b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Local APIC handling, local APIC timers |
| 4 | * |
| 5 | * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> |
| 6 | * |
| 7 | * Fixes |
| 8 | * Maciej W. Rozycki : Bits for genuine 82489DX APICs; |
| 9 | * thanks to Eric Gilmore |
| 10 | * and Rolf G. Tews |
| 11 | * for testing these extensively. |
| 12 | * Maciej W. Rozycki : Various updates and fixes. |
| 13 | * Mikael Pettersson : Power Management for UP-APIC. |
| 14 | * Pavel Machek and |
| 15 | * Mikael Pettersson : PM converted to driver model. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/perf_event.h> |
| 19 | #include <linux/kernel_stat.h> |
| 20 | #include <linux/mc146818rtc.h> |
| 21 | #include <linux/acpi_pmtmr.h> |
| 22 | #include <linux/clockchips.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/memblock.h> |
| 25 | #include <linux/ftrace.h> |
| 26 | #include <linux/ioport.h> |
| 27 | #include <linux/export.h> |
| 28 | #include <linux/syscore_ops.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <linux/timex.h> |
| 31 | #include <linux/i8253.h> |
| 32 | #include <linux/dmar.h> |
| 33 | #include <linux/init.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/dmi.h> |
| 36 | #include <linux/smp.h> |
| 37 | #include <linux/mm.h> |
| 38 | |
| 39 | #include <asm/trace/irq_vectors.h> |
| 40 | #include <asm/irq_remapping.h> |
| 41 | #include <asm/perf_event.h> |
| 42 | #include <asm/x86_init.h> |
| 43 | #include <asm/pgalloc.h> |
| 44 | #include <linux/atomic.h> |
| 45 | #include <asm/barrier.h> |
| 46 | #include <asm/mpspec.h> |
| 47 | #include <asm/i8259.h> |
| 48 | #include <asm/proto.h> |
| 49 | #include <asm/traps.h> |
| 50 | #include <asm/apic.h> |
| 51 | #include <asm/io_apic.h> |
| 52 | #include <asm/desc.h> |
| 53 | #include <asm/hpet.h> |
| 54 | #include <asm/mtrr.h> |
| 55 | #include <asm/time.h> |
| 56 | #include <asm/smp.h> |
| 57 | #include <asm/mce.h> |
| 58 | #include <asm/tsc.h> |
| 59 | #include <asm/hypervisor.h> |
| 60 | #include <asm/cpu_device_id.h> |
| 61 | #include <asm/intel-family.h> |
| 62 | #include <asm/irq_regs.h> |
| 63 | |
| 64 | unsigned int num_processors; |
| 65 | |
| 66 | unsigned disabled_cpus; |
| 67 | |
| 68 | /* Processor that is doing the boot up */ |
| 69 | unsigned int boot_cpu_physical_apicid __ro_after_init = -1U; |
| 70 | EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); |
| 71 | |
| 72 | u8 boot_cpu_apic_version __ro_after_init; |
| 73 | |
| 74 | /* |
| 75 | * The highest APIC ID seen during enumeration. |
| 76 | */ |
| 77 | static unsigned int max_physical_apicid; |
| 78 | |
| 79 | /* |
| 80 | * Bitmask of physically existing CPUs: |
| 81 | */ |
| 82 | physid_mask_t phys_cpu_present_map; |
| 83 | |
| 84 | /* |
| 85 | * Processor to be disabled specified by kernel parameter |
| 86 | * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to |
| 87 | * avoid undefined behaviour caused by sending INIT from AP to BSP. |
| 88 | */ |
| 89 | static unsigned int disabled_cpu_apicid __ro_after_init = BAD_APICID; |
| 90 | |
| 91 | /* |
| 92 | * This variable controls which CPUs receive external NMIs. By default, |
| 93 | * external NMIs are delivered only to the BSP. |
| 94 | */ |
| 95 | static int apic_extnmi __ro_after_init = APIC_EXTNMI_BSP; |
| 96 | |
| 97 | /* |
| 98 | * Map cpu index to physical APIC ID |
| 99 | */ |
| 100 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); |
| 101 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); |
| 102 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); |
| 103 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); |
| 104 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); |
| 105 | EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); |
| 106 | |
| 107 | #ifdef CONFIG_X86_32 |
| 108 | |
| 109 | /* |
| 110 | * On x86_32, the mapping between cpu and logical apicid may vary |
| 111 | * depending on apic in use. The following early percpu variable is |
| 112 | * used for the mapping. This is where the behaviors of x86_64 and 32 |
| 113 | * actually diverge. Let's keep it ugly for now. |
| 114 | */ |
| 115 | DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); |
| 116 | |
| 117 | /* Local APIC was disabled by the BIOS and enabled by the kernel */ |
| 118 | static int enabled_via_apicbase __ro_after_init; |
| 119 | |
| 120 | /* |
| 121 | * Handle interrupt mode configuration register (IMCR). |
| 122 | * This register controls whether the interrupt signals |
| 123 | * that reach the BSP come from the master PIC or from the |
| 124 | * local APIC. Before entering Symmetric I/O Mode, either |
| 125 | * the BIOS or the operating system must switch out of |
| 126 | * PIC Mode by changing the IMCR. |
| 127 | */ |
| 128 | static inline void imcr_pic_to_apic(void) |
| 129 | { |
| 130 | /* select IMCR register */ |
| 131 | outb(0x70, 0x22); |
| 132 | /* NMI and 8259 INTR go through APIC */ |
| 133 | outb(0x01, 0x23); |
| 134 | } |
| 135 | |
| 136 | static inline void imcr_apic_to_pic(void) |
| 137 | { |
| 138 | /* select IMCR register */ |
| 139 | outb(0x70, 0x22); |
| 140 | /* NMI and 8259 INTR go directly to BSP */ |
| 141 | outb(0x00, 0x23); |
| 142 | } |
| 143 | #endif |
| 144 | |
| 145 | /* |
| 146 | * Knob to control our willingness to enable the local APIC. |
| 147 | * |
| 148 | * +1=force-enable |
| 149 | */ |
| 150 | static int force_enable_local_apic __initdata; |
| 151 | |
| 152 | /* |
| 153 | * APIC command line parameters |
| 154 | */ |
| 155 | static int __init parse_lapic(char *arg) |
| 156 | { |
| 157 | if (IS_ENABLED(CONFIG_X86_32) && !arg) |
| 158 | force_enable_local_apic = 1; |
| 159 | else if (arg && !strncmp(arg, "notscdeadline", 13)) |
| 160 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 161 | return 0; |
| 162 | } |
| 163 | early_param("lapic", parse_lapic); |
| 164 | |
| 165 | #ifdef CONFIG_X86_64 |
| 166 | static int apic_calibrate_pmtmr __initdata; |
| 167 | static __init int setup_apicpmtimer(char *s) |
| 168 | { |
| 169 | apic_calibrate_pmtmr = 1; |
| 170 | notsc_setup(NULL); |
| 171 | return 1; |
| 172 | } |
| 173 | __setup("apicpmtimer", setup_apicpmtimer); |
| 174 | #endif |
| 175 | |
| 176 | unsigned long mp_lapic_addr __ro_after_init; |
| 177 | int disable_apic __ro_after_init; |
| 178 | /* Disable local APIC timer from the kernel commandline or via dmi quirk */ |
| 179 | static int disable_apic_timer __initdata; |
| 180 | /* Local APIC timer works in C2 */ |
| 181 | int local_apic_timer_c2_ok __ro_after_init; |
| 182 | EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); |
| 183 | |
| 184 | /* |
| 185 | * Debug level, exported for io_apic.c |
| 186 | */ |
| 187 | int apic_verbosity __ro_after_init; |
| 188 | |
| 189 | int pic_mode __ro_after_init; |
| 190 | |
| 191 | /* Have we found an MP table */ |
| 192 | int smp_found_config __ro_after_init; |
| 193 | |
| 194 | static struct resource lapic_resource = { |
| 195 | .name = "Local APIC", |
| 196 | .flags = IORESOURCE_MEM | IORESOURCE_BUSY, |
| 197 | }; |
| 198 | |
| 199 | unsigned int lapic_timer_period = 0; |
| 200 | |
| 201 | static void apic_pm_activate(void); |
| 202 | |
| 203 | static unsigned long apic_phys __ro_after_init; |
| 204 | |
| 205 | /* |
| 206 | * Get the LAPIC version |
| 207 | */ |
| 208 | static inline int lapic_get_version(void) |
| 209 | { |
| 210 | return GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Check, if the APIC is integrated or a separate chip |
| 215 | */ |
| 216 | static inline int lapic_is_integrated(void) |
| 217 | { |
| 218 | return APIC_INTEGRATED(lapic_get_version()); |
| 219 | } |
| 220 | |
| 221 | /* |
| 222 | * Check, whether this is a modern or a first generation APIC |
| 223 | */ |
| 224 | static int modern_apic(void) |
| 225 | { |
| 226 | /* AMD systems use old APIC versions, so check the CPU */ |
| 227 | if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| 228 | boot_cpu_data.x86 >= 0xf) |
| 229 | return 1; |
| 230 | |
| 231 | /* Hygon systems use modern APIC */ |
| 232 | if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) |
| 233 | return 1; |
| 234 | |
| 235 | return lapic_get_version() >= 0x14; |
| 236 | } |
| 237 | |
| 238 | /* |
| 239 | * right after this call apic become NOOP driven |
| 240 | * so apic->write/read doesn't do anything |
| 241 | */ |
| 242 | static void __init apic_disable(void) |
| 243 | { |
| 244 | pr_info("APIC: switched to apic NOOP\n"); |
| 245 | apic = &apic_noop; |
| 246 | } |
| 247 | |
| 248 | void native_apic_wait_icr_idle(void) |
| 249 | { |
| 250 | while (apic_read(APIC_ICR) & APIC_ICR_BUSY) |
| 251 | cpu_relax(); |
| 252 | } |
| 253 | |
| 254 | u32 native_safe_apic_wait_icr_idle(void) |
| 255 | { |
| 256 | u32 send_status; |
| 257 | int timeout; |
| 258 | |
| 259 | timeout = 0; |
| 260 | do { |
| 261 | send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; |
| 262 | if (!send_status) |
| 263 | break; |
| 264 | inc_irq_stat(icr_read_retry_count); |
| 265 | udelay(100); |
| 266 | } while (timeout++ < 1000); |
| 267 | |
| 268 | return send_status; |
| 269 | } |
| 270 | |
| 271 | void native_apic_icr_write(u32 low, u32 id) |
| 272 | { |
| 273 | unsigned long flags; |
| 274 | |
| 275 | local_irq_save(flags); |
| 276 | apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); |
| 277 | apic_write(APIC_ICR, low); |
| 278 | local_irq_restore(flags); |
| 279 | } |
| 280 | |
| 281 | u64 native_apic_icr_read(void) |
| 282 | { |
| 283 | u32 icr1, icr2; |
| 284 | |
| 285 | icr2 = apic_read(APIC_ICR2); |
| 286 | icr1 = apic_read(APIC_ICR); |
| 287 | |
| 288 | return icr1 | ((u64)icr2 << 32); |
| 289 | } |
| 290 | |
| 291 | #ifdef CONFIG_X86_32 |
| 292 | /** |
| 293 | * get_physical_broadcast - Get number of physical broadcast IDs |
| 294 | */ |
| 295 | int get_physical_broadcast(void) |
| 296 | { |
| 297 | return modern_apic() ? 0xff : 0xf; |
| 298 | } |
| 299 | #endif |
| 300 | |
| 301 | /** |
| 302 | * lapic_get_maxlvt - get the maximum number of local vector table entries |
| 303 | */ |
| 304 | int lapic_get_maxlvt(void) |
| 305 | { |
| 306 | /* |
| 307 | * - we always have APIC integrated on 64bit mode |
| 308 | * - 82489DXs do not report # of LVT entries |
| 309 | */ |
| 310 | return lapic_is_integrated() ? GET_APIC_MAXLVT(apic_read(APIC_LVR)) : 2; |
| 311 | } |
| 312 | |
| 313 | /* |
| 314 | * Local APIC timer |
| 315 | */ |
| 316 | |
| 317 | /* Clock divisor */ |
| 318 | #define APIC_DIVISOR 16 |
| 319 | #define TSC_DIVISOR 8 |
| 320 | |
| 321 | /* |
| 322 | * This function sets up the local APIC timer, with a timeout of |
| 323 | * 'clocks' APIC bus clock. During calibration we actually call |
| 324 | * this function twice on the boot CPU, once with a bogus timeout |
| 325 | * value, second time for real. The other (noncalibrating) CPUs |
| 326 | * call this function only once, with the real, calibrated value. |
| 327 | * |
| 328 | * We do reads before writes even if unnecessary, to get around the |
| 329 | * P5 APIC double write bug. |
| 330 | */ |
| 331 | static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) |
| 332 | { |
| 333 | unsigned int lvtt_value, tmp_value; |
| 334 | |
| 335 | lvtt_value = LOCAL_TIMER_VECTOR; |
| 336 | if (!oneshot) |
| 337 | lvtt_value |= APIC_LVT_TIMER_PERIODIC; |
| 338 | else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 339 | lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; |
| 340 | |
| 341 | if (!lapic_is_integrated()) |
| 342 | lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); |
| 343 | |
| 344 | if (!irqen) |
| 345 | lvtt_value |= APIC_LVT_MASKED; |
| 346 | |
| 347 | apic_write(APIC_LVTT, lvtt_value); |
| 348 | |
| 349 | if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { |
| 350 | /* |
| 351 | * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, |
| 352 | * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. |
| 353 | * According to Intel, MFENCE can do the serialization here. |
| 354 | */ |
| 355 | asm volatile("mfence" : : : "memory"); |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Divide PICLK by 16 |
| 361 | */ |
| 362 | tmp_value = apic_read(APIC_TDCR); |
| 363 | apic_write(APIC_TDCR, |
| 364 | (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | |
| 365 | APIC_TDR_DIV_16); |
| 366 | |
| 367 | if (!oneshot) |
| 368 | apic_write(APIC_TMICT, clocks / APIC_DIVISOR); |
| 369 | } |
| 370 | |
| 371 | /* |
| 372 | * Setup extended LVT, AMD specific |
| 373 | * |
| 374 | * Software should use the LVT offsets the BIOS provides. The offsets |
| 375 | * are determined by the subsystems using it like those for MCE |
| 376 | * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts |
| 377 | * are supported. Beginning with family 10h at least 4 offsets are |
| 378 | * available. |
| 379 | * |
| 380 | * Since the offsets must be consistent for all cores, we keep track |
