b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * ec.c - ACPI Embedded Controller Driver (v3) |
| 4 | * |
| 5 | * Copyright (C) 2001-2015 Intel Corporation |
| 6 | * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com> |
| 7 | * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com> |
| 8 | * 2006 Denis Sadykov <denis.m.sadykov@intel.com> |
| 9 | * 2004 Luming Yu <luming.yu@intel.com> |
| 10 | * 2001, 2002 Andy Grover <andrew.grover@intel.com> |
| 11 | * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> |
| 12 | * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de> |
| 13 | */ |
| 14 | |
| 15 | /* Uncomment next line to get verbose printout */ |
| 16 | /* #define DEBUG */ |
| 17 | #define pr_fmt(fmt) "ACPI: EC: " fmt |
| 18 | |
| 19 | #include <linux/kernel.h> |
| 20 | #include <linux/module.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/types.h> |
| 23 | #include <linux/delay.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/list.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/suspend.h> |
| 29 | #include <linux/acpi.h> |
| 30 | #include <linux/dmi.h> |
| 31 | #include <asm/io.h> |
| 32 | |
| 33 | #include "internal.h" |
| 34 | |
| 35 | #define ACPI_EC_CLASS "embedded_controller" |
| 36 | #define ACPI_EC_DEVICE_NAME "Embedded Controller" |
| 37 | #define ACPI_EC_FILE_INFO "info" |
| 38 | |
| 39 | /* EC status register */ |
| 40 | #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */ |
| 41 | #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */ |
| 42 | #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */ |
| 43 | #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */ |
| 44 | #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */ |
| 45 | |
| 46 | /* |
| 47 | * The SCI_EVT clearing timing is not defined by the ACPI specification. |
| 48 | * This leads to lots of practical timing issues for the host EC driver. |
| 49 | * The following variations are defined (from the target EC firmware's |
| 50 | * perspective): |
| 51 | * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the |
| 52 | * target can clear SCI_EVT at any time so long as the host can see |
| 53 | * the indication by reading the status register (EC_SC). So the |
| 54 | * host should re-check SCI_EVT after the first time the SCI_EVT |
| 55 | * indication is seen, which is the same time the query request |
| 56 | * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set |
| 57 | * at any later time could indicate another event. Normally such |
| 58 | * kind of EC firmware has implemented an event queue and will |
| 59 | * return 0x00 to indicate "no outstanding event". |
| 60 | * QUERY: After seeing the query request (QR_EC) written to the command |
| 61 | * register (EC_CMD) by the host and having prepared the responding |
| 62 | * event value in the data register (EC_DATA), the target can safely |
| 63 | * clear SCI_EVT because the target can confirm that the current |
| 64 | * event is being handled by the host. The host then should check |
| 65 | * SCI_EVT right after reading the event response from the data |
| 66 | * register (EC_DATA). |
| 67 | * EVENT: After seeing the event response read from the data register |
| 68 | * (EC_DATA) by the host, the target can clear SCI_EVT. As the |
| 69 | * target requires time to notice the change in the data register |
| 70 | * (EC_DATA), the host may be required to wait additional guarding |
| 71 | * time before checking the SCI_EVT again. Such guarding may not be |
| 72 | * necessary if the host is notified via another IRQ. |
| 73 | */ |
| 74 | #define ACPI_EC_EVT_TIMING_STATUS 0x00 |
| 75 | #define ACPI_EC_EVT_TIMING_QUERY 0x01 |
| 76 | #define ACPI_EC_EVT_TIMING_EVENT 0x02 |
| 77 | |
| 78 | /* EC commands */ |
| 79 | enum ec_command { |
| 80 | ACPI_EC_COMMAND_READ = 0x80, |
| 81 | ACPI_EC_COMMAND_WRITE = 0x81, |
| 82 | ACPI_EC_BURST_ENABLE = 0x82, |
| 83 | ACPI_EC_BURST_DISABLE = 0x83, |
| 84 | ACPI_EC_COMMAND_QUERY = 0x84, |
| 85 | }; |
| 86 | |
| 87 | #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */ |
| 88 | #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */ |
| 89 | #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */ |
| 90 | #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query |
| 91 | * when trying to clear the EC */ |
| 92 | #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */ |
| 93 | |
| 94 | enum { |
| 95 | EC_FLAGS_QUERY_ENABLED, /* Query is enabled */ |
| 96 | EC_FLAGS_QUERY_PENDING, /* Query is pending */ |
| 97 | EC_FLAGS_QUERY_GUARDING, /* Guard for SCI_EVT check */ |
| 98 | EC_FLAGS_GPE_HANDLER_INSTALLED, /* GPE handler installed */ |
| 99 | EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */ |
| 100 | EC_FLAGS_EVT_HANDLER_INSTALLED, /* _Qxx handlers installed */ |
| 101 | EC_FLAGS_STARTED, /* Driver is started */ |
| 102 | EC_FLAGS_STOPPED, /* Driver is stopped */ |
| 103 | EC_FLAGS_GPE_MASKED, /* GPE masked */ |
| 104 | }; |
| 105 | |
| 106 | #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */ |
| 107 | #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */ |
| 108 | |
| 109 | /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */ |
| 110 | static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY; |
| 111 | module_param(ec_delay, uint, 0644); |
| 112 | MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes"); |
| 113 | |
| 114 | static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES; |
| 115 | module_param(ec_max_queries, uint, 0644); |
| 116 | MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations"); |
| 117 | |
| 118 | static bool ec_busy_polling __read_mostly; |
| 119 | module_param(ec_busy_polling, bool, 0644); |
| 120 | MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction"); |
| 121 | |
| 122 | static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL; |
| 123 | module_param(ec_polling_guard, uint, 0644); |
| 124 | MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes"); |
| 125 | |
| 126 | static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY; |
| 127 | |
| 128 | /* |
| 129 | * If the number of false interrupts per one transaction exceeds |
| 130 | * this threshold, will think there is a GPE storm happened and |
| 131 | * will disable the GPE for normal transaction. |
| 132 | */ |
| 133 | static unsigned int ec_storm_threshold __read_mostly = 8; |
| 134 | module_param(ec_storm_threshold, uint, 0644); |
| 135 | MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm"); |
| 136 | |
| 137 | static bool ec_freeze_events __read_mostly = false; |
| 138 | module_param(ec_freeze_events, bool, 0644); |
| 139 | MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume"); |
| 140 | |
| 141 | static bool ec_no_wakeup __read_mostly; |
| 142 | module_param(ec_no_wakeup, bool, 0644); |
| 143 | MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle"); |
| 144 | |
| 145 | struct acpi_ec_query_handler { |
| 146 | struct list_head node; |
| 147 | acpi_ec_query_func func; |
| 148 | acpi_handle handle; |
| 149 | void *data; |
| 150 | u8 query_bit; |
| 151 | struct kref kref; |
| 152 | }; |
| 153 | |
| 154 | struct transaction { |
| 155 | const u8 *wdata; |
| 156 | u8 *rdata; |
| 157 | unsigned short irq_count; |
| 158 | u8 command; |
| 159 | u8 wi; |
| 160 | u8 ri; |
| 161 | u8 wlen; |
| 162 | u8 rlen; |
| 163 | u8 flags; |
| 164 | }; |
| 165 | |
| 166 | struct acpi_ec_query { |
| 167 | struct transaction transaction; |
| 168 | struct work_struct work; |
| 169 | struct acpi_ec_query_handler *handler; |
| 170 | struct acpi_ec *ec; |
| 171 | }; |
| 172 | |
| 173 | static int acpi_ec_query(struct acpi_ec *ec, u8 *data); |
| 174 | static void advance_transaction(struct acpi_ec *ec); |
| 175 | static void acpi_ec_event_handler(struct work_struct *work); |
| 176 | static void acpi_ec_event_processor(struct work_struct *work); |
| 177 | |
| 178 | struct acpi_ec *first_ec; |
| 179 | EXPORT_SYMBOL(first_ec); |
| 180 | |
| 181 | static struct acpi_ec *boot_ec; |
| 182 | static bool boot_ec_is_ecdt = false; |
| 183 | static struct workqueue_struct *ec_wq; |
| 184 | static struct workqueue_struct *ec_query_wq; |
| 185 | |
| 186 | static int EC_FLAGS_QUERY_HANDSHAKE; /* Needs QR_EC issued when SCI_EVT set */ |
| 187 | static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */ |
| 188 | static int EC_FLAGS_IGNORE_DSDT_GPE; /* Needs ECDT GPE as correction setting */ |
| 189 | static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */ |
| 190 | |
| 191 | /* -------------------------------------------------------------------------- |
| 192 | * Logging/Debugging |
| 193 | * -------------------------------------------------------------------------- */ |
| 194 | |
| 195 | /* |
| 196 | * Splitters used by the developers to track the boundary of the EC |
| 197 | * handling processes. |
| 198 | */ |
| 199 | #ifdef DEBUG |
| 200 | #define EC_DBG_SEP " " |
| 201 | #define EC_DBG_DRV "+++++" |
| 202 | #define EC_DBG_STM "=====" |
| 203 | #define EC_DBG_REQ "*****" |
| 204 | #define EC_DBG_EVT "#####" |
| 205 | #else |
| 206 | #define EC_DBG_SEP "" |
| 207 | #define EC_DBG_DRV |
| 208 | #define EC_DBG_STM |
| 209 | #define EC_DBG_REQ |
| 210 | #define EC_DBG_EVT |
| 211 | #endif |
| 212 | |
| 213 | #define ec_log_raw(fmt, ...) \ |
| 214 | pr_info(fmt "\n", ##__VA_ARGS__) |
| 215 | #define ec_dbg_raw(fmt, ...) \ |
| 216 | pr_debug(fmt "\n", ##__VA_ARGS__) |
| 217 | #define ec_log(filter, fmt, ...) \ |
| 218 | ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) |
| 219 | #define ec_dbg(filter, fmt, ...) \ |
| 220 | ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__) |
| 221 | |
| 222 | #define ec_log_drv(fmt, ...) \ |
| 223 | ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__) |
| 224 | #define ec_dbg_drv(fmt, ...) \ |
| 225 | ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__) |
| 226 | #define ec_dbg_stm(fmt, ...) \ |
| 227 | ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__) |
| 228 | #define ec_dbg_req(fmt, ...) \ |
| 229 | ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__) |
| 230 | #define ec_dbg_evt(fmt, ...) \ |
| 231 | ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__) |
| 232 | #define ec_dbg_ref(ec, fmt, ...) \ |
| 233 | ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__) |
| 234 | |
| 235 | /* -------------------------------------------------------------------------- |
| 236 | * Device Flags |
| 237 | * -------------------------------------------------------------------------- */ |
| 238 | |
| 239 | static bool acpi_ec_started(struct acpi_ec *ec) |
| 240 | { |
| 241 | return test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 242 | !test_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 243 | } |
| 244 | |
| 245 | static bool acpi_ec_event_enabled(struct acpi_ec *ec) |
| 246 | { |
| 247 | /* |
| 248 | * There is an OSPM early stage logic. During the early stages |
| 249 | * (boot/resume), OSPMs shouldn't enable the event handling, only |
| 250 | * the EC transactions are allowed to be performed. |
| 251 | */ |
| 252 | if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 253 | return false; |
| 254 | /* |
| 255 | * However, disabling the event handling is experimental for late |
| 256 | * stage (suspend), and is controlled by the boot parameter of |
| 257 | * "ec_freeze_events": |
| 258 | * 1. true: The EC event handling is disabled before entering |
| 259 | * the noirq stage. |
| 260 | * 2. false: The EC event handling is automatically disabled as |
| 261 | * soon as the EC driver is stopped. |
| 262 | */ |
| 263 | if (ec_freeze_events) |
| 264 | return acpi_ec_started(ec); |
| 265 | else |
| 266 | return test_bit(EC_FLAGS_STARTED, &ec->flags); |
| 267 | } |
| 268 | |
| 269 | static bool acpi_ec_flushed(struct acpi_ec *ec) |
| 270 | { |
| 271 | return ec->reference_count == 1; |
| 272 | } |
| 273 | |
| 274 | /* -------------------------------------------------------------------------- |
| 275 | * EC Registers |
| 276 | * -------------------------------------------------------------------------- */ |
| 277 | |
| 278 | static inline u8 acpi_ec_read_status(struct acpi_ec *ec) |
| 279 | { |
| 280 | u8 x = inb(ec->command_addr); |
| 281 | |
| 282 | ec_dbg_raw("EC_SC(R) = 0x%2.2x " |
| 283 | "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d", |
| 284 | x, |
| 285 | !!(x & ACPI_EC_FLAG_SCI), |
| 286 | !!(x & ACPI_EC_FLAG_BURST), |
| 287 | !!(x & ACPI_EC_FLAG_CMD), |
| 288 | !!(x & ACPI_EC_FLAG_IBF), |
| 289 | !!(x & ACPI_EC_FLAG_OBF)); |
| 290 | return x; |
| 291 | } |
| 292 | |
| 293 | static inline u8 acpi_ec_read_data(struct acpi_ec *ec) |
| 294 | { |
| 295 | u8 x = inb(ec->data_addr); |
| 296 | |
| 297 | ec->timestamp = jiffies; |
| 298 | ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x); |
| 299 | return x; |
| 300 | } |
| 301 | |
| 302 | static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command) |
| 303 | { |
| 304 | ec_dbg_raw("EC_SC(W) = 0x%2.2x", command); |
| 305 | outb(command, ec->command_addr); |
| 306 | ec->timestamp = jiffies; |
| 307 | } |
| 308 | |
| 309 | static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data) |
| 310 | { |
| 311 | ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data); |
| 312 | outb(data, ec->data_addr); |
| 313 | ec->timestamp = jiffies; |
| 314 | } |
| 315 | |
| 316 | #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG) |
| 317 | static const char *acpi_ec_cmd_string(u8 cmd) |
| 318 | { |
| 319 | switch (cmd) { |
| 320 | case 0x80: |
| 321 | return "RD_EC"; |
| 322 | case 0x81: |
| 323 | return "WR_EC"; |
| 324 | case 0x82: |
| 325 | return "BE_EC"; |
| 326 | case 0x83: |
| 327 | return "BD_EC"; |
| 328 | case 0x84: |
| 329 | return "QR_EC"; |
| 330 | } |
| 331 | return "UNKNOWN"; |
| 332 | } |
| 333 | #else |
| 334 | #define acpi_ec_cmd_string(cmd) "UNDEF" |
| 335 | #endif |
| 336 | |
| 337 | /* -------------------------------------------------------------------------- |
| 338 | * GPE Registers |
| 339 | * -------------------------------------------------------------------------- */ |
| 340 | |
| 341 | static inline bool acpi_ec_is_gpe_raised(struct acpi_ec *ec) |
| 342 | { |
| 343 | acpi_event_status gpe_status = 0; |
| 344 | |
| 345 | (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status); |
| 346 | return (gpe_status & ACPI_EVENT_FLAG_STATUS_SET) ? true : false; |
| 347 | } |
| 348 | |
| 349 | static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open) |
| 350 | { |
| 351 | if (open) |
| 352 | acpi_enable_gpe(NULL, ec->gpe); |
| 353 | else { |
| 354 | BUG_ON(ec->reference_count < 1); |
| 355 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); |
| 356 | } |
| 357 | if (acpi_ec_is_gpe_raised(ec)) { |
| 358 | /* |
| 359 | * On some platforms, EN=1 writes cannot trigger GPE. So |
| 360 | * software need to manually trigger a pseudo GPE event on |
| 361 | * EN=1 writes. |
| 362 | */ |
| 363 | ec_dbg_raw("Polling quirk"); |
| 364 | advance_transaction(ec); |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close) |
| 369 | { |
| 370 | if (close) |
| 371 | acpi_disable_gpe(NULL, ec->gpe); |
| 372 | else { |
| 373 | BUG_ON(ec->reference_count < 1); |
| 374 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | static inline void acpi_ec_clear_gpe(struct acpi_ec *ec) |
| 379 | { |
| 380 | /* |
| 381 | * GPE STS is a W1C register, which means: |
| 382 | * 1. Software can clear it without worrying about clearing other |
| 383 | * GPEs' STS bits when the hardware sets them in parallel. |
| 384 | * 2. As long as software can ensure only clearing it when it is |
| 385 | * set, hardware won't set it in parallel. |
| 386 | * So software can clear GPE in any contexts. |
| 387 | * Warning: do not move the check into advance_transaction() as the |
| 388 | * EC commands will be sent without GPE raised. |
| 389 | */ |
| 390 | if (!acpi_ec_is_gpe_raised(ec)) |
| 391 | return; |
| 392 | acpi_clear_gpe(NULL, ec->gpe); |
| 393 | } |
| 394 | |
| 395 | /* -------------------------------------------------------------------------- |
| 396 | * Transaction Management |
| 397 | * -------------------------------------------------------------------------- */ |
| 398 | |
| 399 | static void acpi_ec_submit_request(struct acpi_ec *ec) |
| 400 | { |
| 401 | ec->reference_count++; |
| 402 | if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) && |
| 403 | ec->reference_count == 1) |
| 404 | acpi_ec_enable_gpe(ec, true); |
| 405 | } |
| 406 | |
| 407 | static void acpi_ec_complete_request(struct acpi_ec *ec) |
| 408 | { |
| 409 | bool flushed = false; |
| 410 | |
| 411 | ec->reference_count--; |
| 412 | if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags) && |
| 413 | ec->reference_count == 0) |
| 414 | acpi_ec_disable_gpe(ec, true); |
| 415 | flushed = acpi_ec_flushed(ec); |
| 416 | if (flushed) |
| 417 | wake_up(&ec->wait); |
| 418 | } |
| 419 | |
| 420 | static void acpi_ec_mask_gpe(struct acpi_ec *ec) |
| 421 | { |
| 422 | if (!test_bit(EC_FLAGS_GPE_MASKED, &ec->flags)) { |
| 423 | acpi_ec_disable_gpe(ec, false); |
| 424 | ec_dbg_drv("Polling enabled"); |
| 425 | set_bit(EC_FLAGS_GPE_MASKED, &ec->flags); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | static void acpi_ec_unmask_gpe(struct acpi_ec *ec) |
| 430 | { |
| 431 | if (test_bit(EC_FLAGS_GPE_MASKED, &ec->flags)) { |
| 432 | clear_bit(EC_FLAGS_GPE_MASKED, &ec->flags); |
| 433 | acpi_ec_enable_gpe(ec, false); |
| 434 | ec_dbg_drv("Polling disabled"); |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | /* |
| 439 | * acpi_ec_submit_flushable_request() - Increase the reference count unless |
| 440 | * the flush operation is not in |
| 441 | * progress |
| 442 | * @ec: the EC device |
| 443 | * |
| 444 | * This function must be used before taking a new action that should hold |
| 445 | * the reference count. If this function returns false, then the action |
| 446 | * must be discarded or it will prevent the flush operation from being |
| 447 | * completed. |
| 448 | */ |
| 449 | static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec) |
| 450 | { |
| 451 | if (!acpi_ec_started(ec)) |
| 452 | return false; |
| 453 | acpi_ec_submit_request(ec); |
| 454 | return true; |
| 455 | } |
| 456 | |
| 457 | static void acpi_ec_submit_query(struct acpi_ec *ec) |
| 458 | { |
| 459 | acpi_ec_mask_gpe(ec); |
| 460 | if (!acpi_ec_event_enabled(ec)) |
| 461 | return; |
| 462 | if (!test_and_set_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) { |
| 463 | ec_dbg_evt("Command(%s) submitted/blocked", |
| 464 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 465 | ec->nr_pending_queries++; |
| 466 | ec->events_in_progress++; |
| 467 | queue_work(ec_wq, &ec->work); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | static void acpi_ec_complete_query(struct acpi_ec *ec) |
| 472 | { |
| 473 | if (test_and_clear_bit(EC_FLAGS_QUERY_PENDING, &ec->flags)) |
| 474 | ec_dbg_evt("Command(%s) unblocked", |
| 475 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 476 | acpi_ec_unmask_gpe(ec); |
| 477 | } |
| 478 | |
| 479 | static inline void __acpi_ec_enable_event(struct acpi_ec *ec) |
| 480 | { |
| 481 | if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 482 | ec_log_drv("event unblocked"); |
| 483 | /* |
| 484 | * Unconditionally invoke this once after enabling the event |
| 485 | * handling mechanism to detect the pending events. |
| 486 | */ |
| 487 | advance_transaction(ec); |
| 488 | } |
| 489 | |
| 490 | static inline void __acpi_ec_disable_event(struct acpi_ec *ec) |
| 491 | { |
| 492 | if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags)) |
| 493 | ec_log_drv("event blocked"); |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | * Process _Q events that might have accumulated in the EC. |
| 498 | * Run with locked ec mutex. |
| 499 | */ |
| 500 | static void acpi_ec_clear(struct acpi_ec *ec) |
| 501 | { |
| 502 | int i, status; |
| 503 | u8 value = 0; |
| 504 | |
| 505 | for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) { |
| 506 | status = acpi_ec_query(ec, &value); |
| 507 | if (status || !value) |
| 508 | break; |
| 509 | } |
| 510 | if (unlikely(i == ACPI_EC_CLEAR_MAX)) |
| 511 | pr_warn("Warning: Maximum of %d stale EC events cleared\n", i); |
| 512 | else |
| 513 | pr_info("%d stale EC events cleared\n", i); |
| 514 | } |
| 515 | |
| 516 | static void acpi_ec_enable_event(struct acpi_ec *ec) |
| 517 | { |
| 518 | unsigned long flags; |
| 519 | |
| 520 | spin_lock_irqsave(&ec->lock, flags); |
| 521 | if (acpi_ec_started(ec)) |
| 522 | __acpi_ec_enable_event(ec); |
| 523 | spin_unlock_irqrestore(&ec->lock, flags); |
| 524 | |
| 525 | /* Drain additional events if hardware requires that */ |
| 526 | if (EC_FLAGS_CLEAR_ON_RESUME) |
| 527 | acpi_ec_clear(ec); |
| 528 | } |
| 529 | |
| 530 | #ifdef CONFIG_PM_SLEEP |
| 531 | static void __acpi_ec_flush_work(void) |
| 532 | { |
| 533 | flush_workqueue(ec_wq); /* flush ec->work */ |
| 534 | flush_workqueue(ec_query_wq); /* flush queries */ |
| 535 | } |
| 536 | |
| 537 | static void acpi_ec_disable_event(struct acpi_ec *ec) |
| 538 | { |
| 539 | unsigned long flags; |
| 540 | |
| 541 | spin_lock_irqsave(&ec->lock, flags); |
| 542 | __acpi_ec_disable_event(ec); |
| 543 | spin_unlock_irqrestore(&ec->lock, flags); |
| 544 | |
| 545 | /* |
| 546 | * When ec_freeze_events is true, we need to flush events in |
| 547 | * the proper position before entering the noirq stage. |
| 548 | */ |
| 549 | __acpi_ec_flush_work(); |
| 550 | } |
| 551 | |
| 552 | void acpi_ec_flush_work(void) |
| 553 | { |
| 554 | /* Without ec_wq there is nothing to flush. */ |
| 555 | if (!ec_wq) |
| 556 | return; |
| 557 | |
| 558 | __acpi_ec_flush_work(); |
| 559 | } |
| 560 | #endif /* CONFIG_PM_SLEEP */ |
| 561 | |
| 562 | static bool acpi_ec_guard_event(struct acpi_ec *ec) |
| 563 | { |
| 564 | bool guarded = true; |
| 565 | unsigned long flags; |
| 566 | |
| 567 | spin_lock_irqsave(&ec->lock, flags); |
| 568 | /* |
| 569 | * If firmware SCI_EVT clearing timing is "event", we actually |
| 570 | * don't know when the SCI_EVT will be cleared by firmware after |
| 571 | * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an |
| 572 | * acceptable period. |
| 573 | * |
| 574 | * The guarding period begins when EC_FLAGS_QUERY_PENDING is |
| 575 | * flagged, which means SCI_EVT check has just been performed. |
| 576 | * But if the current transaction is ACPI_EC_COMMAND_QUERY, the |
| 577 | * guarding should have already been performed (via |
| 578 | * EC_FLAGS_QUERY_GUARDING) and should not be applied so that the |
| 579 | * ACPI_EC_COMMAND_QUERY transaction can be transitioned into |
| 580 | * ACPI_EC_COMMAND_POLL state immediately. |
| 581 | */ |
| 582 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS || |
| 583 | ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY || |
| 584 | !test_bit(EC_FLAGS_QUERY_PENDING, &ec->flags) || |
| 585 | (ec->curr && ec->curr->command == ACPI_EC_COMMAND_QUERY)) |
| 586 | guarded = false; |
| 587 | spin_unlock_irqrestore(&ec->lock, flags); |
| 588 | return guarded; |
| 589 | } |
| 590 | |
| 591 | static int ec_transaction_polled(struct acpi_ec *ec) |
| 592 | { |
| 593 | unsigned long flags; |
| 594 | int ret = 0; |
| 595 | |
| 596 | spin_lock_irqsave(&ec->lock, flags); |
| 597 | if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL)) |
| 598 | ret = 1; |
| 599 | spin_unlock_irqrestore(&ec->lock, flags); |
| 600 | return ret; |
| 601 | } |
| 602 | |
| 603 | static int ec_transaction_completed(struct acpi_ec *ec) |
| 604 | { |
| 605 | unsigned long flags; |
| 606 | int ret = 0; |
| 607 | |
| 608 | spin_lock_irqsave(&ec->lock, flags); |
| 609 | if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE)) |
| 610 | ret = 1; |
| 611 | spin_unlock_irqrestore(&ec->lock, flags); |
| 612 | return ret; |
| 613 | } |
| 614 | |
| 615 | static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag) |
| 616 | { |
| 617 | ec->curr->flags |= flag; |
| 618 | if (ec->curr->command == ACPI_EC_COMMAND_QUERY) { |
| 619 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS && |
| 620 | flag == ACPI_EC_COMMAND_POLL) |
| 621 | acpi_ec_complete_query(ec); |
| 622 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY && |
| 623 | flag == ACPI_EC_COMMAND_COMPLETE) |
| 624 | acpi_ec_complete_query(ec); |
| 625 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && |
| 626 | flag == ACPI_EC_COMMAND_COMPLETE) |
| 627 | set_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags); |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | static void advance_transaction(struct acpi_ec *ec) |
| 632 | { |
| 633 | struct transaction *t; |
| 634 | u8 status; |
| 635 | bool wakeup = false; |
| 636 | |
| 637 | ec_dbg_stm("%s (%d)", in_interrupt() ? "IRQ" : "TASK", |
| 638 | smp_processor_id()); |
| 639 | /* |
| 640 | * By always clearing STS before handling all indications, we can |
| 641 | * ensure a hardware STS 0->1 change after this clearing can always |
| 642 | * trigger a GPE interrupt. |
| 643 | */ |
| 644 | acpi_ec_clear_gpe(ec); |
| 645 | status = acpi_ec_read_status(ec); |
| 646 | t = ec->curr; |
| 647 | /* |
| 648 | * Another IRQ or a guarded polling mode advancement is detected, |
| 649 | * the next QR_EC submission is then allowed. |
| 650 | */ |
| 651 | if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) { |
| 652 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT && |
| 653 | (!ec->nr_pending_queries || |
| 654 | test_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags))) { |
| 655 | clear_bit(EC_FLAGS_QUERY_GUARDING, &ec->flags); |
| 656 | acpi_ec_complete_query(ec); |
| 657 | } |
| 658 | } |
| 659 | if (!t) |
| 660 | goto err; |
| 661 | if (t->flags & ACPI_EC_COMMAND_POLL) { |
| 662 | if (t->wlen > t->wi) { |
| 663 | if ((status & ACPI_EC_FLAG_IBF) == 0) |
| 664 | acpi_ec_write_data(ec, t->wdata[t->wi++]); |
| 665 | else |
| 666 | goto err; |
| 667 | } else if (t->rlen > t->ri) { |
| 668 | if ((status & ACPI_EC_FLAG_OBF) == 1) { |
| 669 | t->rdata[t->ri++] = acpi_ec_read_data(ec); |
| 670 | if (t->rlen == t->ri) { |
| 671 | ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); |
| 672 | if (t->command == ACPI_EC_COMMAND_QUERY) |
| 673 | ec_dbg_evt("Command(%s) completed by hardware", |
| 674 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 675 | wakeup = true; |
| 676 | } |
| 677 | } else |
| 678 | goto err; |
| 679 | } else if (t->wlen == t->wi && |
| 680 | (status & ACPI_EC_FLAG_IBF) == 0) { |
| 681 | ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); |
| 682 | wakeup = true; |
| 683 | } |
| 684 | goto out; |
| 685 | } else { |
| 686 | if (EC_FLAGS_QUERY_HANDSHAKE && |
| 687 | !(status & ACPI_EC_FLAG_SCI) && |
| 688 | (t->command == ACPI_EC_COMMAND_QUERY)) { |
| 689 | ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); |
| 690 | t->rdata[t->ri++] = 0x00; |
| 691 | ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE); |
| 692 | ec_dbg_evt("Command(%s) completed by software", |
| 693 | acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY)); |
| 694 | wakeup = true; |
| 695 | } else if ((status & ACPI_EC_FLAG_IBF) == 0) { |
| 696 | acpi_ec_write_cmd(ec, t->command); |
| 697 | ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL); |
| 698 | } else |
| 699 | goto err; |
| 700 | goto out; |
| 701 | } |
| 702 | err: |
| 703 | /* |
| 704 | * If SCI bit is set, then don't think it's a false IRQ |
| 705 | * otherwise will take a not handled IRQ as a false one. |
| 706 | */ |
| 707 | if (!(status & ACPI_EC_FLAG_SCI)) { |
| 708 | if (in_interrupt() && t) { |
| 709 | if (t->irq_count < ec_storm_threshold) |
| 710 | ++t->irq_count; |
| 711 | /* Allow triggering on 0 threshold */ |
| 712 | if (t->irq_count == ec_storm_threshold) |
| 713 | acpi_ec_mask_gpe(ec); |
| 714 | } |
| 715 | } |
| 716 | out: |
| 717 | if (status & ACPI_EC_FLAG_SCI) |
| 718 | acpi_ec_submit_query(ec); |
| 719 | if (wakeup && in_interrupt()) |
| 720 | wake_up(&ec->wait); |
| 721 | } |
| 722 | |
| 723 | static void start_transaction(struct acpi_ec *ec) |
| 724 | { |
| 725 | ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0; |
| 726 | ec->curr->flags = 0; |
| 727 | } |
| 728 | |
| 729 | static int ec_guard(struct acpi_ec *ec) |
| 730 | { |
| 731 | unsigned long guard = usecs_to_jiffies(ec->polling_guard); |
| 732 | unsigned long timeout = ec->timestamp + guard; |
| 733 | |
| 734 | /* Ensure guarding period before polling EC status */ |
| 735 | do { |
| 736 | if (ec->busy_polling) { |
| 737 | /* Perform busy polling */ |
| 738 | if (ec_transaction_completed(ec)) |
| 739 | return 0; |
| 740 | udelay(jiffies_to_usecs(guard)); |
| 741 | } else { |
| 742 | /* |
| 743 | * Perform wait polling |
| 744 | * 1. Wait the transaction to be completed by the |
| 745 | * GPE handler after the transaction enters |
| 746 | * ACPI_EC_COMMAND_POLL state. |
| 747 | * 2. A special guarding logic is also required |
| 748 | * for event clearing mode "event" before the |
| 749 | * transaction enters ACPI_EC_COMMAND_POLL |
| 750 | * state. |
| 751 | */ |
| 752 | if (!ec_transaction_polled(ec) && |
| 753 | !acpi_ec_guard_event(ec)) |
| 754 | break; |
| 755 | if (wait_event_timeout(ec->wait, |
| 756 | ec_transaction_completed(ec), |
| 757 | guard)) |
| 758 | return 0; |
| 759 | } |
| 760 | } while (time_before(jiffies, timeout)); |
| 761 | return -ETIME; |
| 762 | } |
| 763 | |
| 764 | static int ec_poll(struct acpi_ec *ec) |
| 765 | { |
| 766 | unsigned long flags; |
| 767 | int repeat = 5; /* number of command restarts */ |
| 768 | |
| 769 | while (repeat--) { |
| 770 | unsigned long delay = jiffies + |
| 771 | msecs_to_jiffies(ec_delay); |
| 772 | do { |
| 773 | if (!ec_guard(ec)) |
| 774 | return 0; |
| 775 | spin_lock_irqsave(&ec->lock, flags); |
| 776 | advance_transaction(ec); |
| 777 | spin_unlock_irqrestore(&ec->lock, flags); |
| 778 | } while (time_before(jiffies, delay)); |
| 779 | pr_debug("controller reset, restart transaction\n"); |
| 780 | spin_lock_irqsave(&ec->lock, flags); |
| 781 | start_transaction(ec); |
| 782 | spin_unlock_irqrestore(&ec->lock, flags); |
| 783 | } |
| 784 | return -ETIME; |
| 785 | } |
| 786 | |
| 787 | static int acpi_ec_transaction_unlocked(struct acpi_ec *ec, |
| 788 | struct transaction *t) |
| 789 | { |
| 790 | unsigned long tmp; |
| 791 | int ret = 0; |
| 792 | |
| 793 | if (t->rdata) |
| 794 | memset(t->rdata, 0, t->rlen); |
| 795 | |
| 796 | /* start transaction */ |
| 797 | spin_lock_irqsave(&ec->lock, tmp); |
| 798 | /* Enable GPE for command processing (IBF=0/OBF=1) */ |
| 799 | if (!acpi_ec_submit_flushable_request(ec)) { |
| 800 | ret = -EINVAL; |
| 801 | goto unlock; |
| 802 | } |
| 803 | ec_dbg_ref(ec, "Increase command"); |
| 804 | /* following two actions should be kept atomic */ |
| 805 | ec->curr = t; |
| 806 | ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command)); |
| 807 | start_transaction(ec); |
| 808 | spin_unlock_irqrestore(&ec->lock, tmp); |
| 809 | |
| 810 | ret = ec_poll(ec); |
| 811 | |
| 812 | spin_lock_irqsave(&ec->lock, tmp); |
| 813 | if (t->irq_count == ec_storm_threshold) |
| 814 | acpi_ec_unmask_gpe(ec); |
| 815 | ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command)); |
| 816 | ec->curr = NULL; |
| 817 | /* Disable GPE for command processing (IBF=0/OBF=1) */ |
| 818 | acpi_ec_complete_request(ec); |
| 819 | ec_dbg_ref(ec, "Decrease command"); |
| 820 | unlock: |
| 821 | spin_unlock_irqrestore(&ec->lock, tmp); |
| 822 | return ret; |
| 823 | } |
| 824 | |
| 825 | static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t) |
| 826 | { |
| 827 | int status; |
| 828 | u32 glk; |
| 829 | |
| 830 | if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata)) |
| 831 | return -EINVAL; |
| 832 | |
| 833 | mutex_lock(&ec->mutex); |
| 834 | if (ec->global_lock) { |
| 835 | status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); |
| 836 | if (ACPI_FAILURE(status)) { |
| 837 | status = -ENODEV; |
| 838 | goto unlock; |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | status = acpi_ec_transaction_unlocked(ec, t); |
| 843 | |
| 844 | if (ec->global_lock) |
| 845 | acpi_release_global_lock(glk); |
| 846 | unlock: |
| 847 | mutex_unlock(&ec->mutex); |
| 848 | return status; |
| 849 | } |
| 850 | |
| 851 | static int acpi_ec_burst_enable(struct acpi_ec *ec) |
| 852 | { |
| 853 | u8 d; |
| 854 | struct transaction t = {.command = ACPI_EC_BURST_ENABLE, |
| 855 | .wdata = NULL, .rdata = &d, |
| 856 | .wlen = 0, .rlen = 1}; |
| 857 | |
| 858 | return acpi_ec_transaction_unlocked(ec, &t); |
| 859 | } |
| 860 | |
| 861 | static int acpi_ec_burst_disable(struct acpi_ec *ec) |
| 862 | { |
| 863 | struct transaction t = {.command = ACPI_EC_BURST_DISABLE, |
| 864 | .wdata = NULL, .rdata = NULL, |
| 865 | .wlen = 0, .rlen = 0}; |
| 866 | |
| 867 | return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ? |
| 868 | acpi_ec_transaction_unlocked(ec, &t) : 0; |
| 869 | } |
| 870 | |
| 871 | static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data) |
| 872 | { |
| 873 | int result; |
| 874 | u8 d; |
| 875 | struct transaction t = {.command = ACPI_EC_COMMAND_READ, |
| 876 | .wdata = &address, .rdata = &d, |
| 877 | .wlen = 1, .rlen = 1}; |
| 878 | |
| 879 | result = acpi_ec_transaction(ec, &t); |
| 880 | *data = d; |
| 881 | return result; |
| 882 | } |
| 883 | |
| 884 | static int acpi_ec_read_unlocked(struct acpi_ec *ec, u8 address, u8 *data) |
| 885 | { |
| 886 | int result; |
| 887 | u8 d; |
| 888 | struct transaction t = {.command = ACPI_EC_COMMAND_READ, |
| 889 | .wdata = &address, .rdata = &d, |
| 890 | .wlen = 1, .rlen = 1}; |
| 891 | |
| 892 | result = acpi_ec_transaction_unlocked(ec, &t); |
| 893 | *data = d; |
| 894 | return result; |
| 895 | } |
| 896 | |
| 897 | static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data) |
| 898 | { |
| 899 | u8 wdata[2] = { address, data }; |
| 900 | struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, |
| 901 | .wdata = wdata, .rdata = NULL, |
| 902 | .wlen = 2, .rlen = 0}; |
| 903 | |
| 904 | return acpi_ec_transaction(ec, &t); |
| 905 | } |
| 906 | |
| 907 | static int acpi_ec_write_unlocked(struct acpi_ec *ec, u8 address, u8 data) |
| 908 | { |
| 909 | u8 wdata[2] = { address, data }; |
| 910 | struct transaction t = {.command = ACPI_EC_COMMAND_WRITE, |
| 911 | .wdata = wdata, .rdata = NULL, |
| 912 | .wlen = 2, .rlen = 0}; |
| 913 | |
| 914 | return acpi_ec_transaction_unlocked(ec, &t); |
| 915 | } |
| 916 | |
| 917 | int ec_read(u8 addr, u8 *val) |
| 918 | { |
| 919 | int err; |
| 920 | u8 temp_data; |
| 921 | |
| 922 | if (!first_ec) |
| 923 | return -ENODEV; |
| 924 | |
| 925 | err = acpi_ec_read(first_ec, addr, &temp_data); |
| 926 | |
| 927 | if (!err) { |
| 928 | *val = temp_data; |
| 929 | return 0; |
| 930 | } |
| 931 | return err; |
| 932 | } |
| 933 | EXPORT_SYMBOL(ec_read); |
| 934 | |
| 935 | int ec_write(u8 addr, u8 val) |
| 936 | { |
| 937 | int err; |
| 938 | |
| 939 | if (!first_ec) |
| 940 | return -ENODEV; |
| 941 | |
| 942 | err = acpi_ec_write(first_ec, addr, val); |
| 943 | |
| 944 | return err; |
| 945 | } |
| 946 | EXPORT_SYMBOL(ec_write); |
| 947 | |
| 948 | int ec_transaction(u8 command, |
| 949 | const u8 *wdata, unsigned wdata_len, |
| 950 | u8 *rdata, unsigned rdata_len) |
| 951 | { |
| 952 | struct transaction t = {.command = command, |
| 953 | .wdata = wdata, .rdata = rdata, |
| 954 | .wlen = wdata_len, .rlen = rdata_len}; |
| 955 | |
| 956 | if (!first_ec) |
| 957 | return -ENODEV; |
| 958 | |
| 959 | return acpi_ec_transaction(first_ec, &t); |
| 960 | } |
| 961 | EXPORT_SYMBOL(ec_transaction); |
| 962 | |
| 963 | /* Get the handle to the EC device */ |
| 964 | acpi_handle ec_get_handle(void) |
| 965 | { |
| 966 | if (!first_ec) |
| 967 | return NULL; |
| 968 | return first_ec->handle; |
| 969 | } |
| 970 | EXPORT_SYMBOL(ec_get_handle); |
| 971 | |
| 972 | static void acpi_ec_start(struct acpi_ec *ec, bool resuming) |
| 973 | { |
| 974 | unsigned long flags; |
| 975 | |
| 976 | spin_lock_irqsave(&ec->lock, flags); |
| 977 | if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) { |
| 978 | ec_dbg_drv("Starting EC"); |
| 979 | /* Enable GPE for event processing (SCI_EVT=1) */ |
| 980 | if (!resuming) { |
| 981 | acpi_ec_submit_request(ec); |
| 982 | ec_dbg_ref(ec, "Increase driver"); |
| 983 | } |
| 984 | ec_log_drv("EC started"); |
| 985 | } |
| 986 | spin_unlock_irqrestore(&ec->lock, flags); |
| 987 | } |
| 988 | |
| 989 | static bool acpi_ec_stopped(struct acpi_ec *ec) |
| 990 | { |
| 991 | unsigned long flags; |
| 992 | bool flushed; |
| 993 | |
| 994 | spin_lock_irqsave(&ec->lock, flags); |
| 995 | flushed = acpi_ec_flushed(ec); |
| 996 | spin_unlock_irqrestore(&ec->lock, flags); |
| 997 | return flushed; |
| 998 | } |
| 999 | |
| 1000 | static void acpi_ec_stop(struct acpi_ec *ec, bool suspending) |
| 1001 | { |
| 1002 | unsigned long flags; |
| 1003 | |
| 1004 | spin_lock_irqsave(&ec->lock, flags); |
| 1005 | if (acpi_ec_started(ec)) { |
| 1006 | ec_dbg_drv("Stopping EC"); |
| 1007 | set_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 1008 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1009 | wait_event(ec->wait, acpi_ec_stopped(ec)); |
| 1010 | spin_lock_irqsave(&ec->lock, flags); |
| 1011 | /* Disable GPE for event processing (SCI_EVT=1) */ |
| 1012 | if (!suspending) { |
| 1013 | acpi_ec_complete_request(ec); |
| 1014 | ec_dbg_ref(ec, "Decrease driver"); |
| 1015 | } else if (!ec_freeze_events) |
| 1016 | __acpi_ec_disable_event(ec); |
| 1017 | clear_bit(EC_FLAGS_STARTED, &ec->flags); |
| 1018 | clear_bit(EC_FLAGS_STOPPED, &ec->flags); |
| 1019 | ec_log_drv("EC stopped"); |
| 1020 | } |
| 1021 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1022 | } |
| 1023 | |
| 1024 | static void acpi_ec_enter_noirq(struct acpi_ec *ec) |
| 1025 | { |
| 1026 | unsigned long flags; |
| 1027 | |
| 1028 | spin_lock_irqsave(&ec->lock, flags); |
| 1029 | ec->busy_polling = true; |
| 1030 | ec->polling_guard = 0; |
| 1031 | ec_log_drv("interrupt blocked"); |
| 1032 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1033 | } |
| 1034 | |
| 1035 | static void acpi_ec_leave_noirq(struct acpi_ec *ec) |
| 1036 | { |
| 1037 | unsigned long flags; |
| 1038 | |
| 1039 | spin_lock_irqsave(&ec->lock, flags); |
| 1040 | ec->busy_polling = ec_busy_polling; |
| 1041 | ec->polling_guard = ec_polling_guard; |
| 1042 | ec_log_drv("interrupt unblocked"); |
| 1043 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1044 | } |
| 1045 | |
| 1046 | void acpi_ec_block_transactions(void) |
| 1047 | { |
| 1048 | struct acpi_ec *ec = first_ec; |
| 1049 | |
| 1050 | if (!ec) |
| 1051 | return; |
| 1052 | |
| 1053 | mutex_lock(&ec->mutex); |
| 1054 | /* Prevent transactions from being carried out */ |
| 1055 | acpi_ec_stop(ec, true); |
| 1056 | mutex_unlock(&ec->mutex); |
| 1057 | } |
| 1058 | |
| 1059 | void acpi_ec_unblock_transactions(void) |
| 1060 | { |
| 1061 | /* |
| 1062 | * Allow transactions to happen again (this function is called from |
| 1063 | * atomic context during wakeup, so we don't need to acquire the mutex). |
| 1064 | */ |
| 1065 | if (first_ec) |
| 1066 | acpi_ec_start(first_ec, true); |
| 1067 | } |
| 1068 | |
| 1069 | /* -------------------------------------------------------------------------- |
| 1070 | Event Management |
| 1071 | -------------------------------------------------------------------------- */ |
| 1072 | static struct acpi_ec_query_handler * |
| 1073 | acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value) |
| 1074 | { |
| 1075 | struct acpi_ec_query_handler *handler; |
| 1076 | |
| 1077 | mutex_lock(&ec->mutex); |
| 1078 | list_for_each_entry(handler, &ec->list, node) { |
| 1079 | if (value == handler->query_bit) { |
| 1080 | kref_get(&handler->kref); |
| 1081 | mutex_unlock(&ec->mutex); |
| 1082 | return handler; |
| 1083 | } |
| 1084 | } |
| 1085 | mutex_unlock(&ec->mutex); |
| 1086 | return NULL; |
| 1087 | } |
| 1088 | |
| 1089 | static void acpi_ec_query_handler_release(struct kref *kref) |
| 1090 | { |
| 1091 | struct acpi_ec_query_handler *handler = |
| 1092 | container_of(kref, struct acpi_ec_query_handler, kref); |
| 1093 | |
| 1094 | kfree(handler); |
| 1095 | } |
| 1096 | |
| 1097 | static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler) |
| 1098 | { |
| 1099 | kref_put(&handler->kref, acpi_ec_query_handler_release); |
| 1100 | } |
| 1101 | |
| 1102 | int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit, |
| 1103 | acpi_handle handle, acpi_ec_query_func func, |
| 1104 | void *data) |
| 1105 | { |
| 1106 | struct acpi_ec_query_handler *handler = |
| 1107 | kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL); |
| 1108 | |
| 1109 | if (!handler) |
| 1110 | return -ENOMEM; |
| 1111 | |
| 1112 | handler->query_bit = query_bit; |
| 1113 | handler->handle = handle; |
| 1114 | handler->func = func; |
| 1115 | handler->data = data; |
| 1116 | mutex_lock(&ec->mutex); |
| 1117 | kref_init(&handler->kref); |
| 1118 | list_add(&handler->node, &ec->list); |
| 1119 | mutex_unlock(&ec->mutex); |
| 1120 | return 0; |
| 1121 | } |
| 1122 | EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler); |
| 1123 | |
| 1124 | static void acpi_ec_remove_query_handlers(struct acpi_ec *ec, |
| 1125 | bool remove_all, u8 query_bit) |
| 1126 | { |
| 1127 | struct acpi_ec_query_handler *handler, *tmp; |
| 1128 | LIST_HEAD(free_list); |
| 1129 | |
| 1130 | mutex_lock(&ec->mutex); |
| 1131 | list_for_each_entry_safe(handler, tmp, &ec->list, node) { |
| 1132 | if (remove_all || query_bit == handler->query_bit) { |
| 1133 | list_del_init(&handler->node); |
| 1134 | list_add(&handler->node, &free_list); |
| 1135 | } |
| 1136 | } |
| 1137 | mutex_unlock(&ec->mutex); |
| 1138 | list_for_each_entry_safe(handler, tmp, &free_list, node) |
| 1139 | acpi_ec_put_query_handler(handler); |
| 1140 | } |
| 1141 | |
| 1142 | void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit) |
| 1143 | { |
| 1144 | acpi_ec_remove_query_handlers(ec, false, query_bit); |
| 1145 | flush_workqueue(ec_query_wq); |
| 1146 | } |
| 1147 | EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler); |
| 1148 | |
| 1149 | static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval) |
| 1150 | { |
| 1151 | struct acpi_ec_query *q; |
| 1152 | struct transaction *t; |
| 1153 | |
| 1154 | q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL); |
| 1155 | if (!q) |
| 1156 | return NULL; |
| 1157 | |
| 1158 | INIT_WORK(&q->work, acpi_ec_event_processor); |
| 1159 | t = &q->transaction; |
| 1160 | t->command = ACPI_EC_COMMAND_QUERY; |
| 1161 | t->rdata = pval; |
| 1162 | t->rlen = 1; |
| 1163 | q->ec = ec; |
| 1164 | return q; |
| 1165 | } |
| 1166 | |
| 1167 | static void acpi_ec_delete_query(struct acpi_ec_query *q) |
| 1168 | { |
| 1169 | if (q) { |
| 1170 | if (q->handler) |
| 1171 | acpi_ec_put_query_handler(q->handler); |
| 1172 | kfree(q); |
| 1173 | } |
| 1174 | } |
| 1175 | |
| 1176 | static void acpi_ec_event_processor(struct work_struct *work) |
| 1177 | { |
| 1178 | struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work); |
| 1179 | struct acpi_ec_query_handler *handler = q->handler; |
| 1180 | struct acpi_ec *ec = q->ec; |
| 1181 | |
| 1182 | ec_dbg_evt("Query(0x%02x) started", handler->query_bit); |
| 1183 | |
| 1184 | if (handler->func) |
| 1185 | handler->func(handler->data); |
| 1186 | else if (handler->handle) |
| 1187 | acpi_evaluate_object(handler->handle, NULL, NULL, NULL); |
| 1188 | |
| 1189 | ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit); |
| 1190 | |
| 1191 | spin_lock_irq(&ec->lock); |
| 1192 | ec->queries_in_progress--; |
| 1193 | spin_unlock_irq(&ec->lock); |
| 1194 | |
| 1195 | acpi_ec_delete_query(q); |
| 1196 | } |
| 1197 | |
| 1198 | static int acpi_ec_query(struct acpi_ec *ec, u8 *data) |
| 1199 | { |
| 1200 | u8 value = 0; |
| 1201 | int result; |
| 1202 | struct acpi_ec_query *q; |
| 1203 | |
| 1204 | q = acpi_ec_create_query(ec, &value); |
| 1205 | if (!q) |
| 1206 | return -ENOMEM; |
| 1207 | |
| 1208 | /* |
| 1209 | * Query the EC to find out which _Qxx method we need to evaluate. |
| 1210 | * Note that successful completion of the query causes the ACPI_EC_SCI |
| 1211 | * bit to be cleared (and thus clearing the interrupt source). |
| 1212 | */ |
| 1213 | result = acpi_ec_transaction(ec, &q->transaction); |
| 1214 | if (!value) |
| 1215 | result = -ENODATA; |
| 1216 | if (result) |
| 1217 | goto err_exit; |
| 1218 | |
| 1219 | q->handler = acpi_ec_get_query_handler_by_value(ec, value); |
| 1220 | if (!q->handler) { |
| 1221 | result = -ENODATA; |
| 1222 | goto err_exit; |
| 1223 | } |
| 1224 | |
| 1225 | /* |
| 1226 | * It is reported that _Qxx are evaluated in a parallel way on Windows: |
| 1227 | * https://bugzilla.kernel.org/show_bug.cgi?id=94411 |
| 1228 | * |
| 1229 | * Put this log entry before queue_work() to make it appear in the log |
| 1230 | * before any other messages emitted during workqueue handling. |
| 1231 | */ |
| 1232 | ec_dbg_evt("Query(0x%02x) scheduled", value); |
| 1233 | |
| 1234 | spin_lock_irq(&ec->lock); |
| 1235 | |
| 1236 | ec->queries_in_progress++; |
| 1237 | queue_work(ec_query_wq, &q->work); |
| 1238 | |
| 1239 | spin_unlock_irq(&ec->lock); |
| 1240 | |
| 1241 | err_exit: |
| 1242 | if (result) |
| 1243 | acpi_ec_delete_query(q); |
| 1244 | if (data) |
| 1245 | *data = value; |
| 1246 | return result; |
| 1247 | } |
| 1248 | |
| 1249 | static void acpi_ec_check_event(struct acpi_ec *ec) |
| 1250 | { |
| 1251 | unsigned long flags; |
| 1252 | |
| 1253 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) { |
| 1254 | if (ec_guard(ec)) { |
| 1255 | spin_lock_irqsave(&ec->lock, flags); |
| 1256 | /* |
| 1257 | * Take care of the SCI_EVT unless no one else is |
| 1258 | * taking care of it. |
| 1259 | */ |
| 1260 | if (!ec->curr) |
| 1261 | advance_transaction(ec); |
| 1262 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1263 | } |
| 1264 | } |
| 1265 | } |
| 1266 | |
| 1267 | static void acpi_ec_event_handler(struct work_struct *work) |
| 1268 | { |
| 1269 | unsigned long flags; |
| 1270 | struct acpi_ec *ec = container_of(work, struct acpi_ec, work); |
| 1271 | |
| 1272 | ec_dbg_evt("Event started"); |
| 1273 | |
| 1274 | spin_lock_irqsave(&ec->lock, flags); |
| 1275 | while (ec->nr_pending_queries) { |
| 1276 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1277 | (void)acpi_ec_query(ec, NULL); |
| 1278 | spin_lock_irqsave(&ec->lock, flags); |
| 1279 | ec->nr_pending_queries--; |
| 1280 | /* |
| 1281 | * Before exit, make sure that this work item can be |
| 1282 | * scheduled again. There might be QR_EC failures, leaving |
| 1283 | * EC_FLAGS_QUERY_PENDING uncleared and preventing this work |
| 1284 | * item from being scheduled again. |
| 1285 | */ |
| 1286 | if (!ec->nr_pending_queries) { |
| 1287 | if (ec_event_clearing == ACPI_EC_EVT_TIMING_STATUS || |
| 1288 | ec_event_clearing == ACPI_EC_EVT_TIMING_QUERY) |
| 1289 | acpi_ec_complete_query(ec); |
| 1290 | } |
| 1291 | } |
| 1292 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1293 | |
| 1294 | ec_dbg_evt("Event stopped"); |
| 1295 | |
| 1296 | acpi_ec_check_event(ec); |
| 1297 | |
| 1298 | spin_lock_irqsave(&ec->lock, flags); |
| 1299 | ec->events_in_progress--; |
| 1300 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1301 | } |
| 1302 | |
| 1303 | static u32 acpi_ec_gpe_handler(acpi_handle gpe_device, |
| 1304 | u32 gpe_number, void *data) |
| 1305 | { |
| 1306 | unsigned long flags; |
| 1307 | struct acpi_ec *ec = data; |
| 1308 | |
| 1309 | spin_lock_irqsave(&ec->lock, flags); |
| 1310 | advance_transaction(ec); |
| 1311 | spin_unlock_irqrestore(&ec->lock, flags); |
| 1312 | return ACPI_INTERRUPT_HANDLED; |
| 1313 | } |
| 1314 | |
| 1315 | /* -------------------------------------------------------------------------- |
| 1316 | * Address Space Management |
| 1317 | * -------------------------------------------------------------------------- */ |
| 1318 | |
| 1319 | static acpi_status |
| 1320 | acpi_ec_space_handler(u32 function, acpi_physical_address address, |
| 1321 | u32 bits, u64 *value64, |
| 1322 | void *handler_context, void *region_context) |
| 1323 | { |
| 1324 | struct acpi_ec *ec = handler_context; |
| 1325 | int result = 0, i, bytes = bits / 8; |
| 1326 | u8 *value = (u8 *)value64; |
| 1327 | u32 glk; |
| 1328 | |
| 1329 | if ((address > 0xFF) || !value || !handler_context) |
| 1330 | return AE_BAD_PARAMETER; |
| 1331 | |
| 1332 | if (function != ACPI_READ && function != ACPI_WRITE) |
| 1333 | return AE_BAD_PARAMETER; |
| 1334 | |
| 1335 | mutex_lock(&ec->mutex); |
| 1336 | |
| 1337 | if (ec->global_lock) { |
| 1338 | acpi_status status; |
| 1339 | |
| 1340 | status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk); |
| 1341 | if (ACPI_FAILURE(status)) { |
| 1342 | result = -ENODEV; |
| 1343 | goto unlock; |
| 1344 | } |
| 1345 | } |
| 1346 | |
| 1347 | if (ec->busy_polling || bits > 8) |
| 1348 | acpi_ec_burst_enable(ec); |
| 1349 | |
| 1350 | for (i = 0; i < bytes; ++i, ++address, ++value) { |
| 1351 | result = (function == ACPI_READ) ? |
| 1352 | acpi_ec_read_unlocked(ec, address, value) : |
| 1353 | acpi_ec_write_unlocked(ec, address, *value); |
| 1354 | if (result < 0) |
| 1355 | break; |
| 1356 | } |
| 1357 | |
| 1358 | if (ec->busy_polling || bits > 8) |
| 1359 | acpi_ec_burst_disable(ec); |
| 1360 | |
| 1361 | if (ec->global_lock) |
| 1362 | acpi_release_global_lock(glk); |
| 1363 | |
| 1364 | unlock: |
| 1365 | mutex_unlock(&ec->mutex); |
| 1366 | |
| 1367 | switch (result) { |
| 1368 | case -EINVAL: |
| 1369 | return AE_BAD_PARAMETER; |
| 1370 | case -ENODEV: |
| 1371 | return AE_NOT_FOUND; |
| 1372 | case -ETIME: |
| 1373 | return AE_TIME; |
| 1374 | case 0: |
| 1375 | return AE_OK; |
| 1376 | default: |
| 1377 | return AE_ERROR; |
| 1378 | } |
| 1379 | } |
| 1380 | |
| 1381 | /* -------------------------------------------------------------------------- |
| 1382 | * Driver Interface |
| 1383 | * -------------------------------------------------------------------------- */ |
| 1384 | |
| 1385 | static acpi_status |
| 1386 | ec_parse_io_ports(struct acpi_resource *resource, void *context); |
| 1387 | |
| 1388 | static void acpi_ec_free(struct acpi_ec *ec) |
| 1389 | { |
| 1390 | if (first_ec == ec) |
| 1391 | first_ec = NULL; |
| 1392 | if (boot_ec == ec) |
| 1393 | boot_ec = NULL; |
| 1394 | kfree(ec); |
| 1395 | } |
| 1396 | |
| 1397 | static struct acpi_ec *acpi_ec_alloc(void) |
| 1398 | { |
| 1399 | struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL); |
| 1400 | |
| 1401 | if (!ec) |
| 1402 | return NULL; |
| 1403 | mutex_init(&ec->mutex); |
| 1404 | init_waitqueue_head(&ec->wait); |
| 1405 | INIT_LIST_HEAD(&ec->list); |
| 1406 | spin_lock_init(&ec->lock); |
| 1407 | INIT_WORK(&ec->work, acpi_ec_event_handler); |
| 1408 | ec->timestamp = jiffies; |
| 1409 | ec->busy_polling = true; |
| 1410 | ec->polling_guard = 0; |
| 1411 | return ec; |
| 1412 | } |
| 1413 | |
| 1414 | static acpi_status |
| 1415 | acpi_ec_register_query_methods(acpi_handle handle, u32 level, |
| 1416 | void *context, void **return_value) |
| 1417 | { |
| 1418 | char node_name[5]; |
| 1419 | struct acpi_buffer buffer = { sizeof(node_name), node_name }; |
| 1420 | struct acpi_ec *ec = context; |
| 1421 | int value = 0; |
| 1422 | acpi_status status; |
| 1423 | |
| 1424 | status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); |
| 1425 | |
| 1426 | if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1) |
| 1427 | acpi_ec_add_query_handler(ec, value, handle, NULL, NULL); |
| 1428 | return AE_OK; |
| 1429 | } |
| 1430 | |
| 1431 | static acpi_status |
| 1432 | ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval) |
| 1433 | { |
| 1434 | acpi_status status; |
| 1435 | unsigned long long tmp = 0; |
| 1436 | struct acpi_ec *ec = context; |
| 1437 | |
| 1438 | /* clear addr values, ec_parse_io_ports depend on it */ |
| 1439 | ec->command_addr = ec->data_addr = 0; |
| 1440 | |
| 1441 | status = acpi_walk_resources(handle, METHOD_NAME__CRS, |
| 1442 | ec_parse_io_ports, ec); |
| 1443 | if (ACPI_FAILURE(status)) |
| 1444 | return status; |
| 1445 | if (ec->data_addr == 0 || ec->command_addr == 0) |
| 1446 | return AE_OK; |
| 1447 | |
| 1448 | if (boot_ec && boot_ec_is_ecdt && EC_FLAGS_IGNORE_DSDT_GPE) { |
| 1449 | /* |
| 1450 | * Always inherit the GPE number setting from the ECDT |
| 1451 | * EC. |
| 1452 | */ |
| 1453 | ec->gpe = boot_ec->gpe; |
| 1454 | } else { |
| 1455 | /* Get GPE bit assignment (EC events). */ |
| 1456 | /* TODO: Add support for _GPE returning a package */ |
| 1457 | status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); |
| 1458 | if (ACPI_FAILURE(status)) |
| 1459 | return status; |
| 1460 | ec->gpe = tmp; |
| 1461 | } |
| 1462 | /* Use the global lock for all EC transactions? */ |
| 1463 | tmp = 0; |
| 1464 | acpi_evaluate_integer(handle, "_GLK", NULL, &tmp); |
| 1465 | ec->global_lock = tmp; |
| 1466 | ec->handle = handle; |
| 1467 | return AE_CTRL_TERMINATE; |
| 1468 | } |
| 1469 | |
| 1470 | /* |
| 1471 | * Note: This function returns an error code only when the address space |
| 1472 | * handler is not installed, which means "not able to handle |
| 1473 | * transactions". |
| 1474 | */ |
| 1475 | static int ec_install_handlers(struct acpi_ec *ec, bool handle_events) |
| 1476 | { |
| 1477 | acpi_status status; |
| 1478 | |
| 1479 | acpi_ec_start(ec, false); |
| 1480 | |
| 1481 | if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { |
| 1482 | acpi_ec_enter_noirq(ec); |
| 1483 | status = acpi_install_address_space_handler(ec->handle, |
| 1484 | ACPI_ADR_SPACE_EC, |
| 1485 | &acpi_ec_space_handler, |
| 1486 | NULL, ec); |
| 1487 | if (ACPI_FAILURE(status)) { |
| 1488 | if (status == AE_NOT_FOUND) { |
| 1489 | /* |
| 1490 | * Maybe OS fails in evaluating the _REG |
| 1491 | * object. The AE_NOT_FOUND error will be |
| 1492 | * ignored and OS * continue to initialize |
| 1493 | * EC. |
| 1494 | */ |
| 1495 | pr_err("Fail in evaluating the _REG object" |
| 1496 | " of EC device. Broken bios is suspected.\n"); |
| 1497 | } else { |
| 1498 | acpi_ec_stop(ec, false); |
| 1499 | return -ENODEV; |
| 1500 | } |
| 1501 | } |
| 1502 | set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); |
| 1503 | } |
| 1504 | |
| 1505 | if (!handle_events) |
| 1506 | return 0; |
| 1507 | |
| 1508 | if (!test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) { |
| 1509 | /* Find and register all query methods */ |
| 1510 | acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1, |
| 1511 | acpi_ec_register_query_methods, |
| 1512 | NULL, ec, NULL); |
| 1513 | set_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags); |
| 1514 | } |
| 1515 | if (!test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) { |
| 1516 | status = acpi_install_gpe_raw_handler(NULL, ec->gpe, |
| 1517 | ACPI_GPE_EDGE_TRIGGERED, |
| 1518 | &acpi_ec_gpe_handler, ec); |
| 1519 | /* This is not fatal as we can poll EC events */ |
| 1520 | if (ACPI_SUCCESS(status)) { |
| 1521 | set_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags); |
| 1522 | acpi_ec_leave_noirq(ec); |
| 1523 | if (test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 1524 | ec->reference_count >= 1) |
| 1525 | acpi_ec_enable_gpe(ec, true); |
| 1526 | } |
| 1527 | } |
| 1528 | /* EC is fully operational, allow queries */ |
| 1529 | acpi_ec_enable_event(ec); |
| 1530 | |
| 1531 | return 0; |
| 1532 | } |
| 1533 | |
| 1534 | static void ec_remove_handlers(struct acpi_ec *ec) |
| 1535 | { |
| 1536 | if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) { |
| 1537 | if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle, |
| 1538 | ACPI_ADR_SPACE_EC, &acpi_ec_space_handler))) |
| 1539 | pr_err("failed to remove space handler\n"); |
| 1540 | clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags); |
| 1541 | } |
| 1542 | |
| 1543 | /* |
| 1544 | * Stops handling the EC transactions after removing the operation |
| 1545 | * region handler. This is required because _REG(DISCONNECT) |
| 1546 | * invoked during the removal can result in new EC transactions. |
| 1547 | * |
| 1548 | * Flushes the EC requests and thus disables the GPE before |
| 1549 | * removing the GPE handler. This is required by the current ACPICA |
| 1550 | * GPE core. ACPICA GPE core will automatically disable a GPE when |
| 1551 | * it is indicated but there is no way to handle it. So the drivers |
| 1552 | * must disable the GPEs prior to removing the GPE handlers. |
| 1553 | */ |
| 1554 | acpi_ec_stop(ec, false); |
| 1555 | |
| 1556 | if (test_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags)) { |
| 1557 | if (ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe, |
| 1558 | &acpi_ec_gpe_handler))) |
| 1559 | pr_err("failed to remove gpe handler\n"); |
| 1560 | clear_bit(EC_FLAGS_GPE_HANDLER_INSTALLED, &ec->flags); |
| 1561 | } |
| 1562 | if (test_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags)) { |
| 1563 | acpi_ec_remove_query_handlers(ec, true, 0); |
| 1564 | clear_bit(EC_FLAGS_EVT_HANDLER_INSTALLED, &ec->flags); |
| 1565 | } |
| 1566 | } |
| 1567 | |
| 1568 | static int acpi_ec_setup(struct acpi_ec *ec, bool handle_events) |
| 1569 | { |
| 1570 | int ret; |
| 1571 | |
| 1572 | ret = ec_install_handlers(ec, handle_events); |
| 1573 | if (ret) |
| 1574 | return ret; |
| 1575 | |
| 1576 | /* First EC capable of handling transactions */ |
| 1577 | if (!first_ec) { |
| 1578 | first_ec = ec; |
| 1579 | acpi_handle_info(first_ec->handle, "Used as first EC\n"); |
| 1580 | } |
| 1581 | |
| 1582 | acpi_handle_info(ec->handle, |
| 1583 | "GPE=0x%x, EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", |
| 1584 | ec->gpe, ec->command_addr, ec->data_addr); |
| 1585 | return ret; |
| 1586 | } |
| 1587 | |
| 1588 | static bool acpi_ec_ecdt_get_handle(acpi_handle *phandle) |
| 1589 | { |
| 1590 | struct acpi_table_ecdt *ecdt_ptr; |
| 1591 | acpi_status status; |
| 1592 | acpi_handle handle; |
| 1593 | |
| 1594 | status = acpi_get_table(ACPI_SIG_ECDT, 1, |
| 1595 | (struct acpi_table_header **)&ecdt_ptr); |
| 1596 | if (ACPI_FAILURE(status)) |
| 1597 | return false; |
| 1598 | |
| 1599 | status = acpi_get_handle(NULL, ecdt_ptr->id, &handle); |
| 1600 | if (ACPI_FAILURE(status)) |
| 1601 | return false; |
| 1602 | |
| 1603 | *phandle = handle; |
| 1604 | return true; |
| 1605 | } |
| 1606 | |
| 1607 | static int acpi_ec_add(struct acpi_device *device) |
| 1608 | { |
| 1609 | struct acpi_ec *ec = NULL; |
| 1610 | bool dep_update = true; |
| 1611 | acpi_status status; |
| 1612 | int ret; |
| 1613 | |
| 1614 | strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME); |
| 1615 | strcpy(acpi_device_class(device), ACPI_EC_CLASS); |
| 1616 | |
| 1617 | if (!strcmp(acpi_device_hid(device), ACPI_ECDT_HID)) { |
| 1618 | boot_ec_is_ecdt = true; |
| 1619 | ec = boot_ec; |
| 1620 | dep_update = false; |
| 1621 | } else { |
| 1622 | ec = acpi_ec_alloc(); |
| 1623 | if (!ec) |
| 1624 | return -ENOMEM; |
| 1625 | |
| 1626 | status = ec_parse_device(device->handle, 0, ec, NULL); |
| 1627 | if (status != AE_CTRL_TERMINATE) { |
| 1628 | ret = -EINVAL; |
| 1629 | goto err_alloc; |
| 1630 | } |
| 1631 | |
| 1632 | if (boot_ec && ec->command_addr == boot_ec->command_addr && |
| 1633 | ec->data_addr == boot_ec->data_addr) { |
| 1634 | boot_ec_is_ecdt = false; |
| 1635 | /* |
| 1636 | * Trust PNP0C09 namespace location rather than |
| 1637 | * ECDT ID. But trust ECDT GPE rather than _GPE |
| 1638 | * because of ASUS quirks, so do not change |
| 1639 | * boot_ec->gpe to ec->gpe. |
| 1640 | */ |
| 1641 | boot_ec->handle = ec->handle; |
| 1642 | acpi_handle_debug(ec->handle, "duplicated.\n"); |
| 1643 | acpi_ec_free(ec); |
| 1644 | ec = boot_ec; |
| 1645 | } |
| 1646 | } |
| 1647 | |
| 1648 | ret = acpi_ec_setup(ec, true); |
| 1649 | if (ret) |
| 1650 | goto err_query; |
| 1651 | |
| 1652 | if (ec == boot_ec) |
| 1653 | acpi_handle_info(boot_ec->handle, |
| 1654 | "Boot %s EC used to handle transactions and events\n", |
| 1655 | boot_ec_is_ecdt ? "ECDT" : "DSDT"); |
| 1656 | |
| 1657 | device->driver_data = ec; |
| 1658 | |
| 1659 | ret = !!request_region(ec->data_addr, 1, "EC data"); |
| 1660 | WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr); |
| 1661 | ret = !!request_region(ec->command_addr, 1, "EC cmd"); |
| 1662 | WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr); |
| 1663 | |
| 1664 | if (dep_update) { |
| 1665 | /* Reprobe devices depending on the EC */ |
| 1666 | acpi_walk_dep_device_list(ec->handle); |
| 1667 | } |
| 1668 | acpi_handle_debug(ec->handle, "enumerated.\n"); |
| 1669 | return 0; |
| 1670 | |
| 1671 | err_query: |
| 1672 | if (ec != boot_ec) |
| 1673 | acpi_ec_remove_query_handlers(ec, true, 0); |
| 1674 | err_alloc: |
| 1675 | if (ec != boot_ec) |
| 1676 | acpi_ec_free(ec); |
| 1677 | return ret; |
| 1678 | } |
| 1679 | |
| 1680 | static int acpi_ec_remove(struct acpi_device *device) |
| 1681 | { |
| 1682 | struct acpi_ec *ec; |
| 1683 | |
| 1684 | if (!device) |
| 1685 | return -EINVAL; |
| 1686 | |
| 1687 | ec = acpi_driver_data(device); |
| 1688 | release_region(ec->data_addr, 1); |
| 1689 | release_region(ec->command_addr, 1); |
| 1690 | device->driver_data = NULL; |
| 1691 | if (ec != boot_ec) { |
| 1692 | ec_remove_handlers(ec); |
| 1693 | acpi_ec_free(ec); |
| 1694 | } |
| 1695 | return 0; |
| 1696 | } |
| 1697 | |
| 1698 | static acpi_status |
| 1699 | ec_parse_io_ports(struct acpi_resource *resource, void *context) |
| 1700 | { |
| 1701 | struct acpi_ec *ec = context; |
| 1702 | |
| 1703 | if (resource->type != ACPI_RESOURCE_TYPE_IO) |
| 1704 | return AE_OK; |
| 1705 | |
| 1706 | /* |
| 1707 | * The first address region returned is the data port, and |
| 1708 | * the second address region returned is the status/command |
| 1709 | * port. |
| 1710 | */ |
| 1711 | if (ec->data_addr == 0) |
| 1712 | ec->data_addr = resource->data.io.minimum; |
| 1713 | else if (ec->command_addr == 0) |
| 1714 | ec->command_addr = resource->data.io.minimum; |
| 1715 | else |
| 1716 | return AE_CTRL_TERMINATE; |
| 1717 | |
| 1718 | return AE_OK; |
| 1719 | } |
| 1720 | |
| 1721 | static const struct acpi_device_id ec_device_ids[] = { |
| 1722 | {"PNP0C09", 0}, |
| 1723 | {ACPI_ECDT_HID, 0}, |
| 1724 | {"", 0}, |
| 1725 | }; |
| 1726 | |
| 1727 | /* |
| 1728 | * This function is not Windows-compatible as Windows never enumerates the |
| 1729 | * namespace EC before the main ACPI device enumeration process. It is |
| 1730 | * retained for historical reason and will be deprecated in the future. |
| 1731 | */ |
| 1732 | void __init acpi_ec_dsdt_probe(void) |
| 1733 | { |
| 1734 | struct acpi_ec *ec; |
| 1735 | acpi_status status; |
| 1736 | int ret; |
| 1737 | |
| 1738 | /* |
| 1739 | * If a platform has ECDT, there is no need to proceed as the |
| 1740 | * following probe is not a part of the ACPI device enumeration, |
| 1741 | * executing _STA is not safe, and thus this probe may risk of |
| 1742 | * picking up an invalid EC device. |
| 1743 | */ |
| 1744 | if (boot_ec) |
| 1745 | return; |
| 1746 | |
| 1747 | ec = acpi_ec_alloc(); |
| 1748 | if (!ec) |
| 1749 | return; |
| 1750 | |
| 1751 | /* |
| 1752 | * At this point, the namespace is initialized, so start to find |
| 1753 | * the namespace objects. |
| 1754 | */ |
| 1755 | status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL); |
| 1756 | if (ACPI_FAILURE(status) || !ec->handle) { |
| 1757 | acpi_ec_free(ec); |
| 1758 | return; |
| 1759 | } |
| 1760 | |
| 1761 | /* |
| 1762 | * When the DSDT EC is available, always re-configure boot EC to |
| 1763 | * have _REG evaluated. _REG can only be evaluated after the |
| 1764 | * namespace initialization. |
| 1765 | * At this point, the GPE is not fully initialized, so do not to |
| 1766 | * handle the events. |
| 1767 | */ |
| 1768 | ret = acpi_ec_setup(ec, false); |
| 1769 | if (ret) { |
| 1770 | acpi_ec_free(ec); |
| 1771 | return; |
| 1772 | } |
| 1773 | |
| 1774 | boot_ec = ec; |
| 1775 | |
| 1776 | acpi_handle_info(ec->handle, |
| 1777 | "Boot DSDT EC used to handle transactions\n"); |
| 1778 | } |
| 1779 | |
| 1780 | /* |
| 1781 | * If the DSDT EC is not functioning, we still need to prepare a fully |
| 1782 | * functioning ECDT EC first in order to handle the events. |
| 1783 | * https://bugzilla.kernel.org/show_bug.cgi?id=115021 |
| 1784 | */ |
| 1785 | static int __init acpi_ec_ecdt_start(void) |
| 1786 | { |
| 1787 | acpi_handle handle; |
| 1788 | |
| 1789 | if (!boot_ec) |
| 1790 | return -ENODEV; |
| 1791 | /* In case acpi_ec_ecdt_start() is called after acpi_ec_add() */ |
| 1792 | if (!boot_ec_is_ecdt) |
| 1793 | return -ENODEV; |
| 1794 | |
| 1795 | /* |
| 1796 | * At this point, the namespace and the GPE is initialized, so |
| 1797 | * start to find the namespace objects and handle the events. |
| 1798 | * |
| 1799 | * Note: ec->handle can be valid if this function is called after |
| 1800 | * acpi_ec_add(), hence the fast path. |
| 1801 | */ |
| 1802 | if (boot_ec->handle == ACPI_ROOT_OBJECT) { |
| 1803 | if (!acpi_ec_ecdt_get_handle(&handle)) |
| 1804 | return -ENODEV; |
| 1805 | boot_ec->handle = handle; |
| 1806 | } |
| 1807 | |
| 1808 | /* Register to ACPI bus with PM ops attached */ |
| 1809 | return acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC); |
| 1810 | } |
| 1811 | |
| 1812 | #if 0 |
| 1813 | /* |
| 1814 | * Some EC firmware variations refuses to respond QR_EC when SCI_EVT is not |
| 1815 | * set, for which case, we complete the QR_EC without issuing it to the |
| 1816 | * firmware. |
| 1817 | * https://bugzilla.kernel.org/show_bug.cgi?id=82611 |
| 1818 | * https://bugzilla.kernel.org/show_bug.cgi?id=97381 |
| 1819 | */ |
| 1820 | static int ec_flag_query_handshake(const struct dmi_system_id *id) |
| 1821 | { |
| 1822 | pr_debug("Detected the EC firmware requiring QR_EC issued when SCI_EVT set\n"); |
| 1823 | EC_FLAGS_QUERY_HANDSHAKE = 1; |
| 1824 | return 0; |
| 1825 | } |
| 1826 | #endif |
| 1827 | |
| 1828 | /* |
| 1829 | * On some hardware it is necessary to clear events accumulated by the EC during |
| 1830 | * sleep. These ECs stop reporting GPEs until they are manually polled, if too |
| 1831 | * many events are accumulated. (e.g. Samsung Series 5/9 notebooks) |
| 1832 | * |
| 1833 | * https://bugzilla.kernel.org/show_bug.cgi?id=44161 |
| 1834 | * |
| 1835 | * Ideally, the EC should also be instructed NOT to accumulate events during |
| 1836 | * sleep (which Windows seems to do somehow), but the interface to control this |
| 1837 | * behaviour is not known at this time. |
| 1838 | * |
| 1839 | * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx, |
| 1840 | * however it is very likely that other Samsung models are affected. |
| 1841 | * |
| 1842 | * On systems which don't accumulate _Q events during sleep, this extra check |
| 1843 | * should be harmless. |
| 1844 | */ |
| 1845 | static int ec_clear_on_resume(const struct dmi_system_id *id) |
| 1846 | { |
| 1847 | pr_debug("Detected system needing EC poll on resume.\n"); |
| 1848 | EC_FLAGS_CLEAR_ON_RESUME = 1; |
| 1849 | ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; |
| 1850 | return 0; |
| 1851 | } |
| 1852 | |
| 1853 | /* |
| 1854 | * Some ECDTs contain wrong register addresses. |
| 1855 | * MSI MS-171F |
| 1856 | * https://bugzilla.kernel.org/show_bug.cgi?id=12461 |
| 1857 | */ |
| 1858 | static int ec_correct_ecdt(const struct dmi_system_id *id) |
| 1859 | { |
| 1860 | pr_debug("Detected system needing ECDT address correction.\n"); |
| 1861 | EC_FLAGS_CORRECT_ECDT = 1; |
| 1862 | return 0; |
| 1863 | } |
| 1864 | |
| 1865 | /* |
| 1866 | * Some DSDTs contain wrong GPE setting. |
| 1867 | * Asus FX502VD/VE, GL702VMK, X550VXK, X580VD |
| 1868 | * https://bugzilla.kernel.org/show_bug.cgi?id=195651 |
| 1869 | */ |
| 1870 | static int ec_honor_ecdt_gpe(const struct dmi_system_id *id) |
| 1871 | { |
| 1872 | pr_debug("Detected system needing ignore DSDT GPE setting.\n"); |
| 1873 | EC_FLAGS_IGNORE_DSDT_GPE = 1; |
| 1874 | return 0; |
| 1875 | } |
| 1876 | |
| 1877 | static const struct dmi_system_id ec_dmi_table[] __initconst = { |
| 1878 | { |
| 1879 | ec_correct_ecdt, "MSI MS-171F", { |
| 1880 | DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"), |
| 1881 | DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),}, NULL}, |
| 1882 | { |
| 1883 | ec_honor_ecdt_gpe, "ASUS FX502VD", { |
| 1884 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1885 | DMI_MATCH(DMI_PRODUCT_NAME, "FX502VD"),}, NULL}, |
| 1886 | { |
| 1887 | ec_honor_ecdt_gpe, "ASUS FX502VE", { |
| 1888 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1889 | DMI_MATCH(DMI_PRODUCT_NAME, "FX502VE"),}, NULL}, |
| 1890 | { |
| 1891 | ec_honor_ecdt_gpe, "ASUS GL702VMK", { |
| 1892 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1893 | DMI_MATCH(DMI_PRODUCT_NAME, "GL702VMK"),}, NULL}, |
| 1894 | { |
| 1895 | ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BA", { |
| 1896 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1897 | DMI_MATCH(DMI_PRODUCT_NAME, "X505BA"),}, NULL}, |
| 1898 | { |
| 1899 | ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X505BP", { |
| 1900 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1901 | DMI_MATCH(DMI_PRODUCT_NAME, "X505BP"),}, NULL}, |
| 1902 | { |
| 1903 | ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BA", { |
| 1904 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1905 | DMI_MATCH(DMI_PRODUCT_NAME, "X542BA"),}, NULL}, |
| 1906 | { |
| 1907 | ec_honor_ecdt_gpe, "ASUSTeK COMPUTER INC. X542BP", { |
| 1908 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1909 | DMI_MATCH(DMI_PRODUCT_NAME, "X542BP"),}, NULL}, |
| 1910 | { |
| 1911 | ec_honor_ecdt_gpe, "ASUS X550VXK", { |
| 1912 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1913 | DMI_MATCH(DMI_PRODUCT_NAME, "X550VXK"),}, NULL}, |
| 1914 | { |
| 1915 | ec_honor_ecdt_gpe, "ASUS X580VD", { |
| 1916 | DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."), |
| 1917 | DMI_MATCH(DMI_PRODUCT_NAME, "X580VD"),}, NULL}, |
| 1918 | { |
| 1919 | ec_clear_on_resume, "Samsung hardware", { |
| 1920 | DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD.")}, NULL}, |
| 1921 | {}, |
| 1922 | }; |
| 1923 | |
| 1924 | void __init acpi_ec_ecdt_probe(void) |
| 1925 | { |
| 1926 | struct acpi_table_ecdt *ecdt_ptr; |
| 1927 | struct acpi_ec *ec; |
| 1928 | acpi_status status; |
| 1929 | int ret; |
| 1930 | |
| 1931 | /* Generate a boot ec context. */ |
| 1932 | dmi_check_system(ec_dmi_table); |
| 1933 | status = acpi_get_table(ACPI_SIG_ECDT, 1, |
| 1934 | (struct acpi_table_header **)&ecdt_ptr); |
| 1935 | if (ACPI_FAILURE(status)) |
| 1936 | return; |
| 1937 | |
| 1938 | if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) { |
| 1939 | /* |
| 1940 | * Asus X50GL: |
| 1941 | * https://bugzilla.kernel.org/show_bug.cgi?id=11880 |
| 1942 | */ |
| 1943 | return; |
| 1944 | } |
| 1945 | |
| 1946 | ec = acpi_ec_alloc(); |
| 1947 | if (!ec) |
| 1948 | return; |
| 1949 | |
| 1950 | if (EC_FLAGS_CORRECT_ECDT) { |
| 1951 | ec->command_addr = ecdt_ptr->data.address; |
| 1952 | ec->data_addr = ecdt_