b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * User-space Probes (UProbes) for x86 |
| 4 | * |
| 5 | * Copyright (C) IBM Corporation, 2008-2011 |
| 6 | * Authors: |
| 7 | * Srikar Dronamraju |
| 8 | * Jim Keniston |
| 9 | */ |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/sched.h> |
| 12 | #include <linux/ptrace.h> |
| 13 | #include <linux/uprobes.h> |
| 14 | #include <linux/uaccess.h> |
| 15 | |
| 16 | #include <linux/kdebug.h> |
| 17 | #include <asm/processor.h> |
| 18 | #include <asm/insn.h> |
| 19 | #include <asm/mmu_context.h> |
| 20 | |
| 21 | /* Post-execution fixups. */ |
| 22 | |
| 23 | /* Adjust IP back to vicinity of actual insn */ |
| 24 | #define UPROBE_FIX_IP 0x01 |
| 25 | |
| 26 | /* Adjust the return address of a call insn */ |
| 27 | #define UPROBE_FIX_CALL 0x02 |
| 28 | |
| 29 | /* Instruction will modify TF, don't change it */ |
| 30 | #define UPROBE_FIX_SETF 0x04 |
| 31 | |
| 32 | #define UPROBE_FIX_RIP_SI 0x08 |
| 33 | #define UPROBE_FIX_RIP_DI 0x10 |
| 34 | #define UPROBE_FIX_RIP_BX 0x20 |
| 35 | #define UPROBE_FIX_RIP_MASK \ |
| 36 | (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX) |
| 37 | |
| 38 | #define UPROBE_TRAP_NR UINT_MAX |
| 39 | |
| 40 | /* Adaptations for mhiramat x86 decoder v14. */ |
| 41 | #define OPCODE1(insn) ((insn)->opcode.bytes[0]) |
| 42 | #define OPCODE2(insn) ((insn)->opcode.bytes[1]) |
| 43 | #define OPCODE3(insn) ((insn)->opcode.bytes[2]) |
| 44 | #define MODRM_REG(insn) X86_MODRM_REG((insn)->modrm.value) |
| 45 | |
| 46 | #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ |
| 47 | (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| 48 | (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| 49 | (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| 50 | (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| 51 | << (row % 32)) |
| 52 | |
| 53 | /* |
| 54 | * Good-instruction tables for 32-bit apps. This is non-const and volatile |
| 55 | * to keep gcc from statically optimizing it out, as variable_test_bit makes |
| 56 | * some versions of gcc to think only *(unsigned long*) is used. |
| 57 | * |
| 58 | * Opcodes we'll probably never support: |
| 59 | * 6c-6f - ins,outs. SEGVs if used in userspace |
| 60 | * e4-e7 - in,out imm. SEGVs if used in userspace |
| 61 | * ec-ef - in,out acc. SEGVs if used in userspace |
| 62 | * cc - int3. SIGTRAP if used in userspace |
| 63 | * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs |
| 64 | * (why we support bound (62) then? it's similar, and similarly unused...) |
| 65 | * f1 - int1. SIGTRAP if used in userspace |
| 66 | * f4 - hlt. SEGVs if used in userspace |
| 67 | * fa - cli. SEGVs if used in userspace |
| 68 | * fb - sti. SEGVs if used in userspace |
| 69 | * |
| 70 | * Opcodes which need some work to be supported: |
| 71 | * 07,17,1f - pop es/ss/ds |
| 72 | * Normally not used in userspace, but would execute if used. |
| 73 | * Can cause GP or stack exception if tries to load wrong segment descriptor. |
| 74 | * We hesitate to run them under single step since kernel's handling |
| 75 | * of userspace single-stepping (TF flag) is fragile. |
| 76 | * We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e) |
| 77 | * on the same grounds that they are never used. |
| 78 | * cd - int N. |
| 79 | * Used by userspace for "int 80" syscall entry. (Other "int N" |
| 80 | * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). |
| 81 | * Not supported since kernel's handling of userspace single-stepping |
| 82 | * (TF flag) is fragile. |
| 83 | * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad |
| 84 | */ |
| 85 | #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION) |
| 86 | static volatile u32 good_insns_32[256 / 32] = { |
| 87 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 88 | /* ---------------------------------------------- */ |
| 89 | W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */ |
| 90 | W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */ |
| 91 | W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ |
| 92 | W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ |
| 93 | W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| 94 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 95 | W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| 96 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| 97 | W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 98 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| 99 | W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| 100 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 101 | W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| 102 | W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 103 | W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */ |
| 104 | W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| 105 | /* ---------------------------------------------- */ |
| 106 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 107 | }; |
| 108 | #else |
| 109 | #define good_insns_32 NULL |
| 110 | #endif |
| 111 | |
| 112 | /* Good-instruction tables for 64-bit apps. |
| 113 | * |
| 114 | * Genuinely invalid opcodes: |
| 115 | * 06,07 - formerly push/pop es |
| 116 | * 0e - formerly push cs |
| 117 | * 16,17 - formerly push/pop ss |
| 118 | * 1e,1f - formerly push/pop ds |
