b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * handle transition of Linux booting another kernel |
| 4 | * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com> |
| 5 | */ |
| 6 | |
| 7 | #define pr_fmt(fmt) "kexec: " fmt |
| 8 | |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/kexec.h> |
| 11 | #include <linux/string.h> |
| 12 | #include <linux/gfp.h> |
| 13 | #include <linux/reboot.h> |
| 14 | #include <linux/numa.h> |
| 15 | #include <linux/ftrace.h> |
| 16 | #include <linux/io.h> |
| 17 | #include <linux/suspend.h> |
| 18 | #include <linux/vmalloc.h> |
| 19 | #include <linux/efi.h> |
| 20 | |
| 21 | #include <asm/init.h> |
| 22 | #include <asm/pgtable.h> |
| 23 | #include <asm/tlbflush.h> |
| 24 | #include <asm/mmu_context.h> |
| 25 | #include <asm/io_apic.h> |
| 26 | #include <asm/debugreg.h> |
| 27 | #include <asm/kexec-bzimage64.h> |
| 28 | #include <asm/setup.h> |
| 29 | #include <asm/set_memory.h> |
| 30 | |
| 31 | #ifdef CONFIG_ACPI |
| 32 | /* |
| 33 | * Used while adding mapping for ACPI tables. |
| 34 | * Can be reused when other iomem regions need be mapped |
| 35 | */ |
| 36 | struct init_pgtable_data { |
| 37 | struct x86_mapping_info *info; |
| 38 | pgd_t *level4p; |
| 39 | }; |
| 40 | |
| 41 | static int mem_region_callback(struct resource *res, void *arg) |
| 42 | { |
| 43 | struct init_pgtable_data *data = arg; |
| 44 | unsigned long mstart, mend; |
| 45 | |
| 46 | mstart = res->start; |
| 47 | mend = mstart + resource_size(res) - 1; |
| 48 | |
| 49 | return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend); |
| 50 | } |
| 51 | |
| 52 | static int |
| 53 | map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) |
| 54 | { |
| 55 | struct init_pgtable_data data; |
| 56 | unsigned long flags; |
| 57 | int ret; |
| 58 | |
| 59 | data.info = info; |
| 60 | data.level4p = level4p; |
| 61 | flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
| 62 | |
| 63 | ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1, |
| 64 | &data, mem_region_callback); |
| 65 | if (ret && ret != -EINVAL) |
| 66 | return ret; |
| 67 | |
| 68 | /* ACPI tables could be located in ACPI Non-volatile Storage region */ |
| 69 | ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1, |
| 70 | &data, mem_region_callback); |
| 71 | if (ret && ret != -EINVAL) |
| 72 | return ret; |
| 73 | |
| 74 | return 0; |
| 75 | } |
| 76 | #else |
| 77 | static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; } |
| 78 | #endif |
| 79 | |
| 80 | #ifdef CONFIG_KEXEC_FILE |
| 81 | const struct kexec_file_ops * const kexec_file_loaders[] = { |
| 82 | &kexec_bzImage64_ops, |
| 83 | NULL |
| 84 | }; |
| 85 | #endif |
| 86 | |
| 87 | static int |
| 88 | map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p) |
| 89 | { |
| 90 | #ifdef CONFIG_EFI |
| 91 | unsigned long mstart, mend; |
| 92 | |
| 93 | if (!efi_enabled(EFI_BOOT)) |
| 94 | return 0; |
| 95 | |
| 96 | mstart = (boot_params.efi_info.efi_systab | |
| 97 | ((u64)boot_params.efi_info.efi_systab_hi<<32)); |
| 98 | |
| 99 | if (efi_enabled(EFI_64BIT)) |
| 100 | mend = mstart + sizeof(efi_system_table_64_t); |
| 101 | else |
| 102 | mend = mstart + sizeof(efi_system_table_32_t); |
| 103 | |
| 104 | if (!mstart) |
| 105 | return 0; |
| 106 | |