| 381 | * of the LVT offsets in software and reserve the offset for the same |
| 382 | * vector also to be used on other cores. An offset is freed by |
| 383 | * setting the entry to APIC_EILVT_MASKED. |
| 384 | * |
| 385 | * If the BIOS is right, there should be no conflicts. Otherwise a |
| 386 | * "[Firmware Bug]: ..." error message is generated. However, if |
| 387 | * software does not properly determines the offsets, it is not |
| 388 | * necessarily a BIOS bug. |
| 389 | */ |
| 390 | |
| 391 | static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; |
| 392 | |
| 393 | static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) |
| 394 | { |
| 395 | return (old & APIC_EILVT_MASKED) |
| 396 | || (new == APIC_EILVT_MASKED) |
| 397 | || ((new & ~APIC_EILVT_MASKED) == old); |
| 398 | } |
| 399 | |
| 400 | static unsigned int reserve_eilvt_offset(int offset, unsigned int new) |
| 401 | { |
| 402 | unsigned int rsvd, vector; |
| 403 | |
| 404 | if (offset >= APIC_EILVT_NR_MAX) |
| 405 | return ~0; |
| 406 | |
| 407 | rsvd = atomic_read(&eilvt_offsets[offset]); |
| 408 | do { |
| 409 | vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ |
| 410 | if (vector && !eilvt_entry_is_changeable(vector, new)) |
| 411 | /* may not change if vectors are different */ |
| 412 | return rsvd; |
| 413 | } while (!atomic_try_cmpxchg(&eilvt_offsets[offset], &rsvd, new)); |
| 414 | |
| 415 | rsvd = new & ~APIC_EILVT_MASKED; |
| 416 | if (rsvd && rsvd != vector) |
| 417 | pr_info("LVT offset %d assigned for vector 0x%02x\n", |
| 418 | offset, rsvd); |
| 419 | |
| 420 | return new; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | * If mask=1, the LVT entry does not generate interrupts while mask=0 |
| 425 | * enables the vector. See also the BKDGs. Must be called with |
| 426 | * preemption disabled. |
| 427 | */ |
| 428 | |
| 429 | int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) |
| 430 | { |
| 431 | unsigned long reg = APIC_EILVTn(offset); |
| 432 | unsigned int new, old, reserved; |
| 433 | |
| 434 | new = (mask << 16) | (msg_type << 8) | vector; |
| 435 | old = apic_read(reg); |
| 436 | reserved = reserve_eilvt_offset(offset, new); |
| 437 | |
| 438 | if (reserved != new) { |
| 439 | pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| 440 | "vector 0x%x, but the register is already in use for " |
| 441 | "vector 0x%x on another cpu\n", |
| 442 | smp_processor_id(), reg, offset, new, reserved); |
| 443 | return -EINVAL; |
| 444 | } |
| 445 | |
| 446 | if (!eilvt_entry_is_changeable(old, new)) { |
| 447 | pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " |
| 448 | "vector 0x%x, but the register is already in use for " |
| 449 | "vector 0x%x on this cpu\n", |
| 450 | smp_processor_id(), reg, offset, new, old); |
| 451 | return -EBUSY; |
| 452 | } |
| 453 | |
| 454 | apic_write(reg, new); |
| 455 | |
| 456 | return 0; |
| 457 | } |
| 458 | EXPORT_SYMBOL_GPL(setup_APIC_eilvt); |
| 459 | |
| 460 | /* |
| 461 | * Program the next event, relative to now |
| 462 | */ |
| 463 | static int lapic_next_event(unsigned long delta, |
| 464 | struct clock_event_device *evt) |
| 465 | { |
| 466 | apic_write(APIC_TMICT, delta); |
| 467 | return 0; |
| 468 | } |
| 469 | |
| 470 | static int lapic_next_deadline(unsigned long delta, |
| 471 | struct clock_event_device *evt) |
| 472 | { |
| 473 | u64 tsc; |
| 474 | |
| 475 | /* This MSR is special and need a special fence: */ |
| 476 | weak_wrmsr_fence(); |
| 477 | |
| 478 | tsc = rdtsc(); |
| 479 | wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); |
| 480 | return 0; |
| 481 | } |
| 482 | |
| 483 | static int lapic_timer_shutdown(struct clock_event_device *evt) |
| 484 | { |
| 485 | unsigned int v; |
| 486 | |
| 487 | /* Lapic used as dummy for broadcast ? */ |
| 488 | if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| 489 | return 0; |
| 490 | |
| 491 | v = apic_read(APIC_LVTT); |
| 492 | v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| 493 | apic_write(APIC_LVTT, v); |
| 494 | |
| 495 | /* |
| 496 | * Setting APIC_LVT_MASKED (above) should be enough to tell |
| 497 | * the hardware that this timer will never fire. But AMD |
| 498 | * erratum 411 and some Intel CPU behavior circa 2024 say |
| 499 | * otherwise. Time for belt and suspenders programming: mask |
| 500 | * the timer _and_ zero the counter registers: |
| 501 | */ |
| 502 | if (v & APIC_LVT_TIMER_TSCDEADLINE) |
| 503 | wrmsrl(MSR_IA32_TSC_DEADLINE, 0); |
| 504 | else |
| 505 | apic_write(APIC_TMICT, 0); |
| 506 | |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | static inline int |
| 511 | lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) |
| 512 | { |
| 513 | /* Lapic used as dummy for broadcast ? */ |
| 514 | if (evt->features & CLOCK_EVT_FEAT_DUMMY) |
| 515 | return 0; |
| 516 | |
| 517 | __setup_APIC_LVTT(lapic_timer_period, oneshot, 1); |
| 518 | return 0; |
| 519 | } |
| 520 | |
| 521 | static int lapic_timer_set_periodic(struct clock_event_device *evt) |
| 522 | { |
| 523 | return lapic_timer_set_periodic_oneshot(evt, false); |
| 524 | } |
| 525 | |
| 526 | static int lapic_timer_set_oneshot(struct clock_event_device *evt) |
| 527 | { |
| 528 | return lapic_timer_set_periodic_oneshot(evt, true); |
| 529 | } |
| 530 | |
| 531 | /* |
| 532 | * Local APIC timer broadcast function |
| 533 | */ |
| 534 | static void lapic_timer_broadcast(const struct cpumask *mask) |
| 535 | { |
| 536 | #ifdef CONFIG_SMP |
| 537 | apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); |
| 538 | #endif |
| 539 | } |
| 540 | |
| 541 | |
| 542 | /* |
| 543 | * The local apic timer can be used for any function which is CPU local. |
| 544 | */ |
| 545 | static struct clock_event_device lapic_clockevent = { |
| 546 | .name = "lapic", |
| 547 | .features = CLOCK_EVT_FEAT_PERIODIC | |
| 548 | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP |
| 549 | | CLOCK_EVT_FEAT_DUMMY, |
| 550 | .shift = 32, |
| 551 | .set_state_shutdown = lapic_timer_shutdown, |
| 552 | .set_state_periodic = lapic_timer_set_periodic, |
| 553 | .set_state_oneshot = lapic_timer_set_oneshot, |
| 554 | .set_state_oneshot_stopped = lapic_timer_shutdown, |
| 555 | .set_next_event = lapic_next_event, |
| 556 | .broadcast = lapic_timer_broadcast, |
| 557 | .rating = 100, |
| 558 | .irq = -1, |
| 559 | }; |
| 560 | static DEFINE_PER_CPU(struct clock_event_device, lapic_events); |
| 561 | |
| 562 | #define DEADLINE_MODEL_MATCH_FUNC(model, func) \ |
| 563 | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func } |
| 564 | |
| 565 | #define DEADLINE_MODEL_MATCH_REV(model, rev) \ |
| 566 | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev } |
| 567 | |
| 568 | static __init u32 hsx_deadline_rev(void) |
| 569 | { |
| 570 | switch (boot_cpu_data.x86_stepping) { |
| 571 | case 0x02: return 0x3a; /* EP */ |
| 572 | case 0x04: return 0x0f; /* EX */ |
| 573 | } |
| 574 | |
| 575 | return ~0U; |
| 576 | } |
| 577 | |
| 578 | static __init u32 bdx_deadline_rev(void) |
| 579 | { |
| 580 | switch (boot_cpu_data.x86_stepping) { |
| 581 | case 0x02: return 0x00000011; |
| 582 | case 0x03: return 0x0700000e; |
| 583 | case 0x04: return 0x0f00000c; |
| 584 | case 0x05: return 0x0e000003; |
| 585 | } |
| 586 | |
| 587 | return ~0U; |
| 588 | } |
| 589 | |
| 590 | static __init u32 skx_deadline_rev(void) |
| 591 | { |
| 592 | switch (boot_cpu_data.x86_stepping) { |
| 593 | case 0x03: return 0x01000136; |
| 594 | case 0x04: return 0x02000014; |
| 595 | } |
| 596 | |
| 597 | if (boot_cpu_data.x86_stepping > 4) |
| 598 | return 0; |
| 599 | |
| 600 | return ~0U; |
| 601 | } |
| 602 | |
| 603 | static const struct x86_cpu_id deadline_match[] __initconst = { |
| 604 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev), |
| 605 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020), |
| 606 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_D, bdx_deadline_rev), |
| 607 | DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_SKYLAKE_X, skx_deadline_rev), |
| 608 | |
| 609 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL, 0x22), |
| 610 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_L, 0x20), |
| 611 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_G, 0x17), |
| 612 | |
| 613 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL, 0x25), |
| 614 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_G, 0x17), |
| 615 | |
| 616 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_L, 0xb2), |
| 617 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE, 0xb2), |
| 618 | |
| 619 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_L, 0x52), |
| 620 | DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE, 0x52), |
| 621 | |
| 622 | {}, |
| 623 | }; |
| 624 | |
| 625 | static __init bool apic_validate_deadline_timer(void) |
| 626 | { |
| 627 | const struct x86_cpu_id *m; |
| 628 | u32 rev; |
| 629 | |
| 630 | if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 631 | return false; |
| 632 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) |
| 633 | return true; |
| 634 | |
| 635 | m = x86_match_cpu(deadline_match); |
| 636 | if (!m) |
| 637 | return true; |
| 638 | |
| 639 | /* |
| 640 | * Function pointers will have the MSB set due to address layout, |
| 641 | * immediate revisions will not. |
| 642 | */ |
| 643 | if ((long)m->driver_data < 0) |
| 644 | rev = ((u32 (*)(void))(m->driver_data))(); |
| 645 | else |
| 646 | rev = (u32)m->driver_data; |
| 647 | |
| 648 | if (boot_cpu_data.microcode >= rev) |
| 649 | return true; |
| 650 | |
| 651 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
| 652 | pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " |
| 653 | "please update microcode to version: 0x%x (or later)\n", rev); |
| 654 | return false; |
| 655 | } |
| 656 | |
| 657 | /* |
| 658 | * Setup the local APIC timer for this CPU. Copy the initialized values |
| 659 | * of the boot CPU and register the clock event in the framework. |
| 660 | */ |
| 661 | static void setup_APIC_timer(void) |
| 662 | { |
| 663 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 664 | |
| 665 | if (this_cpu_has(X86_FEATURE_ARAT)) { |
| 666 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; |
| 667 | /* Make LAPIC timer preferrable over percpu HPET */ |
| 668 | lapic_clockevent.rating = 150; |
| 669 | } |
| 670 | |
| 671 | memcpy(levt, &lapic_clockevent, sizeof(*levt)); |
| 672 | levt->cpumask = cpumask_of(smp_processor_id()); |
| 673 | |
| 674 | if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { |
| 675 | levt->name = "lapic-deadline"; |
| 676 | levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | |
| 677 | CLOCK_EVT_FEAT_DUMMY); |
| 678 | levt->set_next_event = lapic_next_deadline; |
| 679 | clockevents_config_and_register(levt, |
| 680 | tsc_khz * (1000 / TSC_DIVISOR), |
| 681 | 0xF, ~0UL); |
| 682 | } else |
| 683 | clockevents_register_device(levt); |
| 684 | } |
| 685 | |
| 686 | /* |
| 687 | * Install the updated TSC frequency from recalibration at the TSC |
| 688 | * deadline clockevent devices. |
| 689 | */ |
| 690 | static void __lapic_update_tsc_freq(void *info) |
| 691 | { |
| 692 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 693 | |
| 694 | if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 695 | return; |
| 696 | |
| 697 | clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); |
| 698 | } |
| 699 | |
| 700 | void lapic_update_tsc_freq(void) |
| 701 | { |
| 702 | /* |
| 703 | * The clockevent device's ->mult and ->shift can both be |
| 704 | * changed. In order to avoid races, schedule the frequency |
| 705 | * update code on each CPU. |
| 706 | */ |
| 707 | on_each_cpu(__lapic_update_tsc_freq, NULL, 0); |
| 708 | } |
| 709 | |
| 710 | /* |
| 711 | * In this functions we calibrate APIC bus clocks to the external timer. |
| 712 | * |
| 713 | * We want to do the calibration only once since we want to have local timer |
| 714 | * irqs syncron. CPUs connected by the same APIC bus have the very same bus |
| 715 | * frequency. |
| 716 | * |
| 717 | * This was previously done by reading the PIT/HPET and waiting for a wrap |
| 718 | * around to find out, that a tick has elapsed. I have a box, where the PIT |
| 719 | * readout is broken, so it never gets out of the wait loop again. This was |
| 720 | * also reported by others. |
| 721 | * |
| 722 | * Monitoring the jiffies value is inaccurate and the clockevents |
| 723 | * infrastructure allows us to do a simple substitution of the interrupt |
| 724 | * handler. |
| 725 | * |
| 726 | * The calibration routine also uses the pm_timer when possible, as the PIT |
| 727 | * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes |
| 728 | * back to normal later in the boot process). |
| 729 | */ |
| 730 | |