| 119 | * 27,2f,37,3f - formerly daa/das/aaa/aas |
| 120 | * 60,61 - formerly pusha/popa |
| 121 | * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported) |
| 122 | * 82 - formerly redundant encoding of Group1 |
| 123 | * 9a - formerly call seg:ofs |
| 124 | * ce - formerly into |
| 125 | * d4,d5 - formerly aam/aad |
| 126 | * d6 - formerly undocumented salc |
| 127 | * ea - formerly jmp seg:ofs |
| 128 | * |
| 129 | * Opcodes we'll probably never support: |
| 130 | * 6c-6f - ins,outs. SEGVs if used in userspace |
| 131 | * e4-e7 - in,out imm. SEGVs if used in userspace |
| 132 | * ec-ef - in,out acc. SEGVs if used in userspace |
| 133 | * cc - int3. SIGTRAP if used in userspace |
| 134 | * f1 - int1. SIGTRAP if used in userspace |
| 135 | * f4 - hlt. SEGVs if used in userspace |
| 136 | * fa - cli. SEGVs if used in userspace |
| 137 | * fb - sti. SEGVs if used in userspace |
| 138 | * |
| 139 | * Opcodes which need some work to be supported: |
| 140 | * cd - int N. |
| 141 | * Used by userspace for "int 80" syscall entry. (Other "int N" |
| 142 | * cause GP -> SEGV since their IDT gates don't allow calls from CPL 3). |
| 143 | * Not supported since kernel's handling of userspace single-stepping |
| 144 | * (TF flag) is fragile. |
| 145 | * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad |
| 146 | */ |
| 147 | #if defined(CONFIG_X86_64) |
| 148 | static volatile u32 good_insns_64[256 / 32] = { |
| 149 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 150 | /* ---------------------------------------------- */ |
| 151 | W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */ |
| 152 | W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */ |
| 153 | W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */ |
| 154 | W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */ |
| 155 | W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| 156 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 157 | W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */ |
| 158 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| 159 | W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 160 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */ |
| 161 | W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */ |
| 162 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 163 | W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */ |
| 164 | W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 165 | W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */ |
| 166 | W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */ |
| 167 | /* ---------------------------------------------- */ |
| 168 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 169 | }; |
| 170 | #else |
| 171 | #define good_insns_64 NULL |
| 172 | #endif |
| 173 | |
| 174 | /* Using this for both 64-bit and 32-bit apps. |
| 175 | * Opcodes we don't support: |
| 176 | * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns |
| 177 | * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group. |
| 178 | * Also encodes tons of other system insns if mod=11. |
| 179 | * Some are in fact non-system: xend, xtest, rdtscp, maybe more |
| 180 | * 0f 05 - syscall |
| 181 | * 0f 06 - clts (CPL0 insn) |
| 182 | * 0f 07 - sysret |
| 183 | * 0f 08 - invd (CPL0 insn) |
| 184 | * 0f 09 - wbinvd (CPL0 insn) |
| 185 | * 0f 0b - ud2 |
| 186 | * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?) |
| 187 | * 0f 34 - sysenter |
| 188 | * 0f 35 - sysexit |
| 189 | * 0f 37 - getsec |
| 190 | * 0f 78 - vmread (Intel VMX. CPL0 insn) |
| 191 | * 0f 79 - vmwrite (Intel VMX. CPL0 insn) |
| 192 | * Note: with prefixes, these two opcodes are |
| 193 | * extrq/insertq/AVX512 convert vector ops. |
| 194 | * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt], |
| 195 | * {rd,wr}{fs,gs}base,{s,l,m}fence. |
| 196 | * Why? They are all user-executable. |
| 197 | */ |
| 198 | static volatile u32 good_2byte_insns[256 / 32] = { |
| 199 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 200 | /* ---------------------------------------------- */ |
| 201 | W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */ |
| 202 | W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */ |
| 203 | W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */ |
| 204 | W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */ |
| 205 | W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| 206 | W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */ |
| 207 | W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */ |
| 208 | W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */ |
| 209 | W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */ |
| 210 | W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| 211 | W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */ |
| 212 | W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */ |
| 213 | W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ |
| 214 | W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */ |
| 215 | W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */ |
| 216 | W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /* f0 */ |
| 217 | /* ---------------------------------------------- */ |
| 218 | /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 219 | }; |