| 107 | return kernel_ident_mapping_init(info, level4p, mstart, mend); |
| 108 | #endif |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | static void free_transition_pgtable(struct kimage *image) |
| 113 | { |
| 114 | free_page((unsigned long)image->arch.p4d); |
| 115 | image->arch.p4d = NULL; |
| 116 | free_page((unsigned long)image->arch.pud); |
| 117 | image->arch.pud = NULL; |
| 118 | free_page((unsigned long)image->arch.pmd); |
| 119 | image->arch.pmd = NULL; |
| 120 | free_page((unsigned long)image->arch.pte); |
| 121 | image->arch.pte = NULL; |
| 122 | } |
| 123 | |
| 124 | static int init_transition_pgtable(struct kimage *image, pgd_t *pgd) |
| 125 | { |
| 126 | pgprot_t prot = PAGE_KERNEL_EXEC_NOENC; |
| 127 | unsigned long vaddr, paddr; |
| 128 | int result = -ENOMEM; |
| 129 | p4d_t *p4d; |
| 130 | pud_t *pud; |
| 131 | pmd_t *pmd; |
| 132 | pte_t *pte; |
| 133 | |
| 134 | vaddr = (unsigned long)relocate_kernel; |
| 135 | paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE); |
| 136 | pgd += pgd_index(vaddr); |
| 137 | if (!pgd_present(*pgd)) { |
| 138 | p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL); |
| 139 | if (!p4d) |
| 140 | goto err; |
| 141 | image->arch.p4d = p4d; |
| 142 | set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE)); |
| 143 | } |
| 144 | p4d = p4d_offset(pgd, vaddr); |
| 145 | if (!p4d_present(*p4d)) { |
| 146 | pud = (pud_t *)get_zeroed_page(GFP_KERNEL); |
| 147 | if (!pud) |
| 148 | goto err; |
| 149 | image->arch.pud = pud; |
| 150 | set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE)); |
| 151 | } |
| 152 | pud = pud_offset(p4d, vaddr); |
| 153 | if (!pud_present(*pud)) { |
| 154 | pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL); |
| 155 | if (!pmd) |
| 156 | goto err; |
| 157 | image->arch.pmd = pmd; |
| 158 | set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE)); |
| 159 | } |
| 160 | pmd = pmd_offset(pud, vaddr); |
| 161 | if (!pmd_present(*pmd)) { |
| 162 | pte = (pte_t *)get_zeroed_page(GFP_KERNEL); |
| 163 | if (!pte) |
| 164 | goto err; |
| 165 | image->arch.pte = pte; |
| 166 | set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE)); |
| 167 | } |
| 168 | pte = pte_offset_kernel(pmd, vaddr); |
| 169 | |
| 170 | if (sev_active()) |
| 171 | prot = PAGE_KERNEL_EXEC; |
| 172 | |
| 173 | set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot)); |
| 174 | return 0; |
| 175 | err: |
| 176 | return result; |
| 177 | } |
| 178 | |
| 179 | static void *alloc_pgt_page(void *data) |
| 180 | { |
| 181 | struct kimage *image = (struct kimage *)data; |
| 182 | struct page *page; |
| 183 | void *p = NULL; |
| 184 | |
| 185 | page = kimage_alloc_control_pages(image, 0); |
| 186 | if (page) { |
| 187 | p = page_address(page); |
| 188 | clear_page(p); |
| 189 | } |
| 190 | |
| 191 | return p; |
| 192 | } |
| 193 | |
| 194 | static int init_pgtable(struct kimage *image, unsigned long start_pgtable) |
| 195 | { |
| 196 | struct x86_mapping_info info = { |
| 197 | .alloc_pgt_page = alloc_pgt_page, |
| 198 | .context = image, |
| 199 | .page_flag = __PAGE_KERNEL_LARGE_EXEC, |
| 200 | .kernpg_flag = _KERNPG_TABLE_NOENC, |
| 201 | }; |
| 202 | unsigned long mstart, mend; |
| 203 | pgd_t *level4p; |
| 204 | int result; |
| 205 | int i; |
