate_init(union fpregs_state *state); |
| 83 | #ifdef CONFIG_MATH_EMULATION |
| 84 | extern void fpstate_init_soft(struct swregs_state *soft); |
| 85 | #else |
| 86 | static inline void fpstate_init_soft(struct swregs_state *soft) {} |
| 87 | #endif |
| 88 | |
| 89 | static inline void fpstate_init_xstate(struct xregs_state *xsave) |
| 90 | { |
| 91 | /* |
| 92 | * XRSTORS requires these bits set in xcomp_bv, or it will |
| 93 | * trigger #GP: |
| 94 | */ |
| 95 | xsave->header.xcomp_bv = XCOMP_BV_COMPACTED_FORMAT | xfeatures_mask; |
| 96 | } |
| 97 | |
| 98 | static inline void fpstate_init_fxstate(struct fxregs_state *fx) |
| 99 | { |
| 100 | fx->cwd = 0x37f; |
| 101 | fx->mxcsr = MXCSR_DEFAULT; |
| 102 | } |
| 103 | extern void fpstate_sanitize_xstate(struct fpu *fpu); |
| 104 | |
| 105 | /* Returns 0 or the negated trap number, which results in -EFAULT for #PF */ |
| 106 | #define user_insn(insn, output, input...) \ |
| 107 | ({ \ |
| 108 | int err; \ |
| 109 | \ |
| 110 | might_fault(); \ |
| 111 | \ |
| 112 | asm volatile(ASM_STAC "\n" \ |
| 113 | "1: " #insn "\n" \ |
| 114 | "2: " ASM_CLAC "\n" \ |
| 115 | ".section .fixup,\"ax\"\n" \ |
| 116 | "3: negl %%eax\n" \ |
| 117 | " jmp 2b\n" \ |
| 118 | ".previous\n" \ |
| 119 | _ASM_EXTABLE_FAULT(1b, 3b) \ |
| 120 | : [err] "=a" (err), output \ |
| 121 | : "0"(0), input); \ |
| 122 | err; \ |
| 123 | }) |
| 124 | |
| 125 | #define kernel_insn_err(insn, output, input...) \ |
| 126 | ({ \ |
| 127 | int err; \ |
| 128 | asm volatile("1:" #insn "\n\t" \ |
| 129 | "2:\n" \ |
| 130 | ".section .fixup,\"ax\"\n" \ |
| 131 | "3: movl $-1,%[err]\n" \ |
| 132 | " jmp 2b\n" \ |
| 133 | ".previous\n" \ |
| 134 | _ASM_EXTABLE(1b, 3b) \ |
| 135 | : [err] "=r" (err), output \ |
| 136 | : "0"(0), input); \ |
| 137 | err; \ |
| 138 | }) |
| 139 | |
| 140 | #define kernel_insn(insn, output, input...) \ |
| 141 | asm volatile("1:" #insn "\n\t" \ |
| 142 | "2:\n" \ |
| 143 | _ASM_EXTABLE_HANDLE(1b, 2b, ex_handler_fprestore) \ |
| 144 | : output : input) |
| 145 | |
| 146 | static inline int copy_fregs_to_user(struct fregs_state __user *fx) |
| 147 | { |
| 148 | return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); |
| 149 | } |
| 150 | |
| 151 | static inline int copy_fxregs_to_user(struct fxregs_state __user *fx) |
| 152 | { |
| 153 | if (IS_ENABLED(CONFIG_X86_32)) |
| 154 | return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| 155 | else |
| 156 | return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| 157 | |
| 158 | } |
| 159 | |
| 160 | static inline void copy_kernel_to_fxregs(struct fxregs_state *fx) |
| 161 | { |
| 162 | if (IS_ENABLED(CONFIG_X86_32)) |
| 163 | kernel_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 164 | else |
| 165 | kernel_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 166 | } |
| 167 | |
| 168 | static inline int copy_kernel_to_fxregs_err(struct fxregs_state *fx) |
| 169 | { |
| 170 | if (IS_ENABLED(CONFIG_X86_32)) |
| 171 | return kernel_insn_err(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 172 | else |
| 173 | return kernel_insn_err(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 174 | } |
| 175 | |
| 176 | static inline int copy_user_to_fxregs(struct fxregs_state __user *fx) |
| 177 | { |
| 178 | if (IS_ENABLED(CONFIG_X86_32)) |