| 220 | #undef W |
| 221 | |
| 222 | /* |
| 223 | * opcodes we may need to refine support for: |
| 224 | * |
| 225 | * 0f - 2-byte instructions: For many of these instructions, the validity |
| 226 | * depends on the prefix and/or the reg field. On such instructions, we |
| 227 | * just consider the opcode combination valid if it corresponds to any |
| 228 | * valid instruction. |
| 229 | * |
| 230 | * 8f - Group 1 - only reg = 0 is OK |
| 231 | * c6-c7 - Group 11 - only reg = 0 is OK |
| 232 | * d9-df - fpu insns with some illegal encodings |
| 233 | * f2, f3 - repnz, repz prefixes. These are also the first byte for |
| 234 | * certain floating-point instructions, such as addsd. |
| 235 | * |
| 236 | * fe - Group 4 - only reg = 0 or 1 is OK |
| 237 | * ff - Group 5 - only reg = 0-6 is OK |
| 238 | * |
| 239 | * others -- Do we need to support these? |
| 240 | * |
| 241 | * 0f - (floating-point?) prefetch instructions |
| 242 | * 07, 17, 1f - pop es, pop ss, pop ds |
| 243 | * 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes -- |
| 244 | * but 64 and 65 (fs: and gs:) seem to be used, so we support them |
| 245 | * 67 - addr16 prefix |
| 246 | * ce - into |
| 247 | * f0 - lock prefix |
| 248 | */ |
| 249 | |
| 250 | /* |
| 251 | * TODO: |
| 252 | * - Where necessary, examine the modrm byte and allow only valid instructions |
| 253 | * in the different Groups and fpu instructions. |
| 254 | */ |
| 255 | |
| 256 | static bool is_prefix_bad(struct insn *insn) |
| 257 | { |
| 258 | insn_byte_t p; |
| 259 | int i; |
| 260 | |
| 261 | for_each_insn_prefix(insn, i, p) { |
| 262 | insn_attr_t attr; |
| 263 | |
| 264 | attr = inat_get_opcode_attribute(p); |
| 265 | switch (attr) { |
| 266 | case INAT_MAKE_PREFIX(INAT_PFX_ES): |
| 267 | case INAT_MAKE_PREFIX(INAT_PFX_CS): |
| 268 | case INAT_MAKE_PREFIX(INAT_PFX_DS): |
| 269 | case INAT_MAKE_PREFIX(INAT_PFX_SS): |
| 270 | case INAT_MAKE_PREFIX(INAT_PFX_LOCK): |
| 271 | return true; |
| 272 | } |
| 273 | } |
| 274 | return false; |
| 275 | } |
| 276 | |
| 277 | static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64) |
| 278 | { |
| 279 | u32 volatile *good_insns; |
| 280 | |
| 281 | insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64); |
| 282 | /* has the side-effect of processing the entire instruction */ |
| 283 | insn_get_length(insn); |
| 284 | if (!insn_complete(insn)) |
| 285 | return -ENOEXEC; |
| 286 | |
| 287 | if (is_prefix_bad(insn)) |
| 288 | return -ENOTSUPP; |
| 289 | |
| 290 | /* We should not singlestep on the exception masking instructions */ |
| 291 | if (insn_masking_exception(insn)) |
| 292 | return -ENOTSUPP; |
| 293 | |
| 294 | if (x86_64) |
| 295 | good_insns = good_insns_64; |
| 296 | else |
| 297 | good_insns = good_insns_32; |
| 298 | |
| 299 | if (test_bit(OPCODE1(insn), (unsigned long *)good_insns)) |
| 300 | return 0; |
| 301 | |
| 302 | if (insn->opcode.nbytes == 2) { |
| 303 | if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns)) |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | return -ENOTSUPP; |
| 308 | } |
| 309 | |
| 310 | #ifdef CONFIG_X86_64 |
| 311 | /* |
| 312 | * If arch_uprobe->insn doesn't use rip-relative addressing, return |
| 313 | * immediately. Otherwise, rewrite the instruction so that it accesses |
| 314 | * its memory operand indirectly through a scratch register. Set |
| 315 | * defparam->fixups accordingly. (The contents of the scratch register |
| 316 | * will be saved before we single-step the modified instruction, |
| 317 | * and restored afterward). |
| 318 | * |
| 319 | * We do this because a rip-relative instruction can access only a |
| 320 | * relatively small area (+/- 2 GB from the instruction), and the XOL |
| 321 | * area typically lies beyond that area. At least for instructions |
| 322 | * that store to memory, we can't execute the original instruction |
| 323 | * and "fix things up" later, because the misdirected store could be |
| 324 | * disastrous. |
| 325 | * |
| 326 | * Some useful facts about rip-relative instructions: |
| 327 | * |
| 328 | * - There's always a modrm byte with bit layout "00 reg 101". |
| 329 | * - There's never a SIB byte. |
| 330 | * - The displacement is always 4 bytes. |
| 331 | * - REX.B=1 bit in REX prefix, which normally extends r/m field, |
| 332 | * has no effect on rip-relative mode. It doesn't make modrm byte |
| 333 | * with r/m=101 refer to register 1101 = R13. |
| 334 | */ |
| 335 | static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) |
| 336 | { |
| 337 | u8 *cursor; |
| 338 | u8 reg; |
| 339 | u8 reg2; |
| 340 | |
| 341 | if (!insn_rip_relative(insn)) |
| 342 | return; |
| 343 | |
| 344 | /* |
| 345 | * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm. |
| 346 | * Clear REX.b bit (extension of MODRM.rm field): |
| 347 | * we want to encode low numbered reg, not r8+. |
| 348 | */ |
| 349 | if (insn->rex_prefix.nbytes) { |
| 350 | cursor = auprobe->insn + insn_offset_rex_prefix(insn); |
| 351 | /* REX byte has 0100wrxb layout, clearing REX.b bit */ |
| 352 | *cursor &= 0xfe; |
| 353 | } |
| 354 | /* |
| 355 | * Similar treatment for VEX3/EVEX prefix. |
| 356 | * TODO: add XOP treatment when insn decoder supports them |
| 357 | */ |
| 358 | if (insn->vex_prefix.nbytes >= 3) { |
| 359 | /* |
| 360 | * vex2: c5 rvvvvLpp (has no b bit) |