| 206 | |
| 207 | level4p = (pgd_t *)__va(start_pgtable); |
| 208 | clear_page(level4p); |
| 209 | |
| 210 | if (sev_active()) { |
| 211 | info.page_flag |= _PAGE_ENC; |
| 212 | info.kernpg_flag |= _PAGE_ENC; |
| 213 | } |
| 214 | |
| 215 | if (direct_gbpages) |
| 216 | info.direct_gbpages = true; |
| 217 | |
| 218 | for (i = 0; i < nr_pfn_mapped; i++) { |
| 219 | mstart = pfn_mapped[i].start << PAGE_SHIFT; |
| 220 | mend = pfn_mapped[i].end << PAGE_SHIFT; |
| 221 | |
| 222 | result = kernel_ident_mapping_init(&info, |
| 223 | level4p, mstart, mend); |
| 224 | if (result) |
| 225 | return result; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * segments's mem ranges could be outside 0 ~ max_pfn, |
| 230 | * for example when jump back to original kernel from kexeced kernel. |
| 231 | * or first kernel is booted with user mem map, and second kernel |
| 232 | * could be loaded out of that range. |
| 233 | */ |
| 234 | for (i = 0; i < image->nr_segments; i++) { |
| 235 | mstart = image->segment[i].mem; |
| 236 | mend = mstart + image->segment[i].memsz; |
| 237 | |
| 238 | result = kernel_ident_mapping_init(&info, |
| 239 | level4p, mstart, mend); |
| 240 | |
| 241 | if (result) |
| 242 | return result; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Prepare EFI systab and ACPI tables for kexec kernel since they are |
| 247 | * not covered by pfn_mapped. |
| 248 | */ |
| 249 | result = map_efi_systab(&info, level4p); |
| 250 | if (result) |
| 251 | return result; |
| 252 | |
| 253 | result = map_acpi_tables(&info, level4p); |
| 254 | if (result) |
| 255 | return result; |
| 256 | |
| 257 | return init_transition_pgtable(image, level4p); |
| 258 | } |
| 259 | |
| 260 | static void set_idt(void *newidt, u16 limit) |
| 261 | { |
| 262 | struct desc_ptr curidt; |
| 263 | |
| 264 | /* x86-64 supports unaliged loads & stores */ |
| 265 | curidt.size = limit; |
| 266 | curidt.address = (unsigned long)newidt; |
| 267 | |
| 268 | __asm__ __volatile__ ( |
| 269 | "lidtq %0\n" |
| 270 | : : "m" (curidt) |
| 271 | ); |
| 272 | }; |
| 273 | |
| 274 | |
| 275 | static void set_gdt(void *newgdt, u16 limit) |
| 276 | { |
| 277 | struct desc_ptr curgdt; |
| 278 | |
| 279 | /* x86-64 supports unaligned loads & stores */ |
| 280 | curgdt.size = limit; |
| 281 | curgdt.address = (unsigned long)newgdt; |
| 282 | |
| 283 | __asm__ __volatile__ ( |
| 284 | "lgdtq %0\n" |
| 285 | : : "m" (curgdt) |
| 286 | ); |
| 287 | }; |
| 288 | |
| 289 | static void load_segments(void) |
| 290 | { |
| 291 | __asm__ __volatile__ ( |
| 292 | "\tmovl %0,%%ds\n" |
| 293 | "\tmovl %0,%%es\n" |
| 294 | "\tmovl %0,%%ss\n" |
| 295 | "\tmovl %0,%%fs\n" |
| 296 | "\tmovl %0,%%gs\n" |
| 297 | : : "a" (__KERNEL_DS) : "memory" |
| 298 | ); |
| 299 | } |
| 300 | |
| 301 | #ifdef CONFIG_KEXEC_FILE |
| 302 | /* Update purgatory as needed after various image segments have been prepared */ |
| 303 | static int arch_update_purgatory(struct kimage *image) |
| 304 | { |
| 305 | int ret = 0; |
| 306 | |
| 307 | if (!image->file_mode) |
| 308 | return 0; |
| 309 | |
| 310 | /* Setup copying of backup region */ |
| 311 | if (image->type == KEXEC_TYPE_CRASH) { |
| 312 | ret = kexec_purgatory_get_set_symbol(image, |
| 313 | "purgatory_backup_dest", |