| 179 | return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 180 | else |
| 181 | return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 182 | } |
| 183 | |
| 184 | static inline void copy_kernel_to_fregs(struct fregs_state *fx) |
| 185 | { |
| 186 | kernel_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 187 | } |
| 188 | |
| 189 | static inline int copy_kernel_to_fregs_err(struct fregs_state *fx) |
| 190 | { |
| 191 | return kernel_insn_err(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 192 | } |
| 193 | |
| 194 | static inline int copy_user_to_fregs(struct fregs_state __user *fx) |
| 195 | { |
| 196 | return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| 197 | } |
| 198 | |
| 199 | static inline void copy_fxregs_to_kernel(struct fpu *fpu) |
| 200 | { |
| 201 | if (IS_ENABLED(CONFIG_X86_32)) |
| 202 | asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| 203 | else |
| 204 | asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| 205 | } |
| 206 | |
| 207 | static inline void fxsave(struct fxregs_state *fx) |
| 208 | { |
| 209 | if (IS_ENABLED(CONFIG_X86_32)) |
| 210 | asm volatile( "fxsave %[fx]" : [fx] "=m" (*fx)); |
| 211 | else |
| 212 | asm volatile("fxsaveq %[fx]" : [fx] "=m" (*fx)); |
| 213 | } |
| 214 | |
| 215 | /* These macros all use (%edi)/(%rdi) as the single memory argument. */ |
| 216 | #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27" |
| 217 | #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37" |
| 218 | #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f" |
| 219 | #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f" |
| 220 | #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f" |
| 221 | |
| 222 | /* |
| 223 | * After this @err contains 0 on success or the negated trap number when |
| 224 | * the operation raises an exception. For faults this results in -EFAULT. |
| 225 | */ |
| 226 | #define XSTATE_OP(op, st, lmask, hmask, err) \ |
| 227 | asm volatile("1:" op "\n\t" \ |
| 228 | "xor %[err], %[err]\n" \ |
| 229 | "2:\n\t" \ |
| 230 | ".pushsection .fixup,\"ax\"\n\t" \ |
| 231 | "3: negl %%eax\n\t" \ |
| 232 | "jmp 2b\n\t" \ |
| 233 | ".popsection\n\t" \ |
| 234 | _ASM_EXTABLE_FAULT(1b, 3b) \ |
| 235 | : [err] "=a" (err) \ |
| 236 | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| 237 | : "memory") |
| 238 | |
| 239 | /* |
| 240 | * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact |
| 241 | * format and supervisor states in addition to modified optimization in |
| 242 | * XSAVEOPT. |
| 243 | * |
| 244 | * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT |
| 245 | * supports modified optimization which is not supported by XSAVE. |
| 246 | * |
| 247 | * We use XSAVE as a fallback. |
| 248 | * |
| 249 | * The 661 label is defined in the ALTERNATIVE* macros as the address of the |
| 250 | * original instruction which gets replaced. We need to use it here as the |
| 251 | * address of the instruction where we might get an exception at. |
| 252 | */ |
| 253 | #define XSTATE_XSAVE(st, lmask, hmask, err) \ |
| 254 | asm volatile(ALTERNATIVE_2(XSAVE, \ |
| 255 | XSAVEOPT, X86_FEATURE_XSAVEOPT, \ |
| 256 | XSAVES, X86_FEATURE_XSAVES) \ |
| 257 | "\n" \ |
| 258 | "xor %[err], %[err]\n" \ |
| 259 | "3:\n" \ |
| 260 | ".pushsection .fixup,\"ax\"\n" \ |
| 261 | "4: movl $-2, %[err]\n" \ |