| 361 | * vex3/xop: c4/8f rxbmmmmm wvvvvLpp |
| 362 | * evex: 62 rxbR00mm wvvvv1pp zllBVaaa |
| 363 | * Setting VEX3.b (setting because it has inverted meaning). |
| 364 | * Setting EVEX.x since (in non-SIB encoding) EVEX.x |
| 365 | * is the 4th bit of MODRM.rm, and needs the same treatment. |
| 366 | * For VEX3-encoded insns, VEX3.x value has no effect in |
| 367 | * non-SIB encoding, the change is superfluous but harmless. |
| 368 | */ |
| 369 | cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1; |
| 370 | *cursor |= 0x60; |
| 371 | } |
| 372 | |
| 373 | /* |
| 374 | * Convert from rip-relative addressing to register-relative addressing |
| 375 | * via a scratch register. |
| 376 | * |
| 377 | * This is tricky since there are insns with modrm byte |
| 378 | * which also use registers not encoded in modrm byte: |
| 379 | * [i]div/[i]mul: implicitly use dx:ax |
| 380 | * shift ops: implicitly use cx |
| 381 | * cmpxchg: implicitly uses ax |
| 382 | * cmpxchg8/16b: implicitly uses dx:ax and bx:cx |
| 383 | * Encoding: 0f c7/1 modrm |
| 384 | * The code below thinks that reg=1 (cx), chooses si as scratch. |
| 385 | * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m. |
| 386 | * First appeared in Haswell (BMI2 insn). It is vex-encoded. |
| 387 | * Example where none of bx,cx,dx can be used as scratch reg: |
| 388 | * c4 e2 63 f6 0d disp32 mulx disp32(%rip),%ebx,%ecx |
| 389 | * [v]pcmpistri: implicitly uses cx, xmm0 |
| 390 | * [v]pcmpistrm: implicitly uses xmm0 |
| 391 | * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0 |
| 392 | * [v]pcmpestrm: implicitly uses ax, dx, xmm0 |
| 393 | * Evil SSE4.2 string comparison ops from hell. |
| 394 | * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination. |
| 395 | * Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm. |
| 396 | * Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi). |
| 397 | * AMD says it has no 3-operand form (vex.vvvv must be 1111) |
| 398 | * and that it can have only register operands, not mem |
| 399 | * (its modrm byte must have mode=11). |
| 400 | * If these restrictions will ever be lifted, |
| 401 | * we'll need code to prevent selection of di as scratch reg! |
| 402 | * |
| 403 | * Summary: I don't know any insns with modrm byte which |
| 404 | * use SI register implicitly. DI register is used only |
| 405 | * by one insn (maskmovq) and BX register is used |
| 406 | * only by one too (cmpxchg8b). |
| 407 | * BP is stack-segment based (may be a problem?). |
| 408 | * AX, DX, CX are off-limits (many implicit users). |
| 409 | * SP is unusable (it's stack pointer - think about "pop mem"; |
| 410 | * also, rsp+disp32 needs sib encoding -> insn length change). |
| 411 | */ |
| 412 | |
| 413 | reg = MODRM_REG(insn); /* Fetch modrm.reg */ |
| 414 | reg2 = 0xff; /* Fetch vex.vvvv */ |
| 415 | if (insn->vex_prefix.nbytes) |
| 416 | reg2 = insn->vex_prefix.bytes[2]; |
| 417 | /* |
| 418 | * TODO: add XOP vvvv reading. |
| 419 | * |
| 420 | * vex.vvvv field is in bits 6-3, bits are inverted. |
| 421 | * But in 32-bit mode, high-order bit may be ignored. |
| 422 | * Therefore, let's consider only 3 low-order bits. |
| 423 | */ |
| 424 | reg2 = ((reg2 >> 3) & 0x7) ^ 0x7; |
| 425 | /* |
| 426 | * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15. |
| 427 | * |
| 428 | * Choose scratch reg. Order is important: must not select bx |
| 429 | * if we can use si (cmpxchg8b case!) |
| 430 | */ |
| 431 | if (reg != 6 && reg2 != 6) { |
| 432 | reg2 = 6; |
| 433 | auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI; |
| 434 | } else if (reg != 7 && reg2 != 7) { |
| 435 | reg2 = 7; |
| 436 | auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI; |
| 437 | /* TODO (paranoia): force maskmovq to not use di */ |
| 438 | } else { |
| 439 | reg2 = 3; |
| 440 | auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX; |
| 441 | } |
| 442 | /* |
| 443 | * Point cursor at the modrm byte. The next 4 bytes are the |
| 444 | * displacement. Beyond the displacement, for some instructions, |
| 445 | * is the immediate operand. |
| 446 | */ |
| 447 | cursor = auprobe->insn + insn_offset_modrm(insn); |
| 448 | /* |
| 449 | * Change modrm from "00 reg 101" to "10 reg reg2". Example: |
| 450 | * 89 05 disp32 mov %eax,disp32(%rip) becomes |
| 451 | * 89 86 disp32 mov %eax,disp32(%rsi) |
| 452 | */ |
| 453 | *cursor = 0x80 | (reg << 3) | reg2; |
| 454 | } |
| 455 | |
| 456 | static inline unsigned long * |
| 457 | scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 458 | { |
| 459 | if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI) |
| 460 | return ®s->si; |
| 461 | if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI) |
| 462 | return ®s->di; |
| 463 | return ®s->bx; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * If we're emulating a rip-relative instruction, save the contents |
| 468 | * of the scratch register and store the target address in that register. |
| 469 | */ |
| 470 | static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 471 | { |
| 472 | if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { |
| 473 | struct uprobe_task *utask = current->utask; |
| 474 | unsigned long *sr = scratch_reg(auprobe, regs); |
| 475 | |
| 476 | utask->autask.saved_scratch_register = *sr; |