| 314 | &image->arch.backup_load_addr, |
| 315 | sizeof(image->arch.backup_load_addr), 0); |
| 316 | if (ret) |
| 317 | return ret; |
| 318 | |
| 319 | ret = kexec_purgatory_get_set_symbol(image, |
| 320 | "purgatory_backup_src", |
| 321 | &image->arch.backup_src_start, |
| 322 | sizeof(image->arch.backup_src_start), 0); |
| 323 | if (ret) |
| 324 | return ret; |
| 325 | |
| 326 | ret = kexec_purgatory_get_set_symbol(image, |
| 327 | "purgatory_backup_sz", |
| 328 | &image->arch.backup_src_sz, |
| 329 | sizeof(image->arch.backup_src_sz), 0); |
| 330 | if (ret) |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | return ret; |
| 335 | } |
| 336 | #else /* !CONFIG_KEXEC_FILE */ |
| 337 | static inline int arch_update_purgatory(struct kimage *image) |
| 338 | { |
| 339 | return 0; |
| 340 | } |
| 341 | #endif /* CONFIG_KEXEC_FILE */ |
| 342 | |
| 343 | int machine_kexec_prepare(struct kimage *image) |
| 344 | { |
| 345 | unsigned long start_pgtable; |
| 346 | int result; |
| 347 | |
| 348 | /* Calculate the offsets */ |
| 349 | start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT; |
| 350 | |
| 351 | /* Setup the identity mapped 64bit page table */ |
| 352 | result = init_pgtable(image, start_pgtable); |
| 353 | if (result) |
| 354 | return result; |
| 355 | |
| 356 | /* update purgatory as needed */ |
| 357 | result = arch_update_purgatory(image); |
| 358 | if (result) |
| 359 | return result; |
| 360 | |
| 361 | return 0; |
| 362 | } |
| 363 | |
| 364 | void machine_kexec_cleanup(struct kimage *image) |
| 365 | { |
| 366 | free_transition_pgtable(image); |
| 367 | } |
| 368 | |
| 369 | /* |
| 370 | * Do not allocate memory (or fail in any way) in machine_kexec(). |
| 371 | * We are past the point of no return, committed to rebooting now. |
| 372 | */ |
| 373 | void machine_kexec(struct kimage *image) |
| 374 | { |
| 375 | unsigned long page_list[PAGES_NR]; |
| 376 | void *control_page; |
| 377 | int save_ftrace_enabled; |
| 378 | |
| 379 | #ifdef CONFIG_KEXEC_JUMP |
| 380 | if (image->preserve_context) |
| 381 | save_processor_state(); |
| 382 | #endif |
| 383 | |
| 384 | save_ftrace_enabled = __ftrace_enabled_save(); |
| 385 | |
| 386 | /* Interrupts aren't acceptable while we reboot */ |
| 387 | local_irq_disable(); |
| 388 | hw_breakpoint_disable(); |
| 389 | |
| 390 | if (image->preserve_context) { |
| 391 | #ifdef CONFIG_X86_IO_APIC |
| 392 | /* |
| 393 | * We need to put APICs in legacy mode so that we can |
| 394 | * get timer interrupts in second kernel. kexec/kdump |
| 395 | * paths already have calls to restore_boot_irq_mode() |
| 396 | * in one form or other. kexec jump path also need one. |
| 397 | */ |
| 398 | clear_IO_APIC(); |
| 399 | restore_boot_irq_mode(); |
| 400 | #endif |
| 401 | } |
| 402 | |
| 403 | control_page = page_address(image->control_code_page) + PAGE_SIZE; |
| 404 | memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE); |
| 405 | |
| 406 | page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page); |
| 407 | page_list[VA_CONTROL_PAGE] = (unsigned long)control_page; |
| 408 | page_list[PA_TABLE_PAGE] = |
| 409 | (unsigned long)__pa(page_address(image->control_code_page)); |
| 410 | |
| 411 | if (image->type == KEXEC_TYPE_DEFAULT) |
| 412 | page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page) |