| 731 | #define LAPIC_CAL_LOOPS (HZ/10) |
| 732 | |
| 733 | static __initdata int lapic_cal_loops = -1; |
| 734 | static __initdata long lapic_cal_t1, lapic_cal_t2; |
| 735 | static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; |
| 736 | static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; |
| 737 | static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; |
| 738 | |
| 739 | /* |
| 740 | * Temporary interrupt handler and polled calibration function. |
| 741 | */ |
| 742 | static void __init lapic_cal_handler(struct clock_event_device *dev) |
| 743 | { |
| 744 | unsigned long long tsc = 0; |
| 745 | long tapic = apic_read(APIC_TMCCT); |
| 746 | unsigned long pm = acpi_pm_read_early(); |
| 747 | |
| 748 | if (boot_cpu_has(X86_FEATURE_TSC)) |
| 749 | tsc = rdtsc(); |
| 750 | |
| 751 | switch (lapic_cal_loops++) { |
| 752 | case 0: |
| 753 | lapic_cal_t1 = tapic; |
| 754 | lapic_cal_tsc1 = tsc; |
| 755 | lapic_cal_pm1 = pm; |
| 756 | lapic_cal_j1 = jiffies; |
| 757 | break; |
| 758 | |
| 759 | case LAPIC_CAL_LOOPS: |
| 760 | lapic_cal_t2 = tapic; |
| 761 | lapic_cal_tsc2 = tsc; |
| 762 | if (pm < lapic_cal_pm1) |
| 763 | pm += ACPI_PM_OVRRUN; |
| 764 | lapic_cal_pm2 = pm; |
| 765 | lapic_cal_j2 = jiffies; |
| 766 | break; |
| 767 | } |
| 768 | } |
| 769 | |
| 770 | static int __init |
| 771 | calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) |
| 772 | { |
| 773 | const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; |
| 774 | const long pm_thresh = pm_100ms / 100; |
| 775 | unsigned long mult; |
| 776 | u64 res; |
| 777 | |
| 778 | #ifndef CONFIG_X86_PM_TIMER |
| 779 | return -1; |
| 780 | #endif |
| 781 | |
| 782 | apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); |
| 783 | |
| 784 | /* Check, if the PM timer is available */ |
| 785 | if (!deltapm) |
| 786 | return -1; |
| 787 | |
| 788 | mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); |
| 789 | |
| 790 | if (deltapm > (pm_100ms - pm_thresh) && |
| 791 | deltapm < (pm_100ms + pm_thresh)) { |
| 792 | apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); |
| 793 | return 0; |
| 794 | } |
| 795 | |
| 796 | res = (((u64)deltapm) * mult) >> 22; |
| 797 | do_div(res, 1000000); |
| 798 | pr_warning("APIC calibration not consistent " |
| 799 | "with PM-Timer: %ldms instead of 100ms\n",(long)res); |
| 800 | |
| 801 | /* Correct the lapic counter value */ |
| 802 | res = (((u64)(*delta)) * pm_100ms); |
| 803 | do_div(res, deltapm); |
| 804 | pr_info("APIC delta adjusted to PM-Timer: " |
| 805 | "%lu (%ld)\n", (unsigned long)res, *delta); |
| 806 | *delta = (long)res; |
| 807 | |
| 808 | /* Correct the tsc counter value */ |
| 809 | if (boot_cpu_has(X86_FEATURE_TSC)) { |
| 810 | res = (((u64)(*deltatsc)) * pm_100ms); |
| 811 | do_div(res, deltapm); |
| 812 | apic_printk(APIC_VERBOSE, "TSC delta adjusted to " |
| 813 | "PM-Timer: %lu (%ld)\n", |
| 814 | (unsigned long)res, *deltatsc); |
| 815 | *deltatsc = (long)res; |
| 816 | } |
| 817 | |
| 818 | return 0; |
| 819 | } |
| 820 | |
| 821 | static int __init lapic_init_clockevent(void) |
| 822 | { |
| 823 | if (!lapic_timer_period) |
| 824 | return -1; |
| 825 | |
| 826 | /* Calculate the scaled math multiplication factor */ |
| 827 | lapic_clockevent.mult = div_sc(lapic_timer_period/APIC_DIVISOR, |
| 828 | TICK_NSEC, lapic_clockevent.shift); |
| 829 | lapic_clockevent.max_delta_ns = |
| 830 | clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); |
| 831 | lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; |
| 832 | lapic_clockevent.min_delta_ns = |
| 833 | clockevent_delta2ns(0xF, &lapic_clockevent); |
| 834 | lapic_clockevent.min_delta_ticks = 0xF; |
| 835 | |
| 836 | return 0; |
| 837 | } |
| 838 | |
| 839 | bool __init apic_needs_pit(void) |
| 840 | { |
| 841 | /* |
| 842 | * If the frequencies are not known, PIT is required for both TSC |
| 843 | * and apic timer calibration. |
| 844 | */ |
| 845 | if (!tsc_khz || !cpu_khz) |
| 846 | return true; |
| 847 | |
| 848 | /* Is there an APIC at all or is it disabled? */ |
| 849 | if (!boot_cpu_has(X86_FEATURE_APIC) || disable_apic) |
| 850 | return true; |
| 851 | |
| 852 | /* |
| 853 | * If interrupt delivery mode is legacy PIC or virtual wire without |
| 854 | * configuration, the local APIC timer wont be set up. Make sure |
| 855 | * that the PIT is initialized. |
| 856 | */ |
| 857 | if (apic_intr_mode == APIC_PIC || |
| 858 | apic_intr_mode == APIC_VIRTUAL_WIRE_NO_CONFIG) |
| 859 | return true; |
| 860 | |
| 861 | /* Virt guests may lack ARAT, but still have DEADLINE */ |
| 862 | if (!boot_cpu_has(X86_FEATURE_ARAT)) |
| 863 | return true; |
| 864 | |
| 865 | /* Deadline timer is based on TSC so no further PIT action required */ |
| 866 | if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 867 | return false; |
| 868 | |
| 869 | /* APIC timer disabled? */ |
| 870 | if (disable_apic_timer) |
| 871 | return true; |
| 872 | /* |
| 873 | * The APIC timer frequency is known already, no PIT calibration |
| 874 | * required. If unknown, let the PIT be initialized. |
| 875 | */ |
| 876 | return lapic_timer_period == 0; |
| 877 | } |
| 878 | |
| 879 | static int __init calibrate_APIC_clock(void) |
| 880 | { |
| 881 | struct clock_event_device *levt = this_cpu_ptr(&lapic_events); |
| 882 | u64 tsc_perj = 0, tsc_start = 0; |
| 883 | unsigned long jif_start; |
| 884 | unsigned long deltaj; |
| 885 | long delta, deltatsc; |
| 886 | int pm_referenced = 0; |
| 887 | |
| 888 | if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) |
| 889 | return 0; |
| 890 | |
| 891 | /* |
| 892 | * Check if lapic timer has already been calibrated by platform |
| 893 | * specific routine, such as tsc calibration code. If so just fill |
| 894 | * in the clockevent structure and return. |
| 895 | */ |
| 896 | if (!lapic_init_clockevent()) { |
| 897 | apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", |
| 898 | lapic_timer_period); |
| 899 | /* |
| 900 | * Direct calibration methods must have an always running |
| 901 | * local APIC timer, no need for broadcast timer. |
| 902 | */ |
| 903 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 904 | return 0; |
| 905 | } |
| 906 | |
| 907 | apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" |
| 908 | "calibrating APIC timer ...\n"); |
| 909 | |
| 910 | /* |
| 911 | * There are platforms w/o global clockevent devices. Instead of |
| 912 | * making the calibration conditional on that, use a polling based |
| 913 | * approach everywhere. |
| 914 | */ |
| 915 | local_irq_disable(); |
| 916 | |
| 917 | /* |
| 918 | * Setup the APIC counter to maximum. There is no way the lapic |
| 919 | * can underflow in the 100ms detection time frame |
| 920 | */ |
| 921 | __setup_APIC_LVTT(0xffffffff, 0, 0); |
| 922 | |
| 923 | /* |
| 924 | * Methods to terminate the calibration loop: |
| 925 | * 1) Global clockevent if available (jiffies) |
| 926 | * 2) TSC if available and frequency is known |
| 927 | */ |
| 928 | jif_start = READ_ONCE(jiffies); |
| 929 | |
| 930 | if (tsc_khz) { |
| 931 | tsc_start = rdtsc(); |
| 932 | tsc_perj = div_u64((u64)tsc_khz * 1000, HZ); |
| 933 | } |
| 934 | |
| 935 | /* |
| 936 | * Enable interrupts so the tick can fire, if a global |
| 937 | * clockevent device is available |
| 938 | */ |
| 939 | local_irq_enable(); |
| 940 | |
| 941 | while (lapic_cal_loops <= LAPIC_CAL_LOOPS) { |
| 942 | /* Wait for a tick to elapse */ |
| 943 | while (1) { |
| 944 | if (tsc_khz) { |
| 945 | u64 tsc_now = rdtsc(); |
| 946 | if ((tsc_now - tsc_start) >= tsc_perj) { |
| 947 | tsc_start += tsc_perj; |
| 948 | break; |
| 949 | } |
| 950 | } else { |
| 951 | unsigned long jif_now = READ_ONCE(jiffies); |
| 952 | |
| 953 | if (time_after(jif_now, jif_start)) { |
| 954 | jif_start = jif_now; |
| 955 | break; |
| 956 | } |
| 957 | } |
| 958 | cpu_relax(); |
| 959 | } |
| 960 | |
| 961 | /* Invoke the calibration routine */ |
| 962 | local_irq_disable(); |
| 963 | lapic_cal_handler(NULL); |
| 964 | local_irq_enable(); |
| 965 | } |
| 966 | |
| 967 | local_irq_disable(); |
| 968 | |
| 969 | /* Build delta t1-t2 as apic timer counts down */ |
| 970 | delta = lapic_cal_t1 - lapic_cal_t2; |
| 971 | apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); |
| 972 | |
| 973 | deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); |
| 974 | |
| 975 | /* we trust the PM based calibration if possible */ |
| 976 | pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, |
| 977 | &delta, &deltatsc); |
| 978 | |
| 979 | lapic_timer_period = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; |
| 980 | lapic_init_clockevent(); |
| 981 | |
| 982 | apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); |
| 983 | apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); |
| 984 | apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", |
| 985 | lapic_timer_period); |
| 986 | |
| 987 | if (boot_cpu_has(X86_FEATURE_TSC)) { |
| 988 | apic_printk(APIC_VERBOSE, "..... CPU clock speed is " |
| 989 | "%ld.%04ld MHz.\n", |
| 990 | (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), |
| 991 | (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); |
| 992 | } |
| 993 | |
| 994 | apic_printk(APIC_VERBOSE, "..... host bus clock speed is " |
| 995 | "%u.%04u MHz.\n", |
| 996 | lapic_timer_period / (1000000 / HZ), |
| 997 | lapic_timer_period % (1000000 / HZ)); |
| 998 | |
| 999 | /* |
| 1000 | * Do a sanity check on the APIC calibration result |
| 1001 | */ |
| 1002 | if (lapic_timer_period < (1000000 / HZ)) { |
| 1003 | local_irq_enable(); |
| 1004 | pr_warning("APIC frequency too slow, disabling apic timer\n"); |
| 1005 | return -1; |
| 1006 | } |
| 1007 | |
| 1008 | levt->features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 1009 | |
| 1010 | /* |
| 1011 | * PM timer calibration failed or not turned on so lets try APIC |
| 1012 | * timer based calibration, if a global clockevent device is |
| 1013 | * available. |
| 1014 | */ |
| 1015 | if (!pm_referenced && global_clock_event) { |
| 1016 | apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); |
| 1017 | |
| 1018 | /* |
| 1019 | * Setup the apic timer manually |
| 1020 | */ |
| 1021 | levt->event_handler = lapic_cal_handler; |
| 1022 | lapic_timer_set_periodic(levt); |
| 1023 | lapic_cal_loops = -1; |
| 1024 | |
| 1025 | /* Let the interrupts run */ |
| 1026 | local_irq_enable(); |
| 1027 | |
| 1028 | while (lapic_cal_loops <= LAPIC_CAL_LOOPS) |
| 1029 | cpu_relax(); |
| 1030 | |
| 1031 | /* Stop the lapic timer */ |
| 1032 | local_irq_disable(); |
| 1033 | lapic_timer_shutdown(levt); |
| 1034 | |
| 1035 | /* Jiffies delta */ |
| 1036 | deltaj = lapic_cal_j2 - lapic_cal_j1; |
| 1037 | apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); |
| 1038 | |
| 1039 | /* Check, if the jiffies result is consistent */ |
| 1040 | if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) |
| 1041 | apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); |
| 1042 | else |
| 1043 | levt->features |= CLOCK_EVT_FEAT_DUMMY; |
| 1044 | } |
| 1045 | local_irq_enable(); |
| 1046 | |
| 1047 | if (levt->features & CLOCK_EVT_FEAT_DUMMY) { |
| 1048 | pr_warning("APIC timer disabled due to verification failure\n"); |
| 1049 | return -1; |
| 1050 | } |
| 1051 | |
| 1052 | return 0; |
| 1053 | } |
| 1054 | |
| 1055 | /* |
| 1056 | * Setup the boot APIC |
| 1057 | * |
| 1058 | * Calibrate and verify the result. |
| 1059 | */ |
| 1060 | void __init setup_boot_APIC_clock(void) |
| 1061 | { |
| 1062 | /* |
| 1063 | * The local apic timer can be disabled via the kernel |
| 1064 | * commandline or from the CPU detection code. Register the lapic |
| 1065 | * timer as a dummy clock event source on SMP systems, so the |
| 1066 | * broadcast mechanism is used. On UP systems simply ignore it. |
| 1067 | */ |
| 1068 | if (disable_apic_timer) { |
| 1069 | pr_info("Disabling APIC timer\n"); |
| 1070 | /* No broadcast on UP ! */ |
| 1071 | if (num_possible_cpus() > 1) { |
| 1072 | lapic_clockevent.mult = 1; |
| 1073 | setup_APIC_timer(); |
| 1074 | } |
| 1075 | return; |
| 1076 | } |
| 1077 | |
| 1078 | if (calibrate_APIC_clock()) { |
| 1079 | /* No broadcast on UP ! */ |
| 1080 | if (num_possible_cpus() > 1) |
| 1081 | setup_APIC_timer(); |
| 1082 | return; |
| 1083 | } |
| 1084 | |
| 1085 | /* |
| 1086 | * If nmi_watchdog is set to IO_APIC, we need the |
| 1087 | * PIT/HPET going. Otherwise register lapic as a dummy |
| 1088 | * device. |
| 1089 | */ |
| 1090 | lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; |
| 1091 | |
| 1092 | /* Setup the lapic or request the broadcast */ |
| 1093 | setup_APIC_timer(); |
| 1094 | amd_e400_c1e_apic_setup(); |
| 1095 | } |
| 1096 | |
| 1097 | void setup_secondary_APIC_clock(void) |
| 1098 | { |
| 1099 | setup_APIC_timer(); |
| 1100 | amd_e400_c1e_apic_setup(); |