| 477 | *sr = utask->vaddr + auprobe->defparam.ilen; |
| 478 | } |
| 479 | } |
| 480 | |
| 481 | static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 482 | { |
| 483 | if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) { |
| 484 | struct uprobe_task *utask = current->utask; |
| 485 | unsigned long *sr = scratch_reg(auprobe, regs); |
| 486 | |
| 487 | *sr = utask->autask.saved_scratch_register; |
| 488 | } |
| 489 | } |
| 490 | #else /* 32-bit: */ |
| 491 | /* |
| 492 | * No RIP-relative addressing on 32-bit |
| 493 | */ |
| 494 | static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn) |
| 495 | { |
| 496 | } |
| 497 | static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 498 | { |
| 499 | } |
| 500 | static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 501 | { |
| 502 | } |
| 503 | #endif /* CONFIG_X86_64 */ |
| 504 | |
| 505 | struct uprobe_xol_ops { |
| 506 | bool (*emulate)(struct arch_uprobe *, struct pt_regs *); |
| 507 | int (*pre_xol)(struct arch_uprobe *, struct pt_regs *); |
| 508 | int (*post_xol)(struct arch_uprobe *, struct pt_regs *); |
| 509 | void (*abort)(struct arch_uprobe *, struct pt_regs *); |
| 510 | }; |
| 511 | |
| 512 | static inline int sizeof_long(struct pt_regs *regs) |
| 513 | { |
| 514 | /* |
| 515 | * Check registers for mode as in_xxx_syscall() does not apply here. |
| 516 | */ |
| 517 | return user_64bit_mode(regs) ? 8 : 4; |
| 518 | } |
| 519 | |
| 520 | static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 521 | { |
| 522 | riprel_pre_xol(auprobe, regs); |
| 523 | return 0; |
| 524 | } |
| 525 | |
| 526 | static int emulate_push_stack(struct pt_regs *regs, unsigned long val) |
| 527 | { |
| 528 | unsigned long new_sp = regs->sp - sizeof_long(regs); |
| 529 | |
| 530 | if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs))) |
| 531 | return -EFAULT; |
| 532 | |
| 533 | regs->sp = new_sp; |
| 534 | return 0; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * We have to fix things up as follows: |
| 539 | * |
| 540 | * Typically, the new ip is relative to the copied instruction. We need |
| 541 | * to make it relative to the original instruction (FIX_IP). Exceptions |
| 542 | * are return instructions and absolute or indirect jump or call instructions. |
| 543 | * |
| 544 | * If the single-stepped instruction was a call, the return address that |
| 545 | * is atop the stack is the address following the copied instruction. We |
| 546 | * need to make it the address following the original instruction (FIX_CALL). |
| 547 | * |
| 548 | * If the original instruction was a rip-relative instruction such as |
| 549 | * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent |
| 550 | * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)". |
| 551 | * We need to restore the contents of the scratch register |
| 552 | * (FIX_RIP_reg). |
| 553 | */ |
| 554 | static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 555 | { |
| 556 | struct uprobe_task *utask = current->utask; |
| 557 | |
| 558 | riprel_post_xol(auprobe, regs); |
| 559 | if (auprobe->defparam.fixups & UPROBE_FIX_IP) { |
| 560 | long correction = utask->vaddr - utask->xol_vaddr; |
| 561 | regs->ip += correction; |
| 562 | } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) { |
| 563 | regs->sp += sizeof_long(regs); /* Pop incorrect return address */ |
| 564 | if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen)) |
| 565 | return -ERESTART; |
| 566 | } |
| 567 | /* popf; tell the caller to not touch TF */ |
| 568 | if (auprobe->defparam.fixups & UPROBE_FIX_SETF) |
| 569 | utask->autask.saved_tf = true; |
| 570 | |
| 571 | return 0; |
| 572 | } |
| 573 | |
| 574 | static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 575 | { |
| 576 | riprel_post_xol(auprobe, regs); |
| 577 | } |
| 578 | |
| 579 | static const struct uprobe_xol_ops default_xol_ops = { |
| 580 | .pre_xol = default_pre_xol_op, |
| 581 | .post_xol = default_post_xol_op, |
| 582 | .abort = default_abort_op, |
| 583 | }; |
| 584 | |
| 585 | static bool branch_is_call(struct arch_uprobe *auprobe) |
| 586 | { |
| 587 | return auprobe->branch.opc1 == 0xe8; |
| 588 | } |
| 589 | |
| 590 | #define CASE_COND \ |
| 591 | COND(70, 71, XF(OF)) \ |
| 592 | COND(72, 73, XF(CF)) \ |
| 593 | COND(74, 75, XF(ZF)) \ |
| 594 | COND(78, 79, XF(SF)) \ |
| 595 | COND(7a, 7b, XF(PF)) \ |
| 596 | COND(76, 77, XF(CF) || XF(ZF)) \ |
| 597 | COND(7c, 7d, XF(SF) != XF(OF)) \ |
| 598 | COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF)) |
| 599 | |
| 600 | #define COND(op_y, op_n, expr) \ |
| 601 | case 0x ## op_y: DO((expr) != 0) \ |
| 602 | case 0x ## op_n: DO((expr) == 0) |
| 603 | |
| 604 | #define XF(xf) (!!(flags & X86_EFLAGS_ ## xf)) |
| 605 | |
| 606 | static bool is_cond_jmp_opcode(u8 opcode) |
| 607 | { |
| 608 | switch (opcode) { |
| 609 | #define DO(expr) \ |
| 610 | return true; |
| 611 | CASE_COND |
| 612 | #undef DO |
| 613 | |
| 614 | default: |
| 615 | return false; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 620 | { |
| 621 | unsigned long flags = regs->flags; |
| 622 | |
| 623 | switch (auprobe->branch.opc1) { |
| 624 | #define DO(expr) \ |
| 625 | return expr; |
| 626 | CASE_COND |
| 627 | #undef DO |
| 628 | |
| 629 | default: /* not a conditional jmp */ |
