b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef _ASM_X86_MMU_CONTEXT_H |
| 3 | #define _ASM_X86_MMU_CONTEXT_H |
| 4 | |
| 5 | #include <asm/desc.h> |
| 6 | #include <linux/atomic.h> |
| 7 | #include <linux/mm_types.h> |
| 8 | #include <linux/pkeys.h> |
| 9 | |
| 10 | #include <trace/events/tlb.h> |
| 11 | |
| 12 | #include <asm/pgalloc.h> |
| 13 | #include <asm/tlbflush.h> |
| 14 | #include <asm/paravirt.h> |
| 15 | #include <asm/mpx.h> |
| 16 | #include <asm/debugreg.h> |
| 17 | |
| 18 | extern atomic64_t last_mm_ctx_id; |
| 19 | |
| 20 | #ifndef CONFIG_PARAVIRT_XXL |
| 21 | static inline void paravirt_activate_mm(struct mm_struct *prev, |
| 22 | struct mm_struct *next) |
| 23 | { |
| 24 | } |
| 25 | #endif /* !CONFIG_PARAVIRT_XXL */ |
| 26 | |
| 27 | #ifdef CONFIG_PERF_EVENTS |
| 28 | |
| 29 | DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key); |
| 30 | |
| 31 | static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) |
| 32 | { |
| 33 | if (static_branch_unlikely(&rdpmc_always_available_key) || |
| 34 | atomic_read(&mm->context.perf_rdpmc_allowed)) |
| 35 | cr4_set_bits_irqsoff(X86_CR4_PCE); |
| 36 | else |
| 37 | cr4_clear_bits_irqsoff(X86_CR4_PCE); |
| 38 | } |
| 39 | #else |
| 40 | static inline void load_mm_cr4_irqsoff(struct mm_struct *mm) {} |
| 41 | #endif |
| 42 | |
| 43 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 44 | /* |
| 45 | * ldt_structs can be allocated, used, and freed, but they are never |
| 46 | * modified while live. |
| 47 | */ |
| 48 | struct ldt_struct { |
| 49 | /* |
| 50 | * Xen requires page-aligned LDTs with special permissions. This is |
| 51 | * needed to prevent us from installing evil descriptors such as |
| 52 | * call gates. On native, we could merge the ldt_struct and LDT |
| 53 | * allocations, but it's not worth trying to optimize. |
| 54 | */ |
| 55 | struct desc_struct *entries; |
| 56 | unsigned int nr_entries; |
| 57 | |
| 58 | /* |
| 59 | * If PTI is in use, then the entries array is not mapped while we're |
| 60 | * in user mode. The whole array will be aliased at the addressed |
| 61 | * given by ldt_slot_va(slot). We use two slots so that we can allocate |
| 62 | * and map, and enable a new LDT without invalidating the mapping |
| 63 | * of an older, still-in-use LDT. |
| 64 | * |
| 65 | * slot will be -1 if this LDT doesn't have an alias mapping. |
| 66 | */ |
| 67 | int slot; |
| 68 | }; |
| 69 | |
| 70 | /* This is a multiple of PAGE_SIZE. */ |
| 71 | #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) |
| 72 | |
| 73 | static inline void *ldt_slot_va(int slot) |
| 74 | { |
| 75 | return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); |
| 76 | } |
| 77 | |
| 78 | /* |
| 79 | * Used for LDT copy/destruction. |
| 80 | */ |
| 81 | static inline void init_new_context_ldt(struct mm_struct *mm) |
| 82 | { |
| 83 | mm->context.ldt = NULL; |
| 84 | init_rwsem(&mm->context.ldt_usr_sem); |
| 85 | } |
| 86 | int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm); |
| 87 | void destroy_context_ldt(struct mm_struct *mm); |
| 88 | void ldt_arch_exit_mmap(struct mm_struct *mm); |
| 89 | #else /* CONFIG_MODIFY_LDT_SYSCALL */ |
| 90 | static inline void init_new_context_ldt(struct mm_struct *mm) { } |
| 91 | static inline int ldt_dup_context(struct mm_struct *oldmm, |
| 92 | struct mm_struct *mm) |
| 93 | { |
| 94 | return 0; |
| 95 | } |
| 96 | static inline void destroy_context_ldt(struct mm_struct *mm) { } |
| 97 | static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { } |
| 98 | #endif |
| 99 | |
| 100 | static inline void load_mm_ldt(struct mm_struct *mm) |
| 101 | { |
| 102 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 103 | struct ldt_struct *ldt; |
| 104 | |
| 105 | /* READ_ONCE synchronizes with smp_store_release */ |
| 106 | ldt = READ_ONCE(mm->context.ldt); |
| 107 | |
| 108 | /* |
| 109 | * Any change to mm->context.ldt is followed by an IPI to all |
| 110 | * CPUs with the mm active. The LDT will not be freed until |