| 1101 | } |
| 1102 | |
| 1103 | /* |
| 1104 | * The guts of the apic timer interrupt |
| 1105 | */ |
| 1106 | static void local_apic_timer_interrupt(void) |
| 1107 | { |
| 1108 | struct clock_event_device *evt = this_cpu_ptr(&lapic_events); |
| 1109 | |
| 1110 | /* |
| 1111 | * Normally we should not be here till LAPIC has been initialized but |
| 1112 | * in some cases like kdump, its possible that there is a pending LAPIC |
| 1113 | * timer interrupt from previous kernel's context and is delivered in |
| 1114 | * new kernel the moment interrupts are enabled. |
| 1115 | * |
| 1116 | * Interrupts are enabled early and LAPIC is setup much later, hence |
| 1117 | * its possible that when we get here evt->event_handler is NULL. |
| 1118 | * Check for event_handler being NULL and discard the interrupt as |
| 1119 | * spurious. |
| 1120 | */ |
| 1121 | if (!evt->event_handler) { |
| 1122 | pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", |
| 1123 | smp_processor_id()); |
| 1124 | /* Switch it off */ |
| 1125 | lapic_timer_shutdown(evt); |
| 1126 | return; |
| 1127 | } |
| 1128 | |
| 1129 | /* |
| 1130 | * the NMI deadlock-detector uses this. |
| 1131 | */ |
| 1132 | inc_irq_stat(apic_timer_irqs); |
| 1133 | |
| 1134 | evt->event_handler(evt); |
| 1135 | } |
| 1136 | |
| 1137 | /* |
| 1138 | * Local APIC timer interrupt. This is the most natural way for doing |
| 1139 | * local interrupts, but local timer interrupts can be emulated by |
| 1140 | * broadcast interrupts too. [in case the hw doesn't support APIC timers] |
| 1141 | * |
| 1142 | * [ if a single-CPU system runs an SMP kernel then we call the local |
| 1143 | * interrupt as well. Thus we cannot inline the local irq ... ] |
| 1144 | */ |
| 1145 | __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) |
| 1146 | { |
| 1147 | struct pt_regs *old_regs = set_irq_regs(regs); |
| 1148 | |
| 1149 | /* |
| 1150 | * NOTE! We'd better ACK the irq immediately, |
| 1151 | * because timer handling can be slow. |
| 1152 | * |
| 1153 | * update_process_times() expects us to have done irq_enter(). |
| 1154 | * Besides, if we don't timer interrupts ignore the global |
| 1155 | * interrupt lock, which is the WrongThing (tm) to do. |
| 1156 | */ |
| 1157 | entering_ack_irq(); |
| 1158 | trace_local_timer_entry(LOCAL_TIMER_VECTOR); |
| 1159 | local_apic_timer_interrupt(); |
| 1160 | trace_local_timer_exit(LOCAL_TIMER_VECTOR); |
| 1161 | exiting_irq(); |
| 1162 | |
| 1163 | set_irq_regs(old_regs); |
| 1164 | } |
| 1165 | |
| 1166 | int setup_profiling_timer(unsigned int multiplier) |
| 1167 | { |
| 1168 | return -EINVAL; |
| 1169 | } |
| 1170 | |
| 1171 | /* |
| 1172 | * Local APIC start and shutdown |
| 1173 | */ |
| 1174 | |
| 1175 | /** |
| 1176 | * clear_local_APIC - shutdown the local APIC |
| 1177 | * |
| 1178 | * This is called, when a CPU is disabled and before rebooting, so the state of |
| 1179 | * the local APIC has no dangling leftovers. Also used to cleanout any BIOS |
| 1180 | * leftovers during boot. |
| 1181 | */ |
| 1182 | void clear_local_APIC(void) |
| 1183 | { |
| 1184 | int maxlvt; |
| 1185 | u32 v; |
| 1186 | |
| 1187 | /* APIC hasn't been mapped yet */ |
| 1188 | if (!x2apic_mode && !apic_phys) |
| 1189 | return; |
| 1190 | |
| 1191 | maxlvt = lapic_get_maxlvt(); |
| 1192 | /* |
| 1193 | * Masking an LVT entry can trigger a local APIC error |
| 1194 | * if the vector is zero. Mask LVTERR first to prevent this. |
| 1195 | */ |
| 1196 | if (maxlvt >= 3) { |
| 1197 | v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ |
| 1198 | apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); |
| 1199 | } |
| 1200 | /* |
| 1201 | * Careful: we have to set masks only first to deassert |
| 1202 | * any level-triggered sources. |
| 1203 | */ |
| 1204 | v = apic_read(APIC_LVTT); |
| 1205 | apic_write(APIC_LVTT, v | APIC_LVT_MASKED); |
| 1206 | v = apic_read(APIC_LVT0); |
| 1207 | apic_write(APIC_LVT0, v | APIC_LVT_MASKED); |
| 1208 | v = apic_read(APIC_LVT1); |
| 1209 | apic_write(APIC_LVT1, v | APIC_LVT_MASKED); |
| 1210 | if (maxlvt >= 4) { |
| 1211 | v = apic_read(APIC_LVTPC); |
| 1212 | apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); |
| 1213 | } |
| 1214 | |
| 1215 | /* lets not touch this if we didn't frob it */ |
| 1216 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 1217 | if (maxlvt >= 5) { |
| 1218 | v = apic_read(APIC_LVTTHMR); |
| 1219 | apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); |
| 1220 | } |
| 1221 | #endif |
| 1222 | #ifdef CONFIG_X86_MCE_INTEL |
| 1223 | if (maxlvt >= 6) { |
| 1224 | v = apic_read(APIC_LVTCMCI); |
| 1225 | if (!(v & APIC_LVT_MASKED)) |
| 1226 | apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); |
| 1227 | } |
| 1228 | #endif |
| 1229 | |
| 1230 | /* |
| 1231 | * Clean APIC state for other OSs: |
| 1232 | */ |
| 1233 | apic_write(APIC_LVTT, APIC_LVT_MASKED); |
| 1234 | apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| 1235 | apic_write(APIC_LVT1, APIC_LVT_MASKED); |
| 1236 | if (maxlvt >= 3) |
| 1237 | apic_write(APIC_LVTERR, APIC_LVT_MASKED); |
| 1238 | if (maxlvt >= 4) |
| 1239 | apic_write(APIC_LVTPC, APIC_LVT_MASKED); |
| 1240 | |
| 1241 | /* Integrated APIC (!82489DX) ? */ |
| 1242 | if (lapic_is_integrated()) { |
| 1243 | if (maxlvt > 3) |
| 1244 | /* Clear ESR due to Pentium errata 3AP and 11AP */ |
| 1245 | apic_write(APIC_ESR, 0); |
| 1246 | apic_read(APIC_ESR); |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | /** |
| 1251 | * apic_soft_disable - Clears and software disables the local APIC on hotplug |
| 1252 | * |
| 1253 | * Contrary to disable_local_APIC() this does not touch the enable bit in |
| 1254 | * MSR_IA32_APICBASE. Clearing that bit on systems based on the 3 wire APIC |
| 1255 | * bus would require a hardware reset as the APIC would lose track of bus |
| 1256 | * arbitration. On systems with FSB delivery APICBASE could be disabled, |
| 1257 | * but it has to be guaranteed that no interrupt is sent to the APIC while |
| 1258 | * in that state and it's not clear from the SDM whether it still responds |
| 1259 | * to INIT/SIPI messages. Stay on the safe side and use software disable. |
| 1260 | */ |
| 1261 | void apic_soft_disable(void) |
| 1262 | { |
| 1263 | u32 value; |
| 1264 | |
| 1265 | clear_local_APIC(); |
| 1266 | |
| 1267 | /* Soft disable APIC (implies clearing of registers for 82489DX!). */ |
| 1268 | value = apic_read(APIC_SPIV); |
| 1269 | value &= ~APIC_SPIV_APIC_ENABLED; |
| 1270 | apic_write(APIC_SPIV, value); |
| 1271 | } |
| 1272 | |
| 1273 | /** |
| 1274 | * disable_local_APIC - clear and disable the local APIC |
| 1275 | */ |
| 1276 | void disable_local_APIC(void) |
| 1277 | { |
| 1278 | /* APIC hasn't been mapped yet */ |
| 1279 | if (!x2apic_mode && !apic_phys) |
| 1280 | return; |
| 1281 | |
| 1282 | apic_soft_disable(); |
| 1283 | |
| 1284 | #ifdef CONFIG_X86_32 |
| 1285 | /* |
| 1286 | * When LAPIC was disabled by the BIOS and enabled by the kernel, |
| 1287 | * restore the disabled state. |
| 1288 | */ |
| 1289 | if (enabled_via_apicbase) { |
| 1290 | unsigned int l, h; |
| 1291 | |
| 1292 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 1293 | l &= ~MSR_IA32_APICBASE_ENABLE; |
| 1294 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 1295 | } |
| 1296 | #endif |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * If Linux enabled the LAPIC against the BIOS default disable it down before |
| 1301 | * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and |
| 1302 | * not power-off. Additionally clear all LVT entries before disable_local_APIC |
| 1303 | * for the case where Linux didn't enable the LAPIC. |
| 1304 | */ |
| 1305 | void lapic_shutdown(void) |
| 1306 | { |
| 1307 | unsigned long flags; |
| 1308 | |
| 1309 | if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) |
| 1310 | return; |
| 1311 | |
| 1312 | local_irq_save(flags); |
| 1313 | |
| 1314 | #ifdef CONFIG_X86_32 |
| 1315 | if (!enabled_via_apicbase) |
| 1316 | clear_local_APIC(); |
| 1317 | else |
| 1318 | #endif |
| 1319 | disable_local_APIC(); |
| 1320 | |
| 1321 | |
| 1322 | local_irq_restore(flags); |
| 1323 | } |
| 1324 | |
| 1325 | /** |
| 1326 | * sync_Arb_IDs - synchronize APIC bus arbitration IDs |
| 1327 | */ |
| 1328 | void __init sync_Arb_IDs(void) |
| 1329 | { |
| 1330 | /* |
| 1331 | * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not |
| 1332 | * needed on AMD. |
| 1333 | */ |
| 1334 | if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) |
| 1335 | return; |
| 1336 | |
| 1337 | /* |
| 1338 | * Wait for idle. |
| 1339 | */ |
| 1340 | apic_wait_icr_idle(); |
| 1341 | |
| 1342 | apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); |
| 1343 | apic_write(APIC_ICR, APIC_DEST_ALLINC | |
| 1344 | APIC_INT_LEVELTRIG | APIC_DM_INIT); |
| 1345 | } |
| 1346 | |
| 1347 | enum apic_intr_mode_id apic_intr_mode __ro_after_init; |
| 1348 | |
| 1349 | static int __init __apic_intr_mode_select(void) |
| 1350 | { |
| 1351 | /* Check kernel option */ |
| 1352 | if (disable_apic) { |
| 1353 | pr_info("APIC disabled via kernel command line\n"); |
| 1354 | return APIC_PIC; |
| 1355 | } |
| 1356 | |
| 1357 | /* Check BIOS */ |
| 1358 | #ifdef CONFIG_X86_64 |
| 1359 | /* On 64-bit, the APIC must be integrated, Check local APIC only */ |
| 1360 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 1361 | disable_apic = 1; |
| 1362 | pr_info("APIC disabled by BIOS\n"); |
| 1363 | return APIC_PIC; |
| 1364 | } |
| 1365 | #else |
| 1366 | /* On 32-bit, the APIC may be integrated APIC or 82489DX */ |
| 1367 | |
| 1368 | /* Neither 82489DX nor integrated APIC ? */ |
| 1369 | if (!boot_cpu_has(X86_FEATURE_APIC) && !smp_found_config) { |
| 1370 | disable_apic = 1; |
| 1371 | return APIC_PIC; |
| 1372 | } |
| 1373 | |
| 1374 | /* If the BIOS pretends there is an integrated APIC ? */ |
| 1375 | if (!boot_cpu_has(X86_FEATURE_APIC) && |
| 1376 | APIC_INTEGRATED(boot_cpu_apic_version)) { |
| 1377 | disable_apic = 1; |
| 1378 | pr_err(FW_BUG "Local APIC %d not detected, force emulation\n", |
| 1379 | boot_cpu_physical_apicid); |
| 1380 | return APIC_PIC; |
| 1381 | } |
| 1382 | #endif |
| 1383 | |
| 1384 | /* Check MP table or ACPI MADT configuration */ |
| 1385 | if (!smp_found_config) { |
| 1386 | disable_ioapic_support(); |
| 1387 | if (!acpi_lapic) { |
| 1388 | pr_info("APIC: ACPI MADT or MP tables are not detected\n"); |
| 1389 | return APIC_VIRTUAL_WIRE_NO_CONFIG; |
| 1390 | } |
| 1391 | return APIC_VIRTUAL_WIRE; |
| 1392 | } |
| 1393 | |
| 1394 | #ifdef CONFIG_SMP |
| 1395 | /* If SMP should be disabled, then really disable it! */ |
| 1396 | if (!setup_max_cpus) { |
| 1397 | pr_info("APIC: SMP mode deactivated\n"); |
| 1398 | return APIC_SYMMETRIC_IO_NO_ROUTING; |
| 1399 | } |
| 1400 | |
| 1401 | if (read_apic_id() != boot_cpu_physical_apicid) { |
| 1402 | panic("Boot APIC ID in local APIC unexpected (%d vs %d)", |
| 1403 | read_apic_id(), boot_cpu_physical_apicid); |
| 1404 | /* Or can we switch back to PIC here? */ |
| 1405 | } |
| 1406 | #endif |
| 1407 | |
| 1408 | return APIC_SYMMETRIC_IO; |
| 1409 | } |
| 1410 | |
| 1411 | /* Select the interrupt delivery mode for the BSP */ |
| 1412 | void __init apic_intr_mode_select(void) |
| 1413 | { |
| 1414 | apic_intr_mode = __apic_intr_mode_select(); |
| 1415 | } |
| 1416 | |
| 1417 | /* |
| 1418 | * An initial setup of the virtual wire mode. |
| 1419 | */ |
| 1420 | void __init init_bsp_APIC(void) |
| 1421 | { |
| 1422 | unsigned int value; |
| 1423 | |
| 1424 | /* |
| 1425 | * Don't do the setup now if we have a SMP BIOS as the |
| 1426 | * through-I/O-APIC virtual wire mode might be active. |
| 1427 | */ |
| 1428 | if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) |
| 1429 | return; |
| 1430 | |
| 1431 | /* |
| 1432 | * Do not trust the local APIC being empty at bootup. |
| 1433 | */ |
| 1434 | clear_local_APIC(); |
| 1435 | |
| 1436 | /* |
| 1437 | * Enable APIC. |
| 1438 | */ |
| 1439 | value = apic_read(APIC_SPIV); |
| 1440 | value &= ~APIC_VECTOR_MASK; |
| 1441 | value |= APIC_SPIV_APIC_ENABLED; |
| 1442 | |
| 1443 | #ifdef CONFIG_X86_32 |
| 1444 | /* This bit is reserved on P4/Xeon and should be cleared */ |
| 1445 | if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && |
| 1446 | (boot_cpu_data.x86 == 15)) |
| 1447 | value &= ~APIC_SPIV_FOCUS_DISABLED; |
| 1448 | else |
| 1449 | #endif |
| 1450 | value |= APIC_SPIV_FOCUS_DISABLED; |
| 1451 | value |= SPURIOUS_APIC_VECTOR; |
| 1452 | apic_write(APIC_SPIV, value); |
| 1453 | |
| 1454 | /* |
| 1455 | * Set up the virtual wire mode. |
| 1456 | */ |
| 1457 | apic_write(APIC_LVT0, APIC_DM_EXTINT); |
| 1458 | value = APIC_DM_NMI; |
| 1459 | if (!lapic_is_integrated()) /* 82489DX */ |
| 1460 | value |= APIC_LVT_LEVEL_TRIGGER; |
| 1461 | if (apic_extnmi == APIC_EXTNMI_NONE) |