| 630 | return true; |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | #undef XF |
| 635 | #undef COND |
| 636 | #undef CASE_COND |
| 637 | |
| 638 | static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 639 | { |
| 640 | unsigned long new_ip = regs->ip += auprobe->branch.ilen; |
| 641 | unsigned long offs = (long)auprobe->branch.offs; |
| 642 | |
| 643 | if (branch_is_call(auprobe)) { |
| 644 | /* |
| 645 | * If it fails we execute this (mangled, see the comment in |
| 646 | * branch_clear_offset) insn out-of-line. In the likely case |
| 647 | * this should trigger the trap, and the probed application |
| 648 | * should die or restart the same insn after it handles the |
| 649 | * signal, arch_uprobe_post_xol() won't be even called. |
| 650 | * |
| 651 | * But there is corner case, see the comment in ->post_xol(). |
| 652 | */ |
| 653 | if (emulate_push_stack(regs, new_ip)) |
| 654 | return false; |
| 655 | } else if (!check_jmp_cond(auprobe, regs)) { |
| 656 | offs = 0; |
| 657 | } |
| 658 | |
| 659 | regs->ip = new_ip + offs; |
| 660 | return true; |
| 661 | } |
| 662 | |
| 663 | static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 664 | { |
| 665 | unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset; |
| 666 | |
| 667 | if (emulate_push_stack(regs, *src_ptr)) |
| 668 | return false; |
| 669 | regs->ip += auprobe->push.ilen; |
| 670 | return true; |
| 671 | } |
| 672 | |
| 673 | static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 674 | { |
| 675 | BUG_ON(!branch_is_call(auprobe)); |
| 676 | /* |
| 677 | * We can only get here if branch_emulate_op() failed to push the ret |
| 678 | * address _and_ another thread expanded our stack before the (mangled) |
| 679 | * "call" insn was executed out-of-line. Just restore ->sp and restart. |
| 680 | * We could also restore ->ip and try to call branch_emulate_op() again. |
| 681 | */ |
| 682 | regs->sp += sizeof_long(regs); |
| 683 | return -ERESTART; |
| 684 | } |
| 685 | |
| 686 | static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn) |
| 687 | { |
| 688 | /* |
| 689 | * Turn this insn into "call 1f; 1:", this is what we will execute |
| 690 | * out-of-line if ->emulate() fails. We only need this to generate |
| 691 | * a trap, so that the probed task receives the correct signal with |
| 692 | * the properly filled siginfo. |
| 693 | * |
| 694 | * But see the comment in ->post_xol(), in the unlikely case it can |
| 695 | * succeed. So we need to ensure that the new ->ip can not fall into |
| 696 | * the non-canonical area and trigger #GP. |
| 697 | * |
| 698 | * We could turn it into (say) "pushf", but then we would need to |
| 699 | * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte |
| 700 | * of ->insn[] for set_orig_insn(). |
| 701 | */ |
| 702 | memset(auprobe->insn + insn_offset_immediate(insn), |
| 703 | 0, insn->immediate.nbytes); |
| 704 | } |
| 705 | |
| 706 | static const struct uprobe_xol_ops branch_xol_ops = { |
| 707 | .emulate = branch_emulate_op, |
| 708 | .post_xol = branch_post_xol_op, |
| 709 | }; |
| 710 | |
| 711 | static const struct uprobe_xol_ops push_xol_ops = { |
| 712 | .emulate = push_emulate_op, |
| 713 | }; |
| 714 | |
| 715 | /* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */ |
| 716 | static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) |
| 717 | { |
| 718 | u8 opc1 = OPCODE1(insn); |
| 719 | insn_byte_t p; |
| 720 | int i; |
| 721 | |
| 722 | switch (opc1) { |
| 723 | case 0xeb: /* jmp 8 */ |
| 724 | case 0xe9: /* jmp 32 */ |
| 725 | break; |
| 726 | case 0x90: /* prefix* + nop; same as jmp with .offs = 0 */ |
| 727 | goto setup; |
| 728 | |
| 729 | case 0xe8: /* call relative */ |
| 730 | branch_clear_offset(auprobe, insn); |
| 731 | break; |
| 732 | |
| 733 | case 0x0f: |
| 734 | if (insn->opcode.nbytes != 2) |
| 735 | return -ENOSYS; |
| 736 | /* |
| 737 | * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches |
| 738 | * OPCODE1() of the "short" jmp which checks the same condition. |
| 739 | */ |
| 740 | opc1 = OPCODE2(insn) - 0x10; |
| 741 | /* fall through */ |
| 742 | default: |
| 743 | if (!is_cond_jmp_opcode(opc1)) |
| 744 | return -ENOSYS; |
| 745 | } |
| 746 | |
| 747 | /* |
| 748 | * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported. |
| 749 | * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix. |
| 750 | * No one uses these insns, reject any branch insns with such prefix. |
| 751 | */ |
| 752 | for_each_insn_prefix(insn, i, p) { |
| 753 | if (p == 0x66) |
| 754 | return -ENOTSUPP; |
| 755 | } |
| 756 | |
| 757 | setup: |
| 758 | auprobe->branch.opc1 = opc1; |
| 759 | auprobe->branch.ilen = insn->length; |
| 760 | auprobe->branch.offs = insn->immediate.value; |
| 761 | |
| 762 | auprobe->ops = &branch_xol_ops; |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | /* Returns -ENOSYS if push_xol_ops doesn't handle this insn */ |
| 767 | static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn) |
| 768 | { |
| 769 | u8 opc1 = OPCODE1(insn), reg_offset = 0; |
| 770 | |
| 771 | if (opc1 < 0x50 || opc1 > 0x57) |
| 772 | return -ENOSYS; |
| 773 | |
| 774 | if (insn->length > 2) |
| 775 | return -ENOSYS; |
| 776 | if (insn->length == 2) { |
| 777 | /* only support rex_prefix 0x41 (x64 only) */ |
| 778 | #ifdef CONFIG_X86_64 |
| 779 | if (insn->rex_prefix.nbytes != 1 || |