| 262 | "jmp 3b\n" \ |
| 263 | ".popsection\n" \ |
| 264 | _ASM_EXTABLE(661b, 4b) \ |
| 265 | : [err] "=r" (err) \ |
| 266 | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| 267 | : "memory") |
| 268 | |
| 269 | /* |
| 270 | * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact |
| 271 | * XSAVE area format. |
| 272 | */ |
| 273 | #define XSTATE_XRESTORE(st, lmask, hmask) \ |
| 274 | asm volatile(ALTERNATIVE(XRSTOR, \ |
| 275 | XRSTORS, X86_FEATURE_XSAVES) \ |
| 276 | "\n" \ |
| 277 | "3:\n" \ |
| 278 | _ASM_EXTABLE_HANDLE(661b, 3b, ex_handler_fprestore)\ |
| 279 | : \ |
| 280 | : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \ |
| 281 | : "memory") |
| 282 | |
| 283 | /* |
| 284 | * This function is called only during boot time when x86 caps are not set |
| 285 | * up and alternative can not be used yet. |
| 286 | */ |
| 287 | static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate) |
| 288 | { |
| 289 | u64 mask = -1; |
| 290 | u32 lmask = mask; |
| 291 | u32 hmask = mask >> 32; |
| 292 | int err; |
| 293 | |
| 294 | WARN_ON(system_state != SYSTEM_BOOTING); |
| 295 | |
| 296 | if (boot_cpu_has(X86_FEATURE_XSAVES)) |
| 297 | XSTATE_OP(XRSTORS, xstate, lmask, hmask, err); |
| 298 | else |
| 299 | XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); |
| 300 | |
| 301 | /* |
| 302 | * We should never fault when copying from a kernel buffer, and the FPU |
| 303 | * state we set at boot time should be valid. |
| 304 | */ |
| 305 | WARN_ON_FPU(err); |
| 306 | } |
| 307 | |
| 308 | /* |
| 309 | * Save processor xstate to xsave area. |
| 310 | */ |
| 311 | static inline void copy_xregs_to_kernel(struct xregs_state *xstate) |
| 312 | { |
| 313 | u64 mask = -1; |
| 314 | u32 lmask = mask; |
| 315 | u32 hmask = mask >> 32; |
| 316 | int err; |
| 317 | |
| 318 | WARN_ON_FPU(!alternatives_patched); |
| 319 | |
| 320 | XSTATE_XSAVE(xstate, lmask, hmask, err); |
| 321 | |
| 322 | /* We should never fault when copying to a kernel buffer: */ |
| 323 | WARN_ON_FPU(err); |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | * Restore processor xstate from xsave area. |
| 328 | */ |
| 329 | static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask) |
| 330 | { |
| 331 | u32 lmask = mask; |
| 332 | u32 hmask = mask >> 32; |
| 333 | |
| 334 | XSTATE_XRESTORE(xstate, lmask, hmask); |
| 335 | } |
| 336 | |
| 337 | /* |
| 338 | * Save xstate to user space xsave area. |
| 339 | * |
| 340 | * We don't use modified optimization because xrstor/xrstors might track |
| 341 | * a different application. |
| 342 | * |
| 343 | * We don't use compacted format xsave area for |
| 344 | * backward compatibility for old applications which don't understand |
| 345 | * compacted format of xsave area. |
| 346 | */ |
| 347 | static inline int copy_xregs_to_user(struct xregs_state __user *buf) |
| 348 | { |
| 349 | int err; |
| 350 | |
| 351 | /* |
| 352 | * Clear the xsave header first, so that reserved fields are |
| 353 | * initialized to zero. |
| 354 | */ |
| 355 | err = __clear_user(&buf->header, sizeof(buf->header)); |
| 356 | if (unlikely(err)) |
| 357 | return -EFAULT; |
| 358 | |
| 359 | stac(); |
| 360 | XSTATE_OP(XSAVE, buf, -1, -1, err); |
| 361 | clac(); |
| 362 | |
| 363 | return err; |
| 364 | } |
| 365 | |
| 366 | /* |