| 413 | << PAGE_SHIFT); |
| 414 | |
| 415 | /* |
| 416 | * The segment registers are funny things, they have both a |
| 417 | * visible and an invisible part. Whenever the visible part is |
| 418 | * set to a specific selector, the invisible part is loaded |
| 419 | * with from a table in memory. At no other time is the |
| 420 | * descriptor table in memory accessed. |
| 421 | * |
| 422 | * I take advantage of this here by force loading the |
| 423 | * segments, before I zap the gdt with an invalid value. |
| 424 | */ |
| 425 | load_segments(); |
| 426 | /* |
| 427 | * The gdt & idt are now invalid. |
| 428 | * If you want to load them you must set up your own idt & gdt. |
| 429 | */ |
| 430 | set_gdt(phys_to_virt(0), 0); |
| 431 | set_idt(phys_to_virt(0), 0); |
| 432 | |
| 433 | /* now call it */ |
| 434 | image->start = relocate_kernel((unsigned long)image->head, |
| 435 | (unsigned long)page_list, |
| 436 | image->start, |
| 437 | image->preserve_context, |
| 438 | sme_active()); |
| 439 | |
| 440 | #ifdef CONFIG_KEXEC_JUMP |
| 441 | if (image->preserve_context) |
| 442 | restore_processor_state(); |
| 443 | #endif |
| 444 | |
| 445 | __ftrace_enabled_restore(save_ftrace_enabled); |
| 446 | } |
| 447 | |
| 448 | void arch_crash_save_vmcoreinfo(void) |
| 449 | { |
| 450 | u64 sme_mask = sme_me_mask; |
| 451 | |
| 452 | VMCOREINFO_NUMBER(phys_base); |
| 453 | VMCOREINFO_SYMBOL(init_top_pgt); |
| 454 | vmcoreinfo_append_str("NUMBER(pgtable_l5_enabled)=%d\n", |
| 455 | pgtable_l5_enabled()); |
| 456 | |
| 457 | #ifdef CONFIG_NUMA |
| 458 | VMCOREINFO_SYMBOL(node_data); |
| 459 | VMCOREINFO_LENGTH(node_data, MAX_NUMNODES); |
| 460 | #endif |
| 461 | vmcoreinfo_append_str("KERNELOFFSET=%lx\n", |
| 462 | kaslr_offset()); |
| 463 | VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); |
| 464 | VMCOREINFO_NUMBER(sme_mask); |
| 465 | } |
| 466 | |
| 467 | /* arch-dependent functionality related to kexec file-based syscall */ |
| 468 | |
| 469 | #ifdef CONFIG_KEXEC_FILE |
| 470 | void *arch_kexec_kernel_image_load(struct kimage *image) |
| 471 | { |
| 472 | vfree(image->arch.elf_headers); |
| 473 | image->arch.elf_headers = NULL; |
| 474 | |
| 475 | if (!image->fops || !image->fops->load) |
| 476 | return ERR_PTR(-ENOEXEC); |
| 477 | |
| 478 | return image->fops->load(image, image->kernel_buf, |
| 479 | image->kernel_buf_len, image->initrd_buf, |
| 480 | image->initrd_buf_len, image->cmdline_buf, |
| 481 | image->cmdline_buf_len); |
| 482 | } |
| 483 | |
| 484 | /* |
| 485 | * Apply purgatory relocations. |
| 486 | * |
| 487 | * @pi: Purgatory to be relocated. |
| 488 | * @section: Section relocations applying to. |
| 489 | * @relsec: Section containing RELAs. |
| 490 | * @symtabsec: Corresponding symtab. |
| 491 | * |
| 492 | * TODO: Some of the code belongs to generic code. Move that in kexec.c. |
| 493 | */ |
| 494 | int arch_kexec_apply_relocations_add(struct purgatory_info *pi, |
| 495 | Elf_Shdr *section, const Elf_Shdr *relsec, |
| 496 | const Elf_Shdr *symtabsec) |
| 497 | { |
| 498 | unsigned int i; |
| 499 | Elf64_Rela *rel; |
| 500 | Elf64_Sym *sym; |
| 501 | void *location; |
| 502 | unsigned long address, sec_base, value; |
| 503 | const char *strtab, *name, *shstrtab; |