| 780 | insn->rex_prefix.bytes[0] != 0x41) |
| 781 | return -ENOSYS; |
| 782 | |
| 783 | switch (opc1) { |
| 784 | case 0x50: |
| 785 | reg_offset = offsetof(struct pt_regs, r8); |
| 786 | break; |
| 787 | case 0x51: |
| 788 | reg_offset = offsetof(struct pt_regs, r9); |
| 789 | break; |
| 790 | case 0x52: |
| 791 | reg_offset = offsetof(struct pt_regs, r10); |
| 792 | break; |
| 793 | case 0x53: |
| 794 | reg_offset = offsetof(struct pt_regs, r11); |
| 795 | break; |
| 796 | case 0x54: |
| 797 | reg_offset = offsetof(struct pt_regs, r12); |
| 798 | break; |
| 799 | case 0x55: |
| 800 | reg_offset = offsetof(struct pt_regs, r13); |
| 801 | break; |
| 802 | case 0x56: |
| 803 | reg_offset = offsetof(struct pt_regs, r14); |
| 804 | break; |
| 805 | case 0x57: |
| 806 | reg_offset = offsetof(struct pt_regs, r15); |
| 807 | break; |
| 808 | } |
| 809 | #else |
| 810 | return -ENOSYS; |
| 811 | #endif |
| 812 | } else { |
| 813 | switch (opc1) { |
| 814 | case 0x50: |
| 815 | reg_offset = offsetof(struct pt_regs, ax); |
| 816 | break; |
| 817 | case 0x51: |
| 818 | reg_offset = offsetof(struct pt_regs, cx); |
| 819 | break; |
| 820 | case 0x52: |
| 821 | reg_offset = offsetof(struct pt_regs, dx); |
| 822 | break; |
| 823 | case 0x53: |
| 824 | reg_offset = offsetof(struct pt_regs, bx); |
| 825 | break; |
| 826 | case 0x54: |
| 827 | reg_offset = offsetof(struct pt_regs, sp); |
| 828 | break; |
| 829 | case 0x55: |
| 830 | reg_offset = offsetof(struct pt_regs, bp); |
| 831 | break; |
| 832 | case 0x56: |
| 833 | reg_offset = offsetof(struct pt_regs, si); |
| 834 | break; |
| 835 | case 0x57: |
| 836 | reg_offset = offsetof(struct pt_regs, di); |
| 837 | break; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | auprobe->push.reg_offset = reg_offset; |
| 842 | auprobe->push.ilen = insn->length; |
| 843 | auprobe->ops = &push_xol_ops; |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | /** |
| 848 | * arch_uprobe_analyze_insn - instruction analysis including validity and fixups. |
| 849 | * @mm: the probed address space. |
| 850 | * @arch_uprobe: the probepoint information. |
| 851 | * @addr: virtual address at which to install the probepoint |
| 852 | * Return 0 on success or a -ve number on error. |
| 853 | */ |
| 854 | int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr) |
| 855 | { |
| 856 | struct insn insn; |
| 857 | u8 fix_ip_or_call = UPROBE_FIX_IP; |
| 858 | int ret; |
| 859 | |
| 860 | ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm)); |
| 861 | if (ret) |
| 862 | return ret; |
| 863 | |
| 864 | ret = branch_setup_xol_ops(auprobe, &insn); |
| 865 | if (ret != -ENOSYS) |
| 866 | return ret; |
| 867 | |
| 868 | ret = push_setup_xol_ops(auprobe, &insn); |
| 869 | if (ret != -ENOSYS) |
| 870 | return ret; |
| 871 | |
| 872 | /* |
| 873 | * Figure out which fixups default_post_xol_op() will need to perform, |
| 874 | * and annotate defparam->fixups accordingly. |
| 875 | */ |
| 876 | switch (OPCODE1(&insn)) { |
| 877 | case 0x9d: /* popf */ |
| 878 | auprobe->defparam.fixups |= UPROBE_FIX_SETF; |
| 879 | break; |
| 880 | case 0xc3: /* ret or lret -- ip is correct */ |
| 881 | case 0xcb: |
| 882 | case 0xc2: |
| 883 | case 0xca: |
| 884 | case 0xea: /* jmp absolute -- ip is correct */ |
| 885 | fix_ip_or_call = 0; |
| 886 | break; |
| 887 | case 0x9a: /* call absolute - Fix return addr, not ip */ |
| 888 | fix_ip_or_call = UPROBE_FIX_CALL; |
| 889 | break; |
| 890 | case 0xff: |
| 891 | switch (MODRM_REG(&insn)) { |
| 892 | case 2: case 3: /* call or lcall, indirect */ |
| 893 | fix_ip_or_call = UPROBE_FIX_CALL; |
| 894 | break; |
| 895 | case 4: case 5: /* jmp or ljmp, indirect */ |
| 896 | fix_ip_or_call = 0; |
| 897 | break; |
| 898 | } |
| 899 | /* fall through */ |
| 900 | default: |
| 901 | riprel_analyze(auprobe, &insn); |
| 902 | } |
| 903 | |
| 904 | auprobe->defparam.ilen = insn.length; |
| 905 | auprobe->defparam.fixups |= fix_ip_or_call; |
| 906 | |
| 907 | auprobe->ops = &default_xol_ops; |
| 908 | return 0; |
| 909 | } |
| 910 | |
| 911 | /* |
| 912 | * arch_uprobe_pre_xol - prepare to execute out of line. |
| 913 | * @auprobe: the probepoint information. |
| 914 | * @regs: reflects the saved user state of current task. |
| 915 | */ |
| 916 | int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 917 | { |
| 918 | struct uprobe_task *utask = current->utask; |
| 919 | |
| 920 | if (auprobe->ops->pre_xol) { |
| 921 | int err = auprobe->ops->pre_xol(auprobe, regs); |
| 922 | if (err) |
| 923 | return err; |
| 924 | } |
| 925 | |
| 926 | regs->ip = utask->xol_vaddr; |
| 927 | utask->autask.saved_trap_nr = current->thread.trap_nr; |
| 928 | current->thread.trap_nr = UPROBE_TRAP_NR; |
| 929 | |
| 930 | utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF); |
| 931 | regs->flags |= X86_EFLAGS_TF; |
| 932 | if (test_tsk_thread_flag(current, TIF_BLOCKSTEP)) |
| 933 | set_task_blockstep(current, false); |
| 934 | |
| 935 | return 0; |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * If xol insn itself traps and generates a signal(Say, |
| 940 | * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped |
| 941 | * instruction jumps back to its own address. It is assumed that anything |
| 942 | * like do_page_fault/do_trap/etc sets thread.trap_nr != -1. |
| 943 | * |