| 367 | * Restore xstate from user space xsave area. |
| 368 | */ |
| 369 | static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask) |
| 370 | { |
| 371 | struct xregs_state *xstate = ((__force struct xregs_state *)buf); |
| 372 | u32 lmask = mask; |
| 373 | u32 hmask = mask >> 32; |
| 374 | int err; |
| 375 | |
| 376 | stac(); |
| 377 | XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); |
| 378 | clac(); |
| 379 | |
| 380 | return err; |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * Restore xstate from kernel space xsave area, return an error code instead of |
| 385 | * an exception. |
| 386 | */ |
| 387 | static inline int copy_kernel_to_xregs_err(struct xregs_state *xstate, u64 mask) |
| 388 | { |
| 389 | u32 lmask = mask; |
| 390 | u32 hmask = mask >> 32; |
| 391 | int err; |
| 392 | |
| 393 | XSTATE_OP(XRSTOR, xstate, lmask, hmask, err); |
| 394 | |
| 395 | return err; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * These must be called with preempt disabled. Returns |
| 400 | * 'true' if the FPU state is still intact and we can |
| 401 | * keep registers active. |
| 402 | * |
| 403 | * The legacy FNSAVE instruction cleared all FPU state |
| 404 | * unconditionally, so registers are essentially destroyed. |
| 405 | * Modern FPU state can be kept in registers, if there are |
| 406 | * no pending FP exceptions. |
| 407 | */ |
| 408 | static inline int copy_fpregs_to_fpstate(struct fpu *fpu) |
| 409 | { |
| 410 | if (likely(use_xsave())) { |
| 411 | copy_xregs_to_kernel(&fpu->state.xsave); |
| 412 | |
| 413 | /* |
| 414 | * AVX512 state is tracked here because its use is |
| 415 | * known to slow the max clock speed of the core. |
| 416 | */ |
| 417 | if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512) |
| 418 | fpu->avx512_timestamp = jiffies; |
| 419 | return 1; |
| 420 | } |
| 421 | |
| 422 | if (likely(use_fxsr())) { |
| 423 | copy_fxregs_to_kernel(fpu); |
| 424 | return 1; |
| 425 | } |
| 426 | |
| 427 | /* |
| 428 | * Legacy FPU register saving, FNSAVE always clears FPU registers, |
| 429 | * so we have to mark them inactive: |
| 430 | */ |
| 431 | asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave)); |
| 432 | |
| 433 | return 0; |
| 434 | } |
| 435 | |
| 436 | static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate, u64 mask) |
| 437 | { |
| 438 | if (use_xsave()) { |
| 439 | copy_kernel_to_xregs(&fpstate->xsave, mask); |
| 440 | } else { |
| 441 | if (use_fxsr()) |
| 442 | copy_kernel_to_fxregs(&fpstate->fxsave); |
| 443 | else |
| 444 | copy_kernel_to_fregs(&fpstate->fsave); |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate) |
| 449 | { |
| 450 | /* |
| 451 | * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is |
| 452 | * pending. Clear the x87 state here by setting it to fixed values. |
| 453 | * "m" is a random variable that should be in L1. |
| 454 | */ |
| 455 | if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) { |
| 456 | asm volatile( |
| 457 | "fnclex\n\t" |
| 458 | "emms\n\t" |
| 459 | "fildl %P[addr]" /* set F?P to defined value */ |
| 460 | : : [addr] "m" (fpstate)); |
| 461 | } |
| 462 | |
| 463 | __copy_kernel_to_fpregs(fpstate, -1); |
| 464 | } |
| 465 | |
| 466 | extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size); |
| 467 | |
| 468 | /* |