| 1462 | value |= APIC_LVT_MASKED; |
| 1463 | apic_write(APIC_LVT1, value); |
| 1464 | } |
| 1465 | |
| 1466 | static void __init apic_bsp_setup(bool upmode); |
| 1467 | |
| 1468 | /* Init the interrupt delivery mode for the BSP */ |
| 1469 | void __init apic_intr_mode_init(void) |
| 1470 | { |
| 1471 | bool upmode = IS_ENABLED(CONFIG_UP_LATE_INIT); |
| 1472 | |
| 1473 | switch (apic_intr_mode) { |
| 1474 | case APIC_PIC: |
| 1475 | pr_info("APIC: Keep in PIC mode(8259)\n"); |
| 1476 | return; |
| 1477 | case APIC_VIRTUAL_WIRE: |
| 1478 | pr_info("APIC: Switch to virtual wire mode setup\n"); |
| 1479 | default_setup_apic_routing(); |
| 1480 | break; |
| 1481 | case APIC_VIRTUAL_WIRE_NO_CONFIG: |
| 1482 | pr_info("APIC: Switch to virtual wire mode setup with no configuration\n"); |
| 1483 | upmode = true; |
| 1484 | default_setup_apic_routing(); |
| 1485 | break; |
| 1486 | case APIC_SYMMETRIC_IO: |
| 1487 | pr_info("APIC: Switch to symmetric I/O mode setup\n"); |
| 1488 | default_setup_apic_routing(); |
| 1489 | break; |
| 1490 | case APIC_SYMMETRIC_IO_NO_ROUTING: |
| 1491 | pr_info("APIC: Switch to symmetric I/O mode setup in no SMP routine\n"); |
| 1492 | break; |
| 1493 | } |
| 1494 | |
| 1495 | apic_bsp_setup(upmode); |
| 1496 | } |
| 1497 | |
| 1498 | static void lapic_setup_esr(void) |
| 1499 | { |
| 1500 | unsigned int oldvalue, value, maxlvt; |
| 1501 | |
| 1502 | if (!lapic_is_integrated()) { |
| 1503 | pr_info("No ESR for 82489DX.\n"); |
| 1504 | return; |
| 1505 | } |
| 1506 | |
| 1507 | if (apic->disable_esr) { |
| 1508 | /* |
| 1509 | * Something untraceable is creating bad interrupts on |
| 1510 | * secondary quads ... for the moment, just leave the |
| 1511 | * ESR disabled - we can't do anything useful with the |
| 1512 | * errors anyway - mbligh |
| 1513 | */ |
| 1514 | pr_info("Leaving ESR disabled.\n"); |
| 1515 | return; |
| 1516 | } |
| 1517 | |
| 1518 | maxlvt = lapic_get_maxlvt(); |
| 1519 | if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ |
| 1520 | apic_write(APIC_ESR, 0); |
| 1521 | oldvalue = apic_read(APIC_ESR); |
| 1522 | |
| 1523 | /* enables sending errors */ |
| 1524 | value = ERROR_APIC_VECTOR; |
| 1525 | apic_write(APIC_LVTERR, value); |
| 1526 | |
| 1527 | /* |
| 1528 | * spec says clear errors after enabling vector. |
| 1529 | */ |
| 1530 | if (maxlvt > 3) |
| 1531 | apic_write(APIC_ESR, 0); |
| 1532 | value = apic_read(APIC_ESR); |
| 1533 | if (value != oldvalue) |
| 1534 | apic_printk(APIC_VERBOSE, "ESR value before enabling " |
| 1535 | "vector: 0x%08x after: 0x%08x\n", |
| 1536 | oldvalue, value); |
| 1537 | } |
| 1538 | |
| 1539 | #define APIC_IR_REGS APIC_ISR_NR |
| 1540 | #define APIC_IR_BITS (APIC_IR_REGS * 32) |
| 1541 | #define APIC_IR_MAPSIZE (APIC_IR_BITS / BITS_PER_LONG) |
| 1542 | |
| 1543 | union apic_ir { |
| 1544 | unsigned long map[APIC_IR_MAPSIZE]; |
| 1545 | u32 regs[APIC_IR_REGS]; |
| 1546 | }; |
| 1547 | |
| 1548 | static bool apic_check_and_ack(union apic_ir *irr, union apic_ir *isr) |
| 1549 | { |
| 1550 | int i, bit; |
| 1551 | |
| 1552 | /* Read the IRRs */ |
| 1553 | for (i = 0; i < APIC_IR_REGS; i++) |
| 1554 | irr->regs[i] = apic_read(APIC_IRR + i * 0x10); |
| 1555 | |
| 1556 | /* Read the ISRs */ |
| 1557 | for (i = 0; i < APIC_IR_REGS; i++) |
| 1558 | isr->regs[i] = apic_read(APIC_ISR + i * 0x10); |
| 1559 | |
| 1560 | /* |
| 1561 | * If the ISR map is not empty. ACK the APIC and run another round |
| 1562 | * to verify whether a pending IRR has been unblocked and turned |
| 1563 | * into a ISR. |
| 1564 | */ |
| 1565 | if (!bitmap_empty(isr->map, APIC_IR_BITS)) { |
| 1566 | /* |
| 1567 | * There can be multiple ISR bits set when a high priority |
| 1568 | * interrupt preempted a lower priority one. Issue an ACK |
| 1569 | * per set bit. |
| 1570 | */ |
| 1571 | for_each_set_bit(bit, isr->map, APIC_IR_BITS) |
| 1572 | ack_APIC_irq(); |
| 1573 | return true; |
| 1574 | } |
| 1575 | |
| 1576 | return !bitmap_empty(irr->map, APIC_IR_BITS); |
| 1577 | } |
| 1578 | |
| 1579 | /* |
| 1580 | * After a crash, we no longer service the interrupts and a pending |
| 1581 | * interrupt from previous kernel might still have ISR bit set. |
| 1582 | * |
| 1583 | * Most probably by now the CPU has serviced that pending interrupt and it |
| 1584 | * might not have done the ack_APIC_irq() because it thought, interrupt |
| 1585 | * came from i8259 as ExtInt. LAPIC did not get EOI so it does not clear |
| 1586 | * the ISR bit and cpu thinks it has already serivced the interrupt. Hence |
| 1587 | * a vector might get locked. It was noticed for timer irq (vector |
| 1588 | * 0x31). Issue an extra EOI to clear ISR. |
| 1589 | * |
| 1590 | * If there are pending IRR bits they turn into ISR bits after a higher |
| 1591 | * priority ISR bit has been acked. |
| 1592 | */ |
| 1593 | static void apic_pending_intr_clear(void) |
| 1594 | { |
| 1595 | union apic_ir irr, isr; |
| 1596 | unsigned int i; |
| 1597 | |
| 1598 | /* 512 loops are way oversized and give the APIC a chance to obey. */ |
| 1599 | for (i = 0; i < 512; i++) { |
| 1600 | if (!apic_check_and_ack(&irr, &isr)) |
| 1601 | return; |
| 1602 | } |
| 1603 | /* Dump the IRR/ISR content if that failed */ |
| 1604 | pr_warn("APIC: Stale IRR: %256pb ISR: %256pb\n", irr.map, isr.map); |
| 1605 | } |
| 1606 | |
| 1607 | /** |
| 1608 | * setup_local_APIC - setup the local APIC |
| 1609 | * |
| 1610 | * Used to setup local APIC while initializing BSP or bringing up APs. |
| 1611 | * Always called with preemption disabled. |
| 1612 | */ |
| 1613 | static void setup_local_APIC(void) |
| 1614 | { |
| 1615 | int cpu = smp_processor_id(); |
| 1616 | unsigned int value; |
| 1617 | |
| 1618 | if (disable_apic) { |
| 1619 | disable_ioapic_support(); |
| 1620 | return; |
| 1621 | } |
| 1622 | |
| 1623 | /* |
| 1624 | * If this comes from kexec/kcrash the APIC might be enabled in |
| 1625 | * SPIV. Soft disable it before doing further initialization. |
| 1626 | */ |
| 1627 | value = apic_read(APIC_SPIV); |
| 1628 | value &= ~APIC_SPIV_APIC_ENABLED; |
| 1629 | apic_write(APIC_SPIV, value); |
| 1630 | |
| 1631 | #ifdef CONFIG_X86_32 |
| 1632 | /* Pound the ESR really hard over the head with a big hammer - mbligh */ |
| 1633 | if (lapic_is_integrated() && apic->disable_esr) { |
| 1634 | apic_write(APIC_ESR, 0); |
| 1635 | apic_write(APIC_ESR, 0); |
| 1636 | apic_write(APIC_ESR, 0); |
| 1637 | apic_write(APIC_ESR, 0); |
| 1638 | } |
| 1639 | #endif |
| 1640 | /* |
| 1641 | * Double-check whether this APIC is really registered. |
| 1642 | * This is meaningless in clustered apic mode, so we skip it. |
| 1643 | */ |
| 1644 | BUG_ON(!apic->apic_id_registered()); |
| 1645 | |
| 1646 | /* |
| 1647 | * Intel recommends to set DFR, LDR and TPR before enabling |
| 1648 | * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel |
| 1649 | * document number 292116). So here it goes... |
| 1650 | */ |
| 1651 | apic->init_apic_ldr(); |
| 1652 | |
| 1653 | #ifdef CONFIG_X86_32 |
| 1654 | if (apic->dest_logical) { |
| 1655 | int logical_apicid, ldr_apicid; |
| 1656 | |
| 1657 | /* |
| 1658 | * APIC LDR is initialized. If logical_apicid mapping was |
| 1659 | * initialized during get_smp_config(), make sure it matches |
| 1660 | * the actual value. |
| 1661 | */ |
| 1662 | logical_apicid = early_per_cpu(x86_cpu_to_logical_apicid, cpu); |
| 1663 | ldr_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); |
| 1664 | if (logical_apicid != BAD_APICID) |
| 1665 | WARN_ON(logical_apicid != ldr_apicid); |
| 1666 | /* Always use the value from LDR. */ |
| 1667 | early_per_cpu(x86_cpu_to_logical_apicid, cpu) = ldr_apicid; |
| 1668 | } |
| 1669 | #endif |
| 1670 | |
| 1671 | /* |
| 1672 | * Set Task Priority to 'accept all except vectors 0-31'. An APIC |
| 1673 | * vector in the 16-31 range could be delivered if TPR == 0, but we |
| 1674 | * would think it's an exception and terrible things will happen. We |
| 1675 | * never change this later on. |
| 1676 | */ |
| 1677 | value = apic_read(APIC_TASKPRI); |
| 1678 | value &= ~APIC_TPRI_MASK; |
| 1679 | value |= 0x10; |
| 1680 | apic_write(APIC_TASKPRI, value); |
| 1681 | |
| 1682 | /* Clear eventually stale ISR/IRR bits */ |
| 1683 | apic_pending_intr_clear(); |
| 1684 | |
| 1685 | /* |
| 1686 | * Now that we are all set up, enable the APIC |
| 1687 | */ |
| 1688 | value = apic_read(APIC_SPIV); |
| 1689 | value &= ~APIC_VECTOR_MASK; |
| 1690 | /* |
| 1691 | * Enable APIC |
| 1692 | */ |
| 1693 | value |= APIC_SPIV_APIC_ENABLED; |
| 1694 | |
| 1695 | #ifdef CONFIG_X86_32 |
| 1696 | /* |
| 1697 | * Some unknown Intel IO/APIC (or APIC) errata is biting us with |
| 1698 | * certain networking cards. If high frequency interrupts are |
| 1699 | * happening on a particular IOAPIC pin, plus the IOAPIC routing |
| 1700 | * entry is masked/unmasked at a high rate as well then sooner or |
| 1701 | * later IOAPIC line gets 'stuck', no more interrupts are received |
| 1702 | * from the device. If focus CPU is disabled then the hang goes |
| 1703 | * away, oh well :-( |
| 1704 | * |
| 1705 | * [ This bug can be reproduced easily with a level-triggered |
| 1706 | * PCI Ne2000 networking cards and PII/PIII processors, dual |
| 1707 | * BX chipset. ] |
| 1708 | */ |
| 1709 | /* |
| 1710 | * Actually disabling the focus CPU check just makes the hang less |
| 1711 | * frequent as it makes the interrupt distributon model be more |
| 1712 | * like LRU than MRU (the short-term load is more even across CPUs). |
| 1713 | */ |
| 1714 | |
| 1715 | /* |
| 1716 | * - enable focus processor (bit==0) |
| 1717 | * - 64bit mode always use processor focus |
| 1718 | * so no need to set it |
| 1719 | */ |
| 1720 | value &= ~APIC_SPIV_FOCUS_DISABLED; |
| 1721 | #endif |
| 1722 | |
| 1723 | /* |
| 1724 | * Set spurious IRQ vector |
| 1725 | */ |
| 1726 | value |= SPURIOUS_APIC_VECTOR; |
| 1727 | apic_write(APIC_SPIV, value); |
| 1728 | |
| 1729 | perf_events_lapic_init(); |
| 1730 | |
| 1731 | /* |
| 1732 | * Set up LVT0, LVT1: |
| 1733 | * |
| 1734 | * set up through-local-APIC on the boot CPU's LINT0. This is not |
| 1735 | * strictly necessary in pure symmetric-IO mode, but sometimes |
| 1736 | * we delegate interrupts to the 8259A. |
| 1737 | */ |
| 1738 | /* |
| 1739 | * TODO: set up through-local-APIC from through-I/O-APIC? --macro |
| 1740 | */ |
| 1741 | value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; |
| 1742 | if (!cpu && (pic_mode || !value || skip_ioapic_setup)) { |
| 1743 | value = APIC_DM_EXTINT; |
| 1744 | apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); |
| 1745 | } else { |
| 1746 | value = APIC_DM_EXTINT | APIC_LVT_MASKED; |
| 1747 | apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); |
| 1748 | } |
| 1749 | apic_write(APIC_LVT0, value); |
| 1750 | |
| 1751 | /* |
| 1752 | * Only the BSP sees the LINT1 NMI signal by default. This can be |
| 1753 | * modified by apic_extnmi= boot option. |
| 1754 | */ |
| 1755 | if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || |
| 1756 | apic_extnmi == APIC_EXTNMI_ALL) |
| 1757 | value = APIC_DM_NMI; |
| 1758 | else |
| 1759 | value = APIC_DM_NMI | APIC_LVT_MASKED; |
| 1760 | |
| 1761 | /* Is 82489DX ? */ |
| 1762 | if (!lapic_is_integrated()) |
| 1763 | value |= APIC_LVT_LEVEL_TRIGGER; |
| 1764 | apic_write(APIC_LVT1, value); |
| 1765 | |
| 1766 | #ifdef CONFIG_X86_MCE_INTEL |
| 1767 | /* Recheck CMCI information after local APIC is up on CPU #0 */ |
| 1768 | if (!cpu) |
| 1769 | cmci_recheck(); |
| 1770 | #endif |
| 1771 | } |
| 1772 | |
| 1773 | static void end_local_APIC_setup(void) |
| 1774 | { |
| 1775 | lapic_setup_esr(); |
| 1776 | |
| 1777 | #ifdef CONFIG_X86_32 |
| 1778 | { |
| 1779 | unsigned int value; |
| 1780 | /* Disable the local apic timer */ |
| 1781 | value = apic_read(APIC_LVTT); |
| 1782 | value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); |
| 1783 | apic_write(APIC_LVTT, value); |
| 1784 | } |
| 1785 | #endif |
| 1786 | |
| 1787 | apic_pm_activate(); |
| 1788 | } |
| 1789 | |
| 1790 | /* |
| 1791 | * APIC setup function for application processors. Called from smpboot.c |
| 1792 | */ |
| 1793 | void apic_ap_setup(void) |
| 1794 | { |
| 1795 | setup_local_APIC(); |
| 1796 | end_local_APIC_setup(); |
| 1797 | } |
| 1798 | |
| 1799 | #ifdef CONFIG_X86_X2APIC |
| 1800 | int x2apic_mode; |
| 1801 | |
| 1802 | enum { |
| 1803 | X2APIC_OFF, |
| 1804 | X2APIC_ON, |
| 1805 | X2APIC_DISABLED, |
| 1806 | }; |
| 1807 | static int x2apic_state; |
| 1808 | |
| 1809 | static void __x2apic_disable(void) |
| 1810 | { |
| 1811 | u64 msr; |
| 1812 | |
| 1813 | if (!boot_cpu_has(X86_FEATURE_APIC)) |
| 1814 | return; |
| 1815 | |
| 1816 | rdmsrl(MSR_IA32_APICBASE, msr); |
| 1817 | if (!(msr & X2APIC_ENABLE)) |
| 1818 | return; |