| 944 | * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr, |
| 945 | * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to |
| 946 | * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol(). |
| 947 | */ |
| 948 | bool arch_uprobe_xol_was_trapped(struct task_struct *t) |
| 949 | { |
| 950 | if (t->thread.trap_nr != UPROBE_TRAP_NR) |
| 951 | return true; |
| 952 | |
| 953 | return false; |
| 954 | } |
| 955 | |
| 956 | /* |
| 957 | * Called after single-stepping. To avoid the SMP problems that can |
| 958 | * occur when we temporarily put back the original opcode to |
| 959 | * single-step, we single-stepped a copy of the instruction. |
| 960 | * |
| 961 | * This function prepares to resume execution after the single-step. |
| 962 | */ |
| 963 | int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 964 | { |
| 965 | struct uprobe_task *utask = current->utask; |
| 966 | bool send_sigtrap = utask->autask.saved_tf; |
| 967 | int err = 0; |
| 968 | |
| 969 | WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR); |
| 970 | current->thread.trap_nr = utask->autask.saved_trap_nr; |
| 971 | |
| 972 | if (auprobe->ops->post_xol) { |
| 973 | err = auprobe->ops->post_xol(auprobe, regs); |
| 974 | if (err) { |
| 975 | /* |
| 976 | * Restore ->ip for restart or post mortem analysis. |
| 977 | * ->post_xol() must not return -ERESTART unless this |
| 978 | * is really possible. |
| 979 | */ |
| 980 | regs->ip = utask->vaddr; |
| 981 | if (err == -ERESTART) |
| 982 | err = 0; |
| 983 | send_sigtrap = false; |
| 984 | } |
| 985 | } |
| 986 | /* |
| 987 | * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP |
| 988 | * so we can get an extra SIGTRAP if we do not clear TF. We need |
| 989 | * to examine the opcode to make it right. |
| 990 | */ |
| 991 | if (send_sigtrap) |
| 992 | send_sig(SIGTRAP, current, 0); |
| 993 | |
| 994 | if (!utask->autask.saved_tf) |
| 995 | regs->flags &= ~X86_EFLAGS_TF; |
| 996 | |
| 997 | return err; |
| 998 | } |
| 999 | |
| 1000 | /* callback routine for handling exceptions. */ |
| 1001 | int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data) |
| 1002 | { |
| 1003 | struct die_args *args = data; |
| 1004 | struct pt_regs *regs = args->regs; |
| 1005 | int ret = NOTIFY_DONE; |
| 1006 | |
| 1007 | /* We are only interested in userspace traps */ |
| 1008 | if (regs && !user_mode(regs)) |
| 1009 | return NOTIFY_DONE; |
| 1010 | |
| 1011 | switch (val) { |
| 1012 | case DIE_INT3: |
| 1013 | if (uprobe_pre_sstep_notifier(regs)) |
| 1014 | ret = NOTIFY_STOP; |
| 1015 | |
| 1016 | break; |
| 1017 | |
| 1018 | case DIE_DEBUG: |
| 1019 | if (uprobe_post_sstep_notifier(regs)) |
| 1020 | ret = NOTIFY_STOP; |
| 1021 | |
| 1022 | default: |
| 1023 | break; |
| 1024 | } |
| 1025 | |
| 1026 | return ret; |
| 1027 | } |
| 1028 | |
| 1029 | /* |
| 1030 | * This function gets called when XOL instruction either gets trapped or |
| 1031 | * the thread has a fatal signal. Reset the instruction pointer to its |
| 1032 | * probed address for the potential restart or for post mortem analysis. |
| 1033 | */ |
| 1034 | void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 1035 | { |
| 1036 | struct uprobe_task *utask = current->utask; |
| 1037 | |
| 1038 | if (auprobe->ops->abort) |
| 1039 | auprobe->ops->abort(auprobe, regs); |
| 1040 | |
| 1041 | current->thread.trap_nr = utask->autask.saved_trap_nr; |
| 1042 | regs->ip = utask->vaddr; |
| 1043 | /* clear TF if it was set by us in arch_uprobe_pre_xol() */ |
| 1044 | if (!utask->autask.saved_tf) |
| 1045 | regs->flags &= ~X86_EFLAGS_TF; |
| 1046 | } |
| 1047 | |
| 1048 | static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 1049 | { |
| 1050 | if (auprobe->ops->emulate) |
| 1051 | return auprobe->ops->emulate(auprobe, regs); |
| 1052 | return false; |
| 1053 | } |
| 1054 | |
| 1055 | bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| 1056 | { |
| 1057 | bool ret = __skip_sstep(auprobe, regs); |
| 1058 | if (ret && (regs->flags & X86_EFLAGS_TF)) |
| 1059 | send_sig(SIGTRAP, current, 0); |
| 1060 | return ret; |
| 1061 | } |
| 1062 | |
| 1063 | unsigned long |
| 1064 | arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs) |
| 1065 | { |
| 1066 | int rasize = sizeof_long(regs), nleft; |
| 1067 | unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */ |
| 1068 | |
| 1069 | if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize)) |
| 1070 | return -1; |
| 1071 | |
| 1072 | /* check whether address has been already hijacked */ |
| 1073 | if (orig_ret_vaddr == trampoline_vaddr) |
| 1074 | return orig_ret_vaddr; |
| 1075 | |
| 1076 | nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize); |
| 1077 | if (likely(!nleft)) |
| 1078 | return orig_ret_vaddr; |
| 1079 | |
| 1080 | if (nleft != rasize) { |
| 1081 | pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n", |
| 1082 | current->pid, regs->sp, regs->ip); |
| 1083 | |
| 1084 | force_sig(SIGSEGV); |
| 1085 | } |
| 1086 | |
| 1087 | return -1; |
| 1088 | } |
| 1089 | |
| 1090 | bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, |
| 1091 | struct pt_regs *regs) |
| 1092 | { |
| 1093 | if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */ |
| 1094 | return regs->sp < ret->stack; |
| 1095 | else |
| 1096 | return regs->sp <= ret->stack; |
| 1097 | } |