| 469 | * FPU context switch related helper methods: |
| 470 | */ |
| 471 | |
| 472 | DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| 473 | |
| 474 | /* |
| 475 | * The in-register FPU state for an FPU context on a CPU is assumed to be |
| 476 | * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx |
| 477 | * matches the FPU. |
| 478 | * |
| 479 | * If the FPU register state is valid, the kernel can skip restoring the |
| 480 | * FPU state from memory. |
| 481 | * |
| 482 | * Any code that clobbers the FPU registers or updates the in-memory |
| 483 | * FPU state for a task MUST let the rest of the kernel know that the |
| 484 | * FPU registers are no longer valid for this task. |
| 485 | * |
| 486 | * Either one of these invalidation functions is enough. Invalidate |
| 487 | * a resource you control: CPU if using the CPU for something else |
| 488 | * (with preemption disabled), FPU for the current task, or a task that |
| 489 | * is prevented from running by the current task. |
| 490 | */ |
| 491 | static inline void __cpu_invalidate_fpregs_state(void) |
| 492 | { |
| 493 | __this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| 494 | } |
| 495 | |
| 496 | static inline void __fpu_invalidate_fpregs_state(struct fpu *fpu) |
| 497 | { |
| 498 | fpu->last_cpu = -1; |
| 499 | } |
| 500 | |
| 501 | static inline int fpregs_state_valid(struct fpu *fpu, unsigned int cpu) |
| 502 | { |
| 503 | return fpu == this_cpu_read(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; |
| 504 | } |
| 505 | |
| 506 | /* |
| 507 | * These generally need preemption protection to work, |
| 508 | * do try to avoid using these on their own: |
| 509 | */ |
| 510 | static inline void fpregs_deactivate(struct fpu *fpu) |
| 511 | { |
| 512 | this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| 513 | trace_x86_fpu_regs_deactivated(fpu); |
| 514 | } |
| 515 | |
| 516 | static inline void fpregs_activate(struct fpu *fpu) |
| 517 | { |
| 518 | this_cpu_write(fpu_fpregs_owner_ctx, fpu); |
| 519 | trace_x86_fpu_regs_activated(fpu); |
| 520 | } |
| 521 | |
| 522 | /* |
| 523 | * Internal helper, do not use directly. Use switch_fpu_return() instead. |
| 524 | */ |
| 525 | static inline void __fpregs_load_activate(void) |
| 526 | { |
| 527 | struct fpu *fpu = ¤t->thread.fpu; |
| 528 | int cpu = smp_processor_id(); |
| 529 | |
| 530 | if (WARN_ON_ONCE(current->flags & PF_KTHREAD)) |
| 531 | return; |
| 532 | |
| 533 | if (!fpregs_state_valid(fpu, cpu)) { |
| 534 | copy_kernel_to_fpregs(&fpu->state); |
| 535 | fpregs_activate(fpu); |
| 536 | fpu->last_cpu = cpu; |
| 537 | } |
| 538 | clear_thread_flag(TIF_NEED_FPU_LOAD); |
| 539 | } |
| 540 | |
| 541 | /* |
| 542 | * FPU state switching for scheduling. |
| 543 | * |
| 544 | * This is a two-stage process: |
| 545 | * |
| 546 | * - switch_fpu_prepare() saves the old state. |
| 547 | * This is done within the context of the old process. |
| 548 | * |
| 549 | * - switch_fpu_finish() sets TIF_NEED_FPU_LOAD; the floating point state |
| 550 | * will get loaded on return to userspace, or when the kernel needs it. |
| 551 | * |
| 552 | * If TIF_NEED_FPU_LOAD is cleared then the CPU's FPU registers |
| 553 | * are saved in the current thread's FPU register state. |
| 554 | * |
| 555 | * If TIF_NEED_FPU_LOAD is set then CPU's FPU registers may not |