| 504 | const Elf_Shdr *sechdrs; |
| 505 | |
| 506 | /* String & section header string table */ |
| 507 | sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; |
| 508 | strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset; |
| 509 | shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset; |
| 510 | |
| 511 | rel = (void *)pi->ehdr + relsec->sh_offset; |
| 512 | |
| 513 | pr_debug("Applying relocate section %s to %u\n", |
| 514 | shstrtab + relsec->sh_name, relsec->sh_info); |
| 515 | |
| 516 | for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) { |
| 517 | |
| 518 | /* |
| 519 | * rel[i].r_offset contains byte offset from beginning |
| 520 | * of section to the storage unit affected. |
| 521 | * |
| 522 | * This is location to update. This is temporary buffer |
| 523 | * where section is currently loaded. This will finally be |
| 524 | * loaded to a different address later, pointed to by |
| 525 | * ->sh_addr. kexec takes care of moving it |
| 526 | * (kexec_load_segment()). |
| 527 | */ |
| 528 | location = pi->purgatory_buf; |
| 529 | location += section->sh_offset; |
| 530 | location += rel[i].r_offset; |
| 531 | |
| 532 | /* Final address of the location */ |
| 533 | address = section->sh_addr + rel[i].r_offset; |
| 534 | |
| 535 | /* |
| 536 | * rel[i].r_info contains information about symbol table index |
| 537 | * w.r.t which relocation must be made and type of relocation |
| 538 | * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get |
| 539 | * these respectively. |
| 540 | */ |
| 541 | sym = (void *)pi->ehdr + symtabsec->sh_offset; |
| 542 | sym += ELF64_R_SYM(rel[i].r_info); |
| 543 | |
| 544 | if (sym->st_name) |
| 545 | name = strtab + sym->st_name; |
| 546 | else |
| 547 | name = shstrtab + sechdrs[sym->st_shndx].sh_name; |
| 548 | |
| 549 | pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n", |
| 550 | name, sym->st_info, sym->st_shndx, sym->st_value, |
| 551 | sym->st_size); |
| 552 | |
| 553 | if (sym->st_shndx == SHN_UNDEF) { |
| 554 | pr_err("Undefined symbol: %s\n", name); |
| 555 | return -ENOEXEC; |
| 556 | } |
| 557 | |
| 558 | if (sym->st_shndx == SHN_COMMON) { |
| 559 | pr_err("symbol '%s' in common section\n", name); |
| 560 | return -ENOEXEC; |
| 561 | } |
| 562 | |
| 563 | if (sym->st_shndx == SHN_ABS) |
| 564 | sec_base = 0; |
| 565 | else if (sym->st_shndx >= pi->ehdr->e_shnum) { |
| 566 | pr_err("Invalid section %d for symbol %s\n", |
| 567 | sym->st_shndx, name); |
| 568 | return -ENOEXEC; |
| 569 | } else |
| 570 | sec_base = pi->sechdrs[sym->st_shndx].sh_addr; |
| 571 | |
| 572 | value = sym->st_value; |
| 573 | value += sec_base; |
| 574 | value += rel[i].r_addend; |
| 575 | |
| 576 | switch (ELF64_R_TYPE(rel[i].r_info)) { |
| 577 | case R_X86_64_NONE: |
| 578 | break; |
| 579 | case R_X86_64_64: |
| 580 | *(u64 *)location = value; |
| 581 | break; |
| 582 | case R_X86_64_32: |
| 583 | *(u32 *)location = value; |
| 584 | if (value != *(u32 *)location) |
| 585 | goto overflow; |
| 586 | break; |
| 587 | case R_X86_64_32S: |
| 588 | *(s32 *)location = value; |
| 589 | if ((s64)value != *(s32 *)location) |
| 590 | goto overflow; |
| 591 | break; |
| 592 | case R_X86_64_PC32: |
| 593 | case R_X86_64_PLT32: |
| 594 | value -= (u64)address; |