| 1819 | /* Disable xapic and x2apic first and then reenable xapic mode */ |
| 1820 | wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); |
| 1821 | wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); |
| 1822 | printk_once(KERN_INFO "x2apic disabled\n"); |
| 1823 | } |
| 1824 | |
| 1825 | static void __x2apic_enable(void) |
| 1826 | { |
| 1827 | u64 msr; |
| 1828 | |
| 1829 | rdmsrl(MSR_IA32_APICBASE, msr); |
| 1830 | if (msr & X2APIC_ENABLE) |
| 1831 | return; |
| 1832 | wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); |
| 1833 | printk_once(KERN_INFO "x2apic enabled\n"); |
| 1834 | } |
| 1835 | |
| 1836 | static int __init setup_nox2apic(char *str) |
| 1837 | { |
| 1838 | if (x2apic_enabled()) { |
| 1839 | int apicid = native_apic_msr_read(APIC_ID); |
| 1840 | |
| 1841 | if (apicid >= 255) { |
| 1842 | pr_warning("Apicid: %08x, cannot enforce nox2apic\n", |
| 1843 | apicid); |
| 1844 | return 0; |
| 1845 | } |
| 1846 | pr_warning("x2apic already enabled.\n"); |
| 1847 | __x2apic_disable(); |
| 1848 | } |
| 1849 | setup_clear_cpu_cap(X86_FEATURE_X2APIC); |
| 1850 | x2apic_state = X2APIC_DISABLED; |
| 1851 | x2apic_mode = 0; |
| 1852 | return 0; |
| 1853 | } |
| 1854 | early_param("nox2apic", setup_nox2apic); |
| 1855 | |
| 1856 | /* Called from cpu_init() to enable x2apic on (secondary) cpus */ |
| 1857 | void x2apic_setup(void) |
| 1858 | { |
| 1859 | /* |
| 1860 | * If x2apic is not in ON state, disable it if already enabled |
| 1861 | * from BIOS. |
| 1862 | */ |
| 1863 | if (x2apic_state != X2APIC_ON) { |
| 1864 | __x2apic_disable(); |
| 1865 | return; |
| 1866 | } |
| 1867 | __x2apic_enable(); |
| 1868 | } |
| 1869 | |
| 1870 | static __init void x2apic_disable(void) |
| 1871 | { |
| 1872 | u32 x2apic_id, state = x2apic_state; |
| 1873 | |
| 1874 | x2apic_mode = 0; |
| 1875 | x2apic_state = X2APIC_DISABLED; |
| 1876 | |
| 1877 | if (state != X2APIC_ON) |
| 1878 | return; |
| 1879 | |
| 1880 | x2apic_id = read_apic_id(); |
| 1881 | if (x2apic_id >= 255) |
| 1882 | panic("Cannot disable x2apic, id: %08x\n", x2apic_id); |
| 1883 | |
| 1884 | __x2apic_disable(); |
| 1885 | register_lapic_address(mp_lapic_addr); |
| 1886 | } |
| 1887 | |
| 1888 | static __init void x2apic_enable(void) |
| 1889 | { |
| 1890 | if (x2apic_state != X2APIC_OFF) |
| 1891 | return; |
| 1892 | |
| 1893 | x2apic_mode = 1; |
| 1894 | x2apic_state = X2APIC_ON; |
| 1895 | __x2apic_enable(); |
| 1896 | } |
| 1897 | |
| 1898 | static __init void try_to_enable_x2apic(int remap_mode) |
| 1899 | { |
| 1900 | if (x2apic_state == X2APIC_DISABLED) |
| 1901 | return; |
| 1902 | |
| 1903 | if (remap_mode != IRQ_REMAP_X2APIC_MODE) { |
| 1904 | /* |
| 1905 | * Using X2APIC without IR is not architecturally supported |
| 1906 | * on bare metal but may be supported in guests. |
| 1907 | */ |
| 1908 | if (!x86_init.hyper.x2apic_available()) { |
| 1909 | pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); |
| 1910 | x2apic_disable(); |
| 1911 | return; |
| 1912 | } |
| 1913 | |
| 1914 | /* |
| 1915 | * Without IR, all CPUs can be addressed by IOAPIC/MSI only |
| 1916 | * in physical mode, and CPUs with an APIC ID that cannnot |
| 1917 | * be addressed must not be brought online. |
| 1918 | */ |
| 1919 | x2apic_set_max_apicid(255); |
| 1920 | x2apic_phys = 1; |
| 1921 | } |
| 1922 | x2apic_enable(); |
| 1923 | } |
| 1924 | |
| 1925 | void __init check_x2apic(void) |
| 1926 | { |
| 1927 | if (x2apic_enabled()) { |
| 1928 | pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); |
| 1929 | x2apic_mode = 1; |
| 1930 | x2apic_state = X2APIC_ON; |
| 1931 | } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { |
| 1932 | x2apic_state = X2APIC_DISABLED; |
| 1933 | } |
| 1934 | } |
| 1935 | #else /* CONFIG_X86_X2APIC */ |
| 1936 | static int __init validate_x2apic(void) |
| 1937 | { |
| 1938 | if (!apic_is_x2apic_enabled()) |
| 1939 | return 0; |
| 1940 | /* |
| 1941 | * Checkme: Can we simply turn off x2apic here instead of panic? |
| 1942 | */ |
| 1943 | panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); |
| 1944 | } |
| 1945 | early_initcall(validate_x2apic); |
| 1946 | |
| 1947 | static inline void try_to_enable_x2apic(int remap_mode) { } |
| 1948 | static inline void __x2apic_enable(void) { } |
| 1949 | #endif /* !CONFIG_X86_X2APIC */ |
| 1950 | |
| 1951 | void __init enable_IR_x2apic(void) |
| 1952 | { |
| 1953 | unsigned long flags; |
| 1954 | int ret, ir_stat; |
| 1955 | |
| 1956 | if (skip_ioapic_setup) { |
| 1957 | pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); |
| 1958 | return; |
| 1959 | } |
| 1960 | |
| 1961 | ir_stat = irq_remapping_prepare(); |
| 1962 | if (ir_stat < 0 && !x2apic_supported()) |
| 1963 | return; |
| 1964 | |
| 1965 | ret = save_ioapic_entries(); |
| 1966 | if (ret) { |
| 1967 | pr_info("Saving IO-APIC state failed: %d\n", ret); |
| 1968 | return; |
| 1969 | } |
| 1970 | |
| 1971 | local_irq_save(flags); |
| 1972 | legacy_pic->mask_all(); |
| 1973 | mask_ioapic_entries(); |
| 1974 | |
| 1975 | /* If irq_remapping_prepare() succeeded, try to enable it */ |
| 1976 | if (ir_stat >= 0) |
| 1977 | ir_stat = irq_remapping_enable(); |
| 1978 | /* ir_stat contains the remap mode or an error code */ |
| 1979 | try_to_enable_x2apic(ir_stat); |
| 1980 | |
| 1981 | if (ir_stat < 0) |
| 1982 | restore_ioapic_entries(); |
| 1983 | legacy_pic->restore_mask(); |
| 1984 | local_irq_restore(flags); |
| 1985 | } |
| 1986 | |
| 1987 | #ifdef CONFIG_X86_64 |
| 1988 | /* |
| 1989 | * Detect and enable local APICs on non-SMP boards. |
| 1990 | * Original code written by Keir Fraser. |
| 1991 | * On AMD64 we trust the BIOS - if it says no APIC it is likely |
| 1992 | * not correctly set up (usually the APIC timer won't work etc.) |
| 1993 | */ |
| 1994 | static int __init detect_init_APIC(void) |
| 1995 | { |
| 1996 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 1997 | pr_info("No local APIC present\n"); |
| 1998 | return -1; |
| 1999 | } |
| 2000 | |
| 2001 | mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| 2002 | return 0; |
| 2003 | } |
| 2004 | #else |
| 2005 | |
| 2006 | static int __init apic_verify(void) |
| 2007 | { |
| 2008 | u32 features, h, l; |
| 2009 | |
| 2010 | /* |
| 2011 | * The APIC feature bit should now be enabled |
| 2012 | * in `cpuid' |
| 2013 | */ |
| 2014 | features = cpuid_edx(1); |
| 2015 | if (!(features & (1 << X86_FEATURE_APIC))) { |
| 2016 | pr_warning("Could not enable APIC!\n"); |
| 2017 | return -1; |
| 2018 | } |
| 2019 | set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); |
| 2020 | mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; |
| 2021 | |
| 2022 | /* The BIOS may have set up the APIC at some other address */ |
| 2023 | if (boot_cpu_data.x86 >= 6) { |
| 2024 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 2025 | if (l & MSR_IA32_APICBASE_ENABLE) |
| 2026 | mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; |
| 2027 | } |
| 2028 | |
| 2029 | pr_info("Found and enabled local APIC!\n"); |
| 2030 | return 0; |
| 2031 | } |
| 2032 | |
| 2033 | int __init apic_force_enable(unsigned long addr) |
| 2034 | { |
| 2035 | u32 h, l; |
| 2036 | |
| 2037 | if (disable_apic) |
| 2038 | return -1; |
| 2039 | |
| 2040 | /* |
| 2041 | * Some BIOSes disable the local APIC in the APIC_BASE |
| 2042 | * MSR. This can only be done in software for Intel P6 or later |
| 2043 | * and AMD K7 (Model > 1) or later. |
| 2044 | */ |
| 2045 | if (boot_cpu_data.x86 >= 6) { |
| 2046 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 2047 | if (!(l & MSR_IA32_APICBASE_ENABLE)) { |
| 2048 | pr_info("Local APIC disabled by BIOS -- reenabling.\n"); |
| 2049 | l &= ~MSR_IA32_APICBASE_BASE; |
| 2050 | l |= MSR_IA32_APICBASE_ENABLE | addr; |
| 2051 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 2052 | enabled_via_apicbase = 1; |
| 2053 | } |
| 2054 | } |
| 2055 | return apic_verify(); |
| 2056 | } |
| 2057 | |
| 2058 | /* |
| 2059 | * Detect and initialize APIC |
| 2060 | */ |
| 2061 | static int __init detect_init_APIC(void) |
| 2062 | { |
| 2063 | /* Disabled by kernel option? */ |
| 2064 | if (disable_apic) |
| 2065 | return -1; |
| 2066 | |
| 2067 | switch (boot_cpu_data.x86_vendor) { |
| 2068 | case X86_VENDOR_AMD: |
| 2069 | if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || |
| 2070 | (boot_cpu_data.x86 >= 15)) |
| 2071 | break; |
| 2072 | goto no_apic; |
| 2073 | case X86_VENDOR_HYGON: |
| 2074 | break; |
| 2075 | case X86_VENDOR_INTEL: |
| 2076 | if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || |
| 2077 | (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) |
| 2078 | break; |
| 2079 | goto no_apic; |
| 2080 | default: |
| 2081 | goto no_apic; |
| 2082 | } |
| 2083 | |
| 2084 | if (!boot_cpu_has(X86_FEATURE_APIC)) { |
| 2085 | /* |
| 2086 | * Over-ride BIOS and try to enable the local APIC only if |
| 2087 | * "lapic" specified. |
| 2088 | */ |
| 2089 | if (!force_enable_local_apic) { |
| 2090 | pr_info("Local APIC disabled by BIOS -- " |
| 2091 | "you can enable it with \"lapic\"\n"); |
| 2092 | return -1; |
| 2093 | } |
| 2094 | if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) |
| 2095 | return -1; |
| 2096 | } else { |
| 2097 | if (apic_verify()) |
| 2098 | return -1; |
| 2099 | } |
| 2100 | |
| 2101 | apic_pm_activate(); |
| 2102 | |
| 2103 | return 0; |
| 2104 | |
| 2105 | no_apic: |
| 2106 | pr_info("No local APIC present or hardware disabled\n"); |
| 2107 | return -1; |
| 2108 | } |
| 2109 | #endif |
| 2110 | |
| 2111 | /** |
| 2112 | * init_apic_mappings - initialize APIC mappings |
| 2113 | */ |
| 2114 | void __init init_apic_mappings(void) |
| 2115 | { |
| 2116 | unsigned int new_apicid; |
| 2117 | |
| 2118 | if (apic_validate_deadline_timer()) |
| 2119 | pr_info("TSC deadline timer available\n"); |
| 2120 | |
| 2121 | if (x2apic_mode) { |
| 2122 | boot_cpu_physical_apicid = read_apic_id(); |
| 2123 | return; |
| 2124 | } |
| 2125 | |
| 2126 | /* If no local APIC can be found return early */ |
| 2127 | if (!smp_found_config && detect_init_APIC()) { |
| 2128 | /* lets NOP'ify apic operations */ |
| 2129 | pr_info("APIC: disable apic facility\n"); |
| 2130 | apic_disable(); |
| 2131 | } else { |
| 2132 | apic_phys = mp_lapic_addr; |
| 2133 | |
| 2134 | /* |
| 2135 | * If the system has ACPI MADT tables or MP info, the LAPIC |
| 2136 | * address is already registered. |
| 2137 | */ |
| 2138 | if (!acpi_lapic && !smp_found_config) |
| 2139 | register_lapic_address(apic_phys); |
| 2140 | } |
| 2141 | |
| 2142 | /* |
| 2143 | * Fetch the APIC ID of the BSP in case we have a |
| 2144 | * default configuration (or the MP table is broken). |
| 2145 | */ |
| 2146 | new_apicid = read_apic_id(); |
| 2147 | if (boot_cpu_physical_apicid != new_apicid) { |
| 2148 | boot_cpu_physical_apicid = new_apicid; |
| 2149 | /* |
| 2150 | * yeah -- we lie about apic_version |
| 2151 | * in case if apic was disabled via boot option |
| 2152 | * but it's not a problem for SMP compiled kernel |
| 2153 | * since apic_intr_mode_select is prepared for such |
| 2154 | * a case and disable smp mode |
| 2155 | */ |
| 2156 | boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | void __init register_lapic_address(unsigned long address) |
| 2161 | { |
| 2162 | mp_lapic_addr = address; |
| 2163 | |
| 2164 | if (!x2apic_mode) { |
| 2165 | set_fixmap_nocache(FIX_APIC_BASE, address); |
| 2166 | apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", |
| 2167 | APIC_BASE, address); |
| 2168 | } |
| 2169 | if (boot_cpu_physical_apicid == -1U) { |
| 2170 | boot_cpu_physical_apicid = read_apic_id(); |
| 2171 | boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); |
| 2172 | } |
| 2173 | } |
| 2174 | |
| 2175 | /* |
| 2176 | * Local APIC interrupts |
| 2177 | */ |
| 2178 | |
| 2179 | /* |
| 2180 | * This interrupt should _never_ happen with our APIC/SMP architecture |
| 2181 | */ |
| 2182 | __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) |
| 2183 | { |
| 2184 | u8 vector = ~regs->orig_ax; |
| 2185 | u32 v; |
| 2186 | |
| 2187 | entering_irq(); |
| 2188 | trace_spurious_apic_entry(vector); |
| 2189 | |
| 2190 | inc_irq_stat(irq_spurious_count); |
| 2191 | |
| 2192 | /* |
| 2193 | * If this is a spurious interrupt then do not acknowledge |
| 2194 | */ |
| 2195 | if (vector == SPURIOUS_APIC_VECTOR) { |
| 2196 | /* See SDM vol 3 */ |
| 2197 | pr_info("Spurious APIC interrupt (vector 0xFF) on CPU#%d, should never happen.\n", |
| 2198 | smp_processor_id()); |
| 2199 | goto out; |
| 2200 | } |
| 2201 | |
| 2202 | /* |
| 2203 | * If it is a vectored one, verify it's set in the ISR. If set, |
| 2204 | * acknowledge it. |
| 2205 | */ |
| 2206 | v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); |
| 2207 | if (v & (1 << (vector & 0x1f))) { |