| 111 | * after the IPI is handled by all such CPUs. This means that, |
| 112 | * if the ldt_struct changes before we return, the values we see |
| 113 | * will be safe, and the new values will be loaded before we run |
| 114 | * any user code. |
| 115 | * |
| 116 | * NB: don't try to convert this to use RCU without extreme care. |
| 117 | * We would still need IRQs off, because we don't want to change |
| 118 | * the local LDT after an IPI loaded a newer value than the one |
| 119 | * that we can see. |
| 120 | */ |
| 121 | |
| 122 | if (unlikely(ldt)) { |
| 123 | if (static_cpu_has(X86_FEATURE_PTI)) { |
| 124 | if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { |
| 125 | /* |
| 126 | * Whoops -- either the new LDT isn't mapped |
| 127 | * (if slot == -1) or is mapped into a bogus |
| 128 | * slot (if slot > 1). |
| 129 | */ |
| 130 | clear_LDT(); |
| 131 | return; |
| 132 | } |
| 133 | |
| 134 | /* |
| 135 | * If page table isolation is enabled, ldt->entries |
| 136 | * will not be mapped in the userspace pagetables. |
| 137 | * Tell the CPU to access the LDT through the alias |
| 138 | * at ldt_slot_va(ldt->slot). |
| 139 | */ |
| 140 | set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); |
| 141 | } else { |
| 142 | set_ldt(ldt->entries, ldt->nr_entries); |
| 143 | } |
| 144 | } else { |
| 145 | clear_LDT(); |
| 146 | } |
| 147 | #else |
| 148 | clear_LDT(); |
| 149 | #endif |
| 150 | } |
| 151 | |
| 152 | static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) |
| 153 | { |
| 154 | #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| 155 | /* |
| 156 | * Load the LDT if either the old or new mm had an LDT. |
| 157 | * |
| 158 | * An mm will never go from having an LDT to not having an LDT. Two |
| 159 | * mms never share an LDT, so we don't gain anything by checking to |
| 160 | * see whether the LDT changed. There's also no guarantee that |
| 161 | * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, |
| 162 | * then prev->context.ldt will also be non-NULL. |
| 163 | * |
| 164 | * If we really cared, we could optimize the case where prev == next |
| 165 | * and we're exiting lazy mode. Most of the time, if this happens, |
| 166 | * we don't actually need to reload LDTR, but modify_ldt() is mostly |
| 167 | * used by legacy code and emulators where we don't need this level of |
| 168 | * performance. |
| 169 | * |
| 170 | * This uses | instead of || because it generates better code. |
| 171 | */ |
| 172 | if (unlikely((unsigned long)prev->context.ldt | |
| 173 | (unsigned long)next->context.ldt)) |
| 174 | load_mm_ldt(next); |
| 175 | #endif |
| 176 | |
| 177 | DEBUG_LOCKS_WARN_ON(preemptible()); |
| 178 | } |
| 179 | |
| 180 | void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); |
| 181 | |
| 182 | /* |
| 183 | * Init a new mm. Used on mm copies, like at fork() |
| 184 | * and on mm's that are brand-new, like at execve(). |
| 185 | */ |
| 186 | static inline int init_new_context(struct task_struct *tsk, |
| 187 | struct mm_struct *mm) |
| 188 | { |
| 189 | mutex_init(&mm->context.lock); |
| 190 | |
| 191 | mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); |
| 192 | atomic64_set(&mm->context.tlb_gen, 0); |
| 193 | |
| 194 | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS |
| 195 | if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { |
| 196 | /* pkey 0 is the default and allocated implicitly */ |
| 197 | mm->context.pkey_allocation_map = 0x1; |
| 198 | /* -1 means unallocated or invalid */ |
| 199 | mm->context.execute_only_pkey = -1; |
| 200 | } |
| 201 | #endif |
| 202 | init_new_context_ldt(mm); |
| 203 | return 0; |
| 204 | } |
| 205 | static inline void destroy_context(struct mm_struct *mm) |
| 206 | { |
| 207 | destroy_context_ldt(mm); |
| 208 | } |
| 209 | |
| 210 | extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, |
| 211 | struct task_struct *tsk); |
| 212 | |
| 213 | extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, |