| 556 | * hold current()'s FPU registers. It is required to load the |
| 557 | * registers before returning to userland or using the content |
| 558 | * otherwise. |
| 559 | * |
| 560 | * The FPU context is only stored/restored for a user task and |
| 561 | * PF_KTHREAD is used to distinguish between kernel and user threads. |
| 562 | */ |
| 563 | static inline void switch_fpu_prepare(struct task_struct *prev, int cpu) |
| 564 | { |
| 565 | struct fpu *old_fpu = &prev->thread.fpu; |
| 566 | |
| 567 | if (static_cpu_has(X86_FEATURE_FPU) && !(prev->flags & PF_KTHREAD)) { |
| 568 | if (!copy_fpregs_to_fpstate(old_fpu)) |
| 569 | old_fpu->last_cpu = -1; |
| 570 | else |
| 571 | old_fpu->last_cpu = cpu; |
| 572 | |
| 573 | /* But leave fpu_fpregs_owner_ctx! */ |
| 574 | trace_x86_fpu_regs_deactivated(old_fpu); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | /* |
| 579 | * Misc helper functions: |
| 580 | */ |
| 581 | |
| 582 | /* |
| 583 | * Load PKRU from the FPU context if available. Delay loading of the |
| 584 | * complete FPU state until the return to userland. |
| 585 | */ |
| 586 | static inline void switch_fpu_finish(struct task_struct *next) |
| 587 | { |
| 588 | u32 pkru_val = init_pkru_value; |
| 589 | struct pkru_state *pk; |
| 590 | struct fpu *next_fpu = &next->thread.fpu; |
| 591 | |
| 592 | if (!static_cpu_has(X86_FEATURE_FPU)) |
| 593 | return; |
| 594 | |
| 595 | set_thread_flag(TIF_NEED_FPU_LOAD); |
| 596 | |
| 597 | if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) |
| 598 | return; |
| 599 | |
| 600 | /* |
| 601 | * PKRU state is switched eagerly because it needs to be valid before we |
| 602 | * return to userland e.g. for a copy_to_user() operation. |
| 603 | */ |
| 604 | if (!(next->flags & PF_KTHREAD)) { |
| 605 | /* |
| 606 | * If the PKRU bit in xsave.header.xfeatures is not set, |
| 607 | * then the PKRU component was in init state, which means |
| 608 | * XRSTOR will set PKRU to 0. If the bit is not set then |
| 609 | * get_xsave_addr() will return NULL because the PKRU value |
| 610 | * in memory is not valid. This means pkru_val has to be |
| 611 | * set to 0 and not to init_pkru_value. |
| 612 | */ |
| 613 | pk = get_xsave_addr(&next_fpu->state.xsave, XFEATURE_PKRU); |
| 614 | pkru_val = pk ? pk->pkru : 0; |
| 615 | } |
| 616 | __write_pkru(pkru_val); |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * MXCSR and XCR definitions: |
| 621 | */ |
| 622 | |
| 623 | static inline void ldmxcsr(u32 mxcsr) |
| 624 | { |
| 625 | asm volatile("ldmxcsr %0" :: "m" (mxcsr)); |
| 626 | } |
| 627 | |
| 628 | extern unsigned int mxcsr_feature_mask; |
| 629 | |
| 630 | #define XCR_XFEATURE_ENABLED_MASK 0x00000000 |
| 631 | |
| 632 | static inline u64 xgetbv(u32 index) |
| 633 | { |
| 634 | u32 eax, edx; |
| 635 | |
| 636 | asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ |
| 637 | : "=a" (eax), "=d" (edx) |
| 638 | : "c" (index)); |
| 639 | return eax + ((u64)edx << 32); |
| 640 | } |
| 641 | |
| 642 | static inline void xsetbv(u32 index, u64 value) |
| 643 | { |
| 644 | u32 eax = value; |
| 645 | u32 edx = value >> 32; |
| 646 | |
| 647 | asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ |
| 648 | : : "a" (eax), "d" (edx), "c" (index)); |
| 649 | } |
| 650 | |
| 651 | #endif /* _ASM_X86_FPU_INTERNAL_H */ |