| 2208 | pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Acked\n", |
| 2209 | vector, smp_processor_id()); |
| 2210 | ack_APIC_irq(); |
| 2211 | } else { |
| 2212 | pr_info("Spurious interrupt (vector 0x%02x) on CPU#%d. Not pending!\n", |
| 2213 | vector, smp_processor_id()); |
| 2214 | } |
| 2215 | out: |
| 2216 | trace_spurious_apic_exit(vector); |
| 2217 | exiting_irq(); |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | * This interrupt should never happen with our APIC/SMP architecture |
| 2222 | */ |
| 2223 | __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) |
| 2224 | { |
| 2225 | static const char * const error_interrupt_reason[] = { |
| 2226 | "Send CS error", /* APIC Error Bit 0 */ |
| 2227 | "Receive CS error", /* APIC Error Bit 1 */ |
| 2228 | "Send accept error", /* APIC Error Bit 2 */ |
| 2229 | "Receive accept error", /* APIC Error Bit 3 */ |
| 2230 | "Redirectable IPI", /* APIC Error Bit 4 */ |
| 2231 | "Send illegal vector", /* APIC Error Bit 5 */ |
| 2232 | "Received illegal vector", /* APIC Error Bit 6 */ |
| 2233 | "Illegal register address", /* APIC Error Bit 7 */ |
| 2234 | }; |
| 2235 | u32 v, i = 0; |
| 2236 | |
| 2237 | entering_irq(); |
| 2238 | trace_error_apic_entry(ERROR_APIC_VECTOR); |
| 2239 | |
| 2240 | /* First tickle the hardware, only then report what went on. -- REW */ |
| 2241 | if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ |
| 2242 | apic_write(APIC_ESR, 0); |
| 2243 | v = apic_read(APIC_ESR); |
| 2244 | ack_APIC_irq(); |
| 2245 | atomic_inc(&irq_err_count); |
| 2246 | |
| 2247 | apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", |
| 2248 | smp_processor_id(), v); |
| 2249 | |
| 2250 | v &= 0xff; |
| 2251 | while (v) { |
| 2252 | if (v & 0x1) |
| 2253 | apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); |
| 2254 | i++; |
| 2255 | v >>= 1; |
| 2256 | } |
| 2257 | |
| 2258 | apic_printk(APIC_DEBUG, KERN_CONT "\n"); |
| 2259 | |
| 2260 | trace_error_apic_exit(ERROR_APIC_VECTOR); |
| 2261 | exiting_irq(); |
| 2262 | } |
| 2263 | |
| 2264 | /** |
| 2265 | * connect_bsp_APIC - attach the APIC to the interrupt system |
| 2266 | */ |
| 2267 | static void __init connect_bsp_APIC(void) |
| 2268 | { |
| 2269 | #ifdef CONFIG_X86_32 |
| 2270 | if (pic_mode) { |
| 2271 | /* |
| 2272 | * Do not trust the local APIC being empty at bootup. |
| 2273 | */ |
| 2274 | clear_local_APIC(); |
| 2275 | /* |
| 2276 | * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's |
| 2277 | * local APIC to INT and NMI lines. |
| 2278 | */ |
| 2279 | apic_printk(APIC_VERBOSE, "leaving PIC mode, " |
| 2280 | "enabling APIC mode.\n"); |
| 2281 | imcr_pic_to_apic(); |
| 2282 | } |
| 2283 | #endif |
| 2284 | } |
| 2285 | |
| 2286 | /** |
| 2287 | * disconnect_bsp_APIC - detach the APIC from the interrupt system |
| 2288 | * @virt_wire_setup: indicates, whether virtual wire mode is selected |
| 2289 | * |
| 2290 | * Virtual wire mode is necessary to deliver legacy interrupts even when the |
| 2291 | * APIC is disabled. |
| 2292 | */ |
| 2293 | void disconnect_bsp_APIC(int virt_wire_setup) |
| 2294 | { |
| 2295 | unsigned int value; |
| 2296 | |
| 2297 | #ifdef CONFIG_X86_32 |
| 2298 | if (pic_mode) { |
| 2299 | /* |
| 2300 | * Put the board back into PIC mode (has an effect only on |
| 2301 | * certain older boards). Note that APIC interrupts, including |
| 2302 | * IPIs, won't work beyond this point! The only exception are |
| 2303 | * INIT IPIs. |
| 2304 | */ |
| 2305 | apic_printk(APIC_VERBOSE, "disabling APIC mode, " |
| 2306 | "entering PIC mode.\n"); |
| 2307 | imcr_apic_to_pic(); |
| 2308 | return; |
| 2309 | } |
| 2310 | #endif |
| 2311 | |
| 2312 | /* Go back to Virtual Wire compatibility mode */ |
| 2313 | |
| 2314 | /* For the spurious interrupt use vector F, and enable it */ |
| 2315 | value = apic_read(APIC_SPIV); |
| 2316 | value &= ~APIC_VECTOR_MASK; |
| 2317 | value |= APIC_SPIV_APIC_ENABLED; |
| 2318 | value |= 0xf; |
| 2319 | apic_write(APIC_SPIV, value); |
| 2320 | |
| 2321 | if (!virt_wire_setup) { |
| 2322 | /* |
| 2323 | * For LVT0 make it edge triggered, active high, |
| 2324 | * external and enabled |
| 2325 | */ |
| 2326 | value = apic_read(APIC_LVT0); |
| 2327 | value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| 2328 | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| 2329 | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| 2330 | value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| 2331 | value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); |
| 2332 | apic_write(APIC_LVT0, value); |
| 2333 | } else { |
| 2334 | /* Disable LVT0 */ |
| 2335 | apic_write(APIC_LVT0, APIC_LVT_MASKED); |
| 2336 | } |
| 2337 | |
| 2338 | /* |
| 2339 | * For LVT1 make it edge triggered, active high, |
| 2340 | * nmi and enabled |
| 2341 | */ |
| 2342 | value = apic_read(APIC_LVT1); |
| 2343 | value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | |
| 2344 | APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | |
| 2345 | APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); |
| 2346 | value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; |
| 2347 | value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); |
| 2348 | apic_write(APIC_LVT1, value); |
| 2349 | } |
| 2350 | |
| 2351 | /* |
| 2352 | * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated |
| 2353 | * contiguously, it equals to current allocated max logical CPU ID plus 1. |
| 2354 | * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, |
| 2355 | * so the maximum of nr_logical_cpuids is nr_cpu_ids. |
| 2356 | * |
| 2357 | * NOTE: Reserve 0 for BSP. |
| 2358 | */ |
| 2359 | static int nr_logical_cpuids = 1; |
| 2360 | |
| 2361 | /* |
| 2362 | * Used to store mapping between logical CPU IDs and APIC IDs. |
| 2363 | */ |
| 2364 | static int cpuid_to_apicid[] = { |
| 2365 | [0 ... NR_CPUS - 1] = -1, |
| 2366 | }; |
| 2367 | |
| 2368 | bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| 2369 | { |
| 2370 | return phys_id == cpuid_to_apicid[cpu]; |
| 2371 | } |
| 2372 | |
| 2373 | #ifdef CONFIG_SMP |
| 2374 | /** |
| 2375 | * apic_id_is_primary_thread - Check whether APIC ID belongs to a primary thread |
| 2376 | * @id: APIC ID to check |
| 2377 | */ |
| 2378 | bool apic_id_is_primary_thread(unsigned int apicid) |
| 2379 | { |
| 2380 | u32 mask; |
| 2381 | |
| 2382 | if (smp_num_siblings == 1) |
| 2383 | return true; |
| 2384 | /* Isolate the SMT bit(s) in the APICID and check for 0 */ |
| 2385 | mask = (1U << (fls(smp_num_siblings) - 1)) - 1; |
| 2386 | return !(apicid & mask); |
| 2387 | } |
| 2388 | #endif |
| 2389 | |
| 2390 | /* |
| 2391 | * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids |
| 2392 | * and cpuid_to_apicid[] synchronized. |
| 2393 | */ |
| 2394 | static int allocate_logical_cpuid(int apicid) |
| 2395 | { |
| 2396 | int i; |
| 2397 | |
| 2398 | /* |
| 2399 | * cpuid <-> apicid mapping is persistent, so when a cpu is up, |
| 2400 | * check if the kernel has allocated a cpuid for it. |
| 2401 | */ |
| 2402 | for (i = 0; i < nr_logical_cpuids; i++) { |
| 2403 | if (cpuid_to_apicid[i] == apicid) |
| 2404 | return i; |
| 2405 | } |
| 2406 | |
| 2407 | /* Allocate a new cpuid. */ |
| 2408 | if (nr_logical_cpuids >= nr_cpu_ids) { |
| 2409 | WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %u reached. " |
| 2410 | "Processor %d/0x%x and the rest are ignored.\n", |
| 2411 | nr_cpu_ids, nr_logical_cpuids, apicid); |
| 2412 | return -EINVAL; |
| 2413 | } |
| 2414 | |
| 2415 | cpuid_to_apicid[nr_logical_cpuids] = apicid; |
| 2416 | return nr_logical_cpuids++; |
| 2417 | } |
| 2418 | |
| 2419 | int generic_processor_info(int apicid, int version) |
| 2420 | { |
| 2421 | int cpu, max = nr_cpu_ids; |
| 2422 | bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, |
| 2423 | phys_cpu_present_map); |
| 2424 | |
| 2425 | /* |
| 2426 | * boot_cpu_physical_apicid is designed to have the apicid |
| 2427 | * returned by read_apic_id(), i.e, the apicid of the |
| 2428 | * currently booting-up processor. However, on some platforms, |
| 2429 | * it is temporarily modified by the apicid reported as BSP |
| 2430 | * through MP table. Concretely: |
| 2431 | * |
| 2432 | * - arch/x86/kernel/mpparse.c: MP_processor_info() |
| 2433 | * - arch/x86/mm/amdtopology.c: amd_numa_init() |
| 2434 | * |
| 2435 | * This function is executed with the modified |
| 2436 | * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel |
| 2437 | * parameter doesn't work to disable APs on kdump 2nd kernel. |
| 2438 | * |
| 2439 | * Since fixing handling of boot_cpu_physical_apicid requires |
| 2440 | * another discussion and tests on each platform, we leave it |
| 2441 | * for now and here we use read_apic_id() directly in this |
| 2442 | * function, generic_processor_info(). |
| 2443 | */ |
| 2444 | if (disabled_cpu_apicid != BAD_APICID && |
| 2445 | disabled_cpu_apicid != read_apic_id() && |
| 2446 | disabled_cpu_apicid == apicid) { |
| 2447 | int thiscpu = num_processors + disabled_cpus; |
| 2448 | |
| 2449 | pr_warning("APIC: Disabling requested cpu." |
| 2450 | " Processor %d/0x%x ignored.\n", |
| 2451 | thiscpu, apicid); |
| 2452 | |
| 2453 | disabled_cpus++; |
| 2454 | return -ENODEV; |
| 2455 | } |
| 2456 | |
| 2457 | /* |
| 2458 | * If boot cpu has not been detected yet, then only allow upto |
| 2459 | * nr_cpu_ids - 1 processors and keep one slot free for boot cpu |
| 2460 | */ |
| 2461 | if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && |
| 2462 | apicid != boot_cpu_physical_apicid) { |
| 2463 | int thiscpu = max + disabled_cpus - 1; |
| 2464 | |
| 2465 | pr_warning( |
| 2466 | "APIC: NR_CPUS/possible_cpus limit of %i almost" |
| 2467 | " reached. Keeping one slot for boot cpu." |
| 2468 | " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); |
| 2469 | |
| 2470 | disabled_cpus++; |
| 2471 | return -ENODEV; |
| 2472 | } |
| 2473 | |
| 2474 | if (num_processors >= nr_cpu_ids) { |
| 2475 | int thiscpu = max + disabled_cpus; |
| 2476 | |
| 2477 | pr_warning("APIC: NR_CPUS/possible_cpus limit of %i " |
| 2478 | "reached. Processor %d/0x%x ignored.\n", |
| 2479 | max, thiscpu, apicid); |
| 2480 | |
| 2481 | disabled_cpus++; |
| 2482 | return -EINVAL; |
| 2483 | } |
| 2484 | |
| 2485 | if (apicid == boot_cpu_physical_apicid) { |
| 2486 | /* |
| 2487 | * x86_bios_cpu_apicid is required to have processors listed |
| 2488 | * in same order as logical cpu numbers. Hence the first |
| 2489 | * entry is BSP, and so on. |
| 2490 | * boot_cpu_init() already hold bit 0 in cpu_present_mask |
| 2491 | * for BSP. |
| 2492 | */ |
| 2493 | cpu = 0; |
| 2494 | |
| 2495 | /* Logical cpuid 0 is reserved for BSP. */ |
| 2496 | cpuid_to_apicid[0] = apicid; |
| 2497 | } else { |
| 2498 | cpu = allocate_logical_cpuid(apicid); |
| 2499 | if (cpu < 0) { |
| 2500 | disabled_cpus++; |
| 2501 | return -EINVAL; |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | /* |
| 2506 | * Validate version |
| 2507 | */ |
| 2508 | if (version == 0x0) { |
| 2509 | pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", |
| 2510 | cpu, apicid); |
| 2511 | version = 0x10; |
| 2512 | } |
| 2513 | |
| 2514 | if (version != boot_cpu_apic_version) { |
| 2515 | pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", |
| 2516 | boot_cpu_apic_version, cpu, version); |
| 2517 | } |
| 2518 | |
| 2519 | if (apicid > max_physical_apicid) |
| 2520 | max_physical_apicid = apicid; |
| 2521 | |
| 2522 | #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) |
| 2523 | early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; |
| 2524 | early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; |
| 2525 | #endif |
| 2526 | #ifdef CONFIG_X86_32 |
| 2527 | early_per_cpu(x86_cpu_to_logical_apicid, cpu) = |
| 2528 | apic->x86_32_early_logical_apicid(cpu); |
| 2529 | #endif |
| 2530 | set_cpu_possible(cpu, true); |
| 2531 | physid_set(apicid, phys_cpu_present_map); |
| 2532 | set_cpu_present(cpu, true); |
| 2533 | num_processors++; |
| 2534 | |
| 2535 | return cpu; |
| 2536 | } |
| 2537 | |
| 2538 | int hard_smp_processor_id(void) |
| 2539 | { |
| 2540 | return read_apic_id(); |
| 2541 | } |
| 2542 | |
| 2543 | /* |
| 2544 | * Override the generic EOI implementation with an optimized version. |
| 2545 | * Only called during early boot when only one CPU is active and with |
| 2546 | * interrupts disabled, so we know this does not race with actual APIC driver |
| 2547 | * use. |
| 2548 | */ |
| 2549 | void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) |
| 2550 | { |
| 2551 | struct apic **drv; |
| 2552 | |
| 2553 | for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { |
| 2554 | /* Should happen once for each apic */ |
| 2555 | WARN_ON((*drv)->eoi_write == eoi_write); |
| 2556 | (*drv)->native_eoi_write = (*drv)->eoi_write; |
| 2557 | (*drv)->eoi_write = eoi_write; |
| 2558 | } |
| 2559 | } |
| 2560 | |
| 2561 | static void __init apic_bsp_up_setup(void) |
| 2562 | { |
| 2563 | #ifdef CONFIG_X86_64 |
| 2564 | apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); |
| 2565 | #else |
| 2566 | /* |
| 2567 | * Hack: In case of kdump, after a crash, kernel might be booting |
| 2568 | * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid |
| 2569 | * might be zero if read from MP tables. Get it from LAPIC. |
| 2570 | */ |
| 2571 | # ifdef CONFIG_CRASH_DUMP |
| 2572 | boot_cpu_physical_apicid = read_apic_id(); |
| 2573 | # endif |
| 2574 | #endif |
| 2575 | physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); |
| 2576 | } |
| 2577 | |
| 2578 | /** |
| 2579 | * apic_bsp_setup - Setup function for local apic and io-apic |
| 2580 | * @upmode: Force UP mode (for APIC_init_uniprocessor) |
| 2581 | */ |
| 2582 | static void __init apic_bsp_setup(bool upmode) |
| 2583 | { |
| 2584 | connect_bsp_APIC(); |
| 2585 | if (upmode) |
| 2586 | apic_bsp_up_setup(); |
| 2587 | setup_local_APIC(); |
| 2588 | |
| 2589 | enable_IO_APIC(); |
| 2590 | end_local_APIC_setup(); |
| 2591 | irq_remap_enable_fault_handling(); |
| 2592 | setup_IO_APIC(); |
| 2593 | lapic_update_legacy_vectors(); |
| 2594 | } |
| 2595 | |
| 2596 | #ifdef CONFIG_UP_LATE_INIT |
| 2597 | void __init up_late_init(void) |
| 2598 | { |
| 2599 | if (apic_intr_mode == APIC_PIC) |
| 2600 | return; |
| 2601 | |
| 2602 | /* Setup local timer */ |
| 2603 | x86_init.timers.setup_percpu_clockev(); |
| 2604 | } |
| 2605 | #endif |
| 2606 | |
| 2607 | /* |
| 2608 | * Power management |
| 2609 | */ |
| 2610 | #ifdef CONFIG_PM |
| 2611 | |
| 2612 | static struct { |
| 2613 | /* |
| 2614 | * 'active' is true if the local APIC was enabled by us and |
| 2615 | * not the BIOS; this signifies that we are also responsible |
| 2616 | * for disabling it before entering apm/acpi suspend |
| 2617 | */ |
| 2618 | int active; |
| 2619 | /* r/w apic fields */ |
| 2620 | unsigned int apic_id; |
| 2621 | unsigned int apic_taskpri; |
| 2622 | unsigned int apic_ldr; |
| 2623 | unsigned int apic_dfr; |
| 2624 | unsigned int apic_spiv; |
| 2625 | unsigned int apic_lvtt; |
| 2626 | unsigned int apic_lvtpc; |
| 2627 | unsigned int apic_lvt0; |
| 2628 | unsigned int apic_lvt1; |
| 2629 | unsigned int apic_lvterr; |
| 2630 | unsigned int apic_tmict; |
| 2631 | unsigned int apic_tdcr; |
| 2632 | unsigned int apic_thmr; |
| 2633 | unsigned int apic_cmci; |
| 2634 | } apic_pm_state; |
| 2635 | |
| 2636 | static int lapic_suspend(void) |
| 2637 | { |
| 2638 | unsigned long flags; |
| 2639 | int maxlvt; |
| 2640 | |
| 2641 | if (!apic_pm_state.active) |
| 2642 | return 0; |
| 2643 | |
| 2644 | maxlvt = lapic_get_maxlvt(); |
| 2645 | |
| 2646 | apic_pm_state.apic_id = apic_read(APIC_ID); |
| 2647 | apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); |
| 2648 | apic_pm_state.apic_ldr = apic_read(APIC_LDR); |
| 2649 | apic_pm_state.apic_dfr = apic_read(APIC_DFR); |
| 2650 | apic_pm_state.apic_spiv = apic_read(APIC_SPIV); |
| 2651 | apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); |
| 2652 | if (maxlvt >= 4) |
| 2653 | apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); |
| 2654 | apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); |
| 2655 | apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); |
| 2656 | apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); |
| 2657 | apic_pm_state.apic_tmict = apic_read(APIC_TMICT); |
| 2658 | apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); |
| 2659 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 2660 | if (maxlvt >= 5) |
| 2661 | apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); |
| 2662 | #endif |
| 2663 | #ifdef CONFIG_X86_MCE_INTEL |
| 2664 | if (maxlvt >= 6) |
| 2665 | apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); |
| 2666 | #endif |
| 2667 | |
| 2668 | local_irq_save(flags); |
| 2669 | disable_local_APIC(); |
| 2670 | |
| 2671 | irq_remapping_disable(); |
| 2672 | |
| 2673 | local_irq_restore(flags); |
| 2674 | return 0; |
| 2675 | } |
| 2676 | |
| 2677 | static void lapic_resume(void) |
| 2678 | { |
| 2679 | unsigned int l, h; |
| 2680 | unsigned long flags; |
| 2681 | int maxlvt; |
| 2682 | |
| 2683 | if (!apic_pm_state.active) |
| 2684 | return; |
| 2685 | |
| 2686 | local_irq_save(flags); |
| 2687 | |
| 2688 | /* |
| 2689 | * IO-APIC and PIC have their own resume routines. |
| 2690 | * We just mask them here to make sure the interrupt |
| 2691 | * subsystem is completely quiet while we enable x2apic |
| 2692 | * and interrupt-remapping. |
| 2693 | */ |
| 2694 | mask_ioapic_entries(); |
| 2695 | legacy_pic->mask_all(); |
| 2696 | |
| 2697 | if (x2apic_mode) { |
| 2698 | __x2apic_enable(); |
| 2699 | } else { |
| 2700 | /* |
| 2701 | * Make sure the APICBASE points to the right address |
| 2702 | * |
| 2703 | * FIXME! This will be wrong if we ever support suspend on |
| 2704 | * SMP! We'll need to do this as part of the CPU restore! |
| 2705 | */ |
| 2706 | if (boot_cpu_data.x86 >= 6) { |
| 2707 | rdmsr(MSR_IA32_APICBASE, l, h); |
| 2708 | l &= ~MSR_IA32_APICBASE_BASE; |
| 2709 | l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; |
| 2710 | wrmsr(MSR_IA32_APICBASE, l, h); |
| 2711 | } |
| 2712 | } |
| 2713 | |
| 2714 | maxlvt = lapic_get_maxlvt(); |
| 2715 | apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); |
| 2716 | apic_write(APIC_ID, apic_pm_state.apic_id); |
| 2717 | apic_write(APIC_DFR, apic_pm_state.apic_dfr); |
| 2718 | apic_write(APIC_LDR, apic_pm_state.apic_ldr); |
| 2719 | apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); |
| 2720 | apic_write(APIC_SPIV, apic_pm_state.apic_spiv); |
| 2721 | apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); |
| 2722 | apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); |
| 2723 | #ifdef CONFIG_X86_THERMAL_VECTOR |
| 2724 | if (maxlvt >= 5) |
| 2725 | apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); |
| 2726 | #endif |
| 2727 | #ifdef CONFIG_X86_MCE_INTEL |
| 2728 | if (maxlvt >= 6) |
| 2729 | apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); |
| 2730 | #endif |
| 2731 | if (maxlvt >= 4) |
| 2732 | apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); |
| 2733 | apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); |
| 2734 | apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); |
| 2735 | apic_write(APIC_TMICT, apic_pm_state.apic_tmict); |
| 2736 | apic_write(APIC_ESR, 0); |
| 2737 | apic_read(APIC_ESR); |
| 2738 | apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); |
| 2739 | apic_write(APIC_ESR, 0); |
| 2740 | apic_read(APIC_ESR); |
| 2741 | |
| 2742 | irq_remapping_reenable(x2apic_mode); |
| 2743 | |
| 2744 | local_irq_restore(flags); |
| 2745 | } |
| 2746 | |
| 2747 | /* |
| 2748 | * This device has no shutdown method - fully functioning local APICs |
| 2749 | * are needed on every CPU up until machine_halt/restart/poweroff. |
| 2750 | */ |
| 2751 | |
| 2752 | static struct syscore_ops lapic_syscore_ops = { |
| 2753 | .resume = lapic_resume, |
| 2754 | .suspend = lapic_suspend, |
| 2755 | }; |
| 2756 | |
| 2757 | static void apic_pm_activate(void) |
| 2758 | { |
| 2759 | apic_pm_state.active = 1; |
| 2760 | } |
| 2761 | |
| 2762 | static int __init init_lapic_sysfs(void) |
| 2763 | { |
| 2764 | /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ |
| 2765 | if (boot_cpu_has(X86_FEATURE_APIC)) |
| 2766 | register_syscore_ops(&lapic_syscore_ops); |
| 2767 | |
| 2768 | return 0; |
| 2769 | } |
| 2770 | |
| 2771 | /* local apic needs to resume before other devices access its registers. */ |
| 2772 | core_initcall(init_lapic_sysfs); |
| 2773 | |
| 2774 | #else /* CONFIG_PM */ |
| 2775 | |
| 2776 | static void apic_pm_activate(void) { } |
| 2777 | |
| 2778 | #endif /* CONFIG_PM */ |
| 2779 | |
| 2780 | #ifdef CONFIG_X86_64 |
| 2781 | |
| 2782 | static int multi_checked; |
| 2783 | static int multi; |
| 2784 | |
| 2785 | static int set_multi(const struct dmi_system_id *d) |
| 2786 | { |
| 2787 | if (multi) |
| 2788 | return 0; |
| 2789 | pr_info("APIC: %s detected, Multi Chassis\n", d->ident); |
| 2790 | multi = 1; |
| 2791 | return 0; |
| 2792 | } |
| 2793 | |
| 2794 | static const struct dmi_system_id multi_dmi_table[] = { |
| 2795 | { |
| 2796 | .callback = set_multi, |
| 2797 | .ident = "IBM System Summit2", |
| 2798 | .matches = { |
| 2799 | DMI_MATCH(DMI_SYS_VENDOR, "IBM"), |
| 2800 | DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), |
| 2801 | }, |
| 2802 | }, |
| 2803 | {} |
| 2804 | }; |
| 2805 | |
| 2806 | static void dmi_check_multi(void) |
| 2807 | { |
| 2808 | if (multi_checked) |
| 2809 | return; |
| 2810 | |
| 2811 | dmi_check_system(multi_dmi_table); |
| 2812 | multi_checked = 1; |
| 2813 | } |
| 2814 | |
| 2815 | /* |
| 2816 | * apic_is_clustered_box() -- Check if we can expect good TSC |
| 2817 | * |
| 2818 | * Thus far, the major user of this is IBM's Summit2 series: |
| 2819 | * Clustered boxes may have unsynced TSC problems if they are |
| 2820 | * multi-chassis. |
| 2821 | * Use DMI to check them |
| 2822 | */ |
| 2823 | int apic_is_clustered_box(void) |
| 2824 | { |
| 2825 | dmi_check_multi(); |
| 2826 | return multi; |
| 2827 | } |
| 2828 | #endif |
| 2829 | |
| 2830 | /* |
| 2831 | * APIC command line parameters |
| 2832 | */ |
| 2833 | static int __init setup_disableapic(char *arg) |
| 2834 | { |
| 2835 | disable_apic = 1; |
| 2836 | setup_clear_cpu_cap(X86_FEATURE_APIC); |
| 2837 | return 0; |
| 2838 | } |
| 2839 | early_param("disableapic", setup_disableapic); |
| 2840 | |
| 2841 | /* same as disableapic, for compatibility */ |
| 2842 | static int __init setup_nolapic(char *arg) |
| 2843 | { |
| 2844 | return setup_disableapic(arg); |
| 2845 | } |
| 2846 | early_param("nolapic", setup_nolapic); |
| 2847 | |
| 2848 | static int __init parse_lapic_timer_c2_ok(char *arg) |
| 2849 | { |
| 2850 | local_apic_timer_c2_ok = 1; |
| 2851 | return 0; |
| 2852 | } |
| 2853 | early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); |
| 2854 | |
| 2855 | static int __init parse_disable_apic_timer(char *arg) |
| 2856 | { |
| 2857 | disable_apic_timer = 1; |
| 2858 | return 0; |
| 2859 | } |
| 2860 | early_param("noapictimer", parse_disable_apic_timer); |
| 2861 | |
| 2862 | static int __init parse_nolapic_timer(char *arg) |
| 2863 | { |
| 2864 | disable_apic_timer = 1; |
| 2865 | return 0; |
| 2866 | } |
| 2867 | early_param("nolapic_timer", parse_nolapic_timer); |
| 2868 | |
| 2869 | static int __init apic_set_verbosity(char *arg) |
| 2870 | { |
| 2871 | if (!arg) { |
| 2872 | #ifdef CONFIG_X86_64 |
| 2873 | skip_ioapic_setup = 0; |
| 2874 | return 0; |
| 2875 | #endif |
| 2876 | return -EINVAL; |
| 2877 | } |
| 2878 | |
| 2879 | if (strcmp("debug", arg) == 0) |
| 2880 | apic_verbosity = APIC_DEBUG; |
| 2881 | else if (strcmp("verbose", arg) == 0) |
| 2882 | apic_verbosity = APIC_VERBOSE; |
| 2883 | #ifdef CONFIG_X86_64 |
| 2884 | else { |
| 2885 | pr_warning("APIC Verbosity level %s not recognised" |
| 2886 | " use apic=verbose or apic=debug\n", arg); |
| 2887 | return -EINVAL; |
| 2888 | } |
| 2889 | #endif |
| 2890 | |
| 2891 | return 0; |
| 2892 | } |
| 2893 | early_param("apic", apic_set_verbosity); |
| 2894 | |
| 2895 | static int __init lapic_insert_resource(void) |
| 2896 | { |
| 2897 | if (!apic_phys) |
| 2898 | return -1; |
| 2899 | |
| 2900 | /* Put local APIC into the resource map. */ |
| 2901 | lapic_resource.start = apic_phys; |
| 2902 | lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; |
| 2903 | insert_resource(&iomem_resource, &lapic_resource); |
| 2904 | |
| 2905 | return 0; |
| 2906 | } |
| 2907 | |
| 2908 | /* |
| 2909 | * need call insert after e820__reserve_resources() |
| 2910 | * that is using request_resource |
| 2911 | */ |
| 2912 | late_initcall(lapic_insert_resource); |
| 2913 | |
| 2914 | static int __init apic_set_disabled_cpu_apicid(char *arg) |
| 2915 | { |
| 2916 | if (!arg || !get_option(&arg, &disabled_cpu_apicid)) |
| 2917 | return -EINVAL; |
| 2918 | |
| 2919 | return 0; |
| 2920 | } |
| 2921 | early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); |
| 2922 | |
| 2923 | static int __init apic_set_extnmi(char *arg) |
| 2924 | { |
| 2925 | if (!arg) |
| 2926 | return -EINVAL; |
| 2927 | |
| 2928 | if (!strncmp("all", arg, 3)) |
| 2929 | apic_extnmi = APIC_EXTNMI_ALL; |
| 2930 | else if (!strncmp("none", arg, 4)) |
| 2931 | apic_extnmi = APIC_EXTNMI_NONE; |
| 2932 | else if (!strncmp("bsp", arg, 3)) |
| 2933 | apic_extnmi = APIC_EXTNMI_BSP; |
| 2934 | else { |
| 2935 | pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); |
| 2936 | return -EINVAL; |
| 2937 | } |
| 2938 | |
| 2939 | return 0; |
| 2940 | } |
| 2941 | early_param("apic_extnmi", apic_set_extnmi); |