| 595 | *(u32 *)location = value; |
| 596 | break; |
| 597 | default: |
| 598 | pr_err("Unknown rela relocation: %llu\n", |
| 599 | ELF64_R_TYPE(rel[i].r_info)); |
| 600 | return -ENOEXEC; |
| 601 | } |
| 602 | } |
| 603 | return 0; |
| 604 | |
| 605 | overflow: |
| 606 | pr_err("Overflow in relocation type %d value 0x%lx\n", |
| 607 | (int)ELF64_R_TYPE(rel[i].r_info), value); |
| 608 | return -ENOEXEC; |
| 609 | } |
| 610 | #endif /* CONFIG_KEXEC_FILE */ |
| 611 | |
| 612 | static int |
| 613 | kexec_mark_range(unsigned long start, unsigned long end, bool protect) |
| 614 | { |
| 615 | struct page *page; |
| 616 | unsigned int nr_pages; |
| 617 | |
| 618 | /* |
| 619 | * For physical range: [start, end]. We must skip the unassigned |
| 620 | * crashk resource with zero-valued "end" member. |
| 621 | */ |
| 622 | if (!end || start > end) |
| 623 | return 0; |
| 624 | |
| 625 | page = pfn_to_page(start >> PAGE_SHIFT); |
| 626 | nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; |
| 627 | if (protect) |
| 628 | return set_pages_ro(page, nr_pages); |
| 629 | else |
| 630 | return set_pages_rw(page, nr_pages); |
| 631 | } |
| 632 | |
| 633 | static void kexec_mark_crashkres(bool protect) |
| 634 | { |
| 635 | unsigned long control; |
| 636 | |
| 637 | kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect); |
| 638 | |
| 639 | /* Don't touch the control code page used in crash_kexec().*/ |
| 640 | control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page)); |
| 641 | /* Control code page is located in the 2nd page. */ |
| 642 | kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect); |
| 643 | control += KEXEC_CONTROL_PAGE_SIZE; |
| 644 | kexec_mark_range(control, crashk_res.end, protect); |
| 645 | } |
| 646 | |
| 647 | void arch_kexec_protect_crashkres(void) |
| 648 | { |
| 649 | kexec_mark_crashkres(true); |
| 650 | } |
| 651 | |
| 652 | void arch_kexec_unprotect_crashkres(void) |
| 653 | { |
| 654 | kexec_mark_crashkres(false); |
| 655 | } |
| 656 | |
| 657 | /* |
| 658 | * During a traditional boot under SME, SME will encrypt the kernel, |
| 659 | * so the SME kexec kernel also needs to be un-encrypted in order to |
| 660 | * replicate a normal SME boot. |
| 661 | * |
| 662 | * During a traditional boot under SEV, the kernel has already been |
| 663 | * loaded encrypted, so the SEV kexec kernel needs to be encrypted in |
| 664 | * order to replicate a normal SEV boot. |
| 665 | */ |
| 666 | int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp) |
| 667 | { |
| 668 | if (sev_active()) |
| 669 | return 0; |
| 670 | |
| 671 | /* |
| 672 | * If SME is active we need to be sure that kexec pages are |
| 673 | * not encrypted because when we boot to the new kernel the |
| 674 | * pages won't be accessed encrypted (initially). |
| 675 | */ |
| 676 | return set_memory_decrypted((unsigned long)vaddr, pages); |
| 677 | } |
| 678 | |
| 679 | void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages) |
| 680 | { |
| 681 | if (sev_active()) |
| 682 | return; |
| 683 | |
| 684 | /* |
| 685 | * If SME is active we need to reset the pages back to being |
| 686 | * an encrypted mapping before freeing them. |
| 687 | */ |
| 688 | set_memory_encrypted((unsigned long)vaddr, pages); |
| 689 | } |