| 214 | struct task_struct *tsk); |
| 215 | #define switch_mm_irqs_off switch_mm_irqs_off |
| 216 | |
| 217 | #define activate_mm(prev, next) \ |
| 218 | do { \ |
| 219 | paravirt_activate_mm((prev), (next)); \ |
| 220 | switch_mm((prev), (next), NULL); \ |
| 221 | } while (0); |
| 222 | |
| 223 | #ifdef CONFIG_X86_32 |
| 224 | #define deactivate_mm(tsk, mm) \ |
| 225 | do { \ |
| 226 | lazy_load_gs(0); \ |
| 227 | } while (0) |
| 228 | #else |
| 229 | #define deactivate_mm(tsk, mm) \ |
| 230 | do { \ |
| 231 | load_gs_index(0); \ |
| 232 | loadsegment(fs, 0); \ |
| 233 | } while (0) |
| 234 | #endif |
| 235 | |
| 236 | static inline void arch_dup_pkeys(struct mm_struct *oldmm, |
| 237 | struct mm_struct *mm) |
| 238 | { |
| 239 | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS |
| 240 | if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) |
| 241 | return; |
| 242 | |
| 243 | /* Duplicate the oldmm pkey state in mm: */ |
| 244 | mm->context.pkey_allocation_map = oldmm->context.pkey_allocation_map; |
| 245 | mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; |
| 246 | #endif |
| 247 | } |
| 248 | |
| 249 | static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| 250 | { |
| 251 | arch_dup_pkeys(oldmm, mm); |
| 252 | paravirt_arch_dup_mmap(oldmm, mm); |
| 253 | return ldt_dup_context(oldmm, mm); |
| 254 | } |
| 255 | |
| 256 | static inline void arch_exit_mmap(struct mm_struct *mm) |
| 257 | { |
| 258 | paravirt_arch_exit_mmap(mm); |
| 259 | ldt_arch_exit_mmap(mm); |
| 260 | } |
| 261 | |
| 262 | #ifdef CONFIG_X86_64 |
| 263 | static inline bool is_64bit_mm(struct mm_struct *mm) |
| 264 | { |
| 265 | return !IS_ENABLED(CONFIG_IA32_EMULATION) || |
| 266 | !(mm->context.ia32_compat == TIF_IA32); |
| 267 | } |
| 268 | #else |
| 269 | static inline bool is_64bit_mm(struct mm_struct *mm) |
| 270 | { |
| 271 | return false; |
| 272 | } |
| 273 | #endif |
| 274 | |
| 275 | static inline void arch_bprm_mm_init(struct mm_struct *mm, |
| 276 | struct vm_area_struct *vma) |
| 277 | { |
| 278 | mpx_mm_init(mm); |
| 279 | } |
| 280 | |
| 281 | static inline void arch_unmap(struct mm_struct *mm, unsigned long start, |
| 282 | unsigned long end) |
| 283 | { |
| 284 | /* |
| 285 | * mpx_notify_unmap() goes and reads a rarely-hot |
| 286 | * cacheline in the mm_struct. That can be expensive |
| 287 | * enough to be seen in profiles. |
| 288 | * |
| 289 | * The mpx_notify_unmap() call and its contents have been |
| 290 | * observed to affect munmap() performance on hardware |
| 291 | * where MPX is not present. |
| 292 | * |
| 293 | * The unlikely() optimizes for the fast case: no MPX |
| 294 | * in the CPU, or no MPX use in the process. Even if |
| 295 | * we get this wrong (in the unlikely event that MPX |
| 296 | * is widely enabled on some system) the overhead of |
| 297 | * MPX itself (reading bounds tables) is expected to |
| 298 | * overwhelm the overhead of getting this unlikely() |
| 299 | * consistently wrong. |
| 300 | */ |
| 301 | if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) |
| 302 | mpx_notify_unmap(mm, start, end); |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * We only want to enforce protection keys on the current process |
| 307 | * because we effectively have no access to PKRU for other |
| 308 | * processes or any way to tell *which * PKRU in a threaded |
| 309 | * process we could use. |
| 310 | * |
| 311 | * So do not enforce things if the VMA is not from the current |
| 312 | * mm, or if we are in a kernel thread. |
| 313 | */ |
| 314 | static inline bool vma_is_foreign(struct vm_area_struct *vma) |
| 315 | { |
| 316 | if (!current->mm) |
| 317 | return true; |
| 318 | /* |
| 319 | * Should PKRU be enforced on the access to this VMA? If |
| 320 | * the VMA is from another process, then PKRU has no |
| 321 | * relevance and should not be enforced. |
| 322 | */ |
| 323 | if (current->mm != vma->vm_mm) |
| 324 | return true; |
| 325 | |
| 326 | return false; |
| 327 | } |
| 328 | |
| 329 | static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, |
| 330 | bool write, bool execute, bool foreign) |
| 331 | { |
| 332 | /* pkeys never affect instruction fetches */ |
| 333 | if (execute) |
| 334 | return true; |
| 335 | /* allow access if the VMA is not one from this process */ |
| 336 | if (foreign || vma_is_foreign(vma)) |
| 337 | return true; |
| 338 | return __pkru_allows_pkey(vma_pkey(vma), write); |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * This can be used from process context to figure out what the value of |
| 343 | * CR3 is without needing to do a (slow) __read_cr3(). |
| 344 | * |
| 345 | * It's intended to be used for code like KVM that sneakily changes CR3 |
| 346 | * and needs to restore it. It needs to be used very carefully. |
| 347 | */ |
| 348 | static inline unsigned long __get_current_cr3_fast(void) |
| 349 | { |
| 350 | unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd, |
| 351 | this_cpu_read(cpu_tlbstate.loaded_mm_asid)); |
| 352 | |
| 353 | /* For now, be very restrictive about when this can be called. */ |
| 354 | VM_WARN_ON(in_nmi() || preemptible()); |
| 355 | |
| 356 | VM_BUG_ON(cr3 != __read_cr3()); |
| 357 | return cr3; |
| 358 | } |
| 359 | |
| 360 | typedef struct { |
| 361 | struct mm_struct *mm; |
| 362 | } temp_mm_state_t; |
| 363 | |
| 364 | /* |
| 365 | * Using a temporary mm allows to set temporary mappings that are not accessible |
| 366 | * by other CPUs. Such mappings are needed to perform sensitive memory writes |
| 367 | * that override the kernel memory protections (e.g., W^X), without exposing the |
| 368 | * temporary page-table mappings that are required for these write operations to |
| 369 | * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the |
| 370 | * mapping is torn down. |
| 371 | * |
| 372 | * Context: The temporary mm needs to be used exclusively by a single core. To |
| 373 | * harden security IRQs must be disabled while the temporary mm is |
| 374 | * loaded, thereby preventing interrupt handler bugs from overriding |
| 375 | * the kernel memory protection. |
| 376 | */ |
| 377 | static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm) |
| 378 | { |
| 379 | temp_mm_state_t temp_state; |
| 380 | |
| 381 | lockdep_assert_irqs_disabled(); |
| 382 | |
| 383 | /* |
| 384 | * Make sure not to be in TLB lazy mode, as otherwise we'll end up |
| 385 | * with a stale address space WITHOUT being in lazy mode after |
| 386 | * restoring the previous mm. |
| 387 | */ |
| 388 | if (this_cpu_read(cpu_tlbstate.is_lazy)) |
| 389 | leave_mm(smp_processor_id()); |
| 390 | |
| 391 | temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm); |
| 392 | switch_mm_irqs_off(NULL, mm, current); |
| 393 | |
| 394 | /* |
| 395 | * If breakpoints are enabled, disable them while the temporary mm is |
| 396 | * used. Userspace might set up watchpoints on addresses that are used |
| 397 | * in the temporary mm, which would lead to wrong signals being sent or |
| 398 | * crashes. |
| 399 | * |
| 400 | * Note that breakpoints are not disabled selectively, which also causes |
| 401 | * kernel breakpoints (e.g., perf's) to be disabled. This might be |
| 402 | * undesirable, but still seems reasonable as the code that runs in the |
| 403 | * temporary mm should be short. |
| 404 | */ |
| 405 | if (hw_breakpoint_active()) |
| 406 | hw_breakpoint_disable(); |
| 407 | |
| 408 | return temp_state; |
| 409 | } |
| 410 | |
| 411 | static inline void unuse_temporary_mm(temp_mm_state_t prev_state) |
| 412 | { |
| 413 | lockdep_assert_irqs_disabled(); |
| 414 | switch_mm_irqs_off(NULL, prev_state.mm, current); |
| 415 | |
| 416 | /* |
| 417 | * Restore the breakpoints if they were disabled before the temporary mm |
| 418 | * was loaded. |
| 419 | */ |
| 420 | if (hw_breakpoint_active()) |
| 421 | hw_breakpoint_restore(); |
| 422 | } |
| 423 | |
| 424 | #endif /* _ASM_X86_MMU_CONTEXT_H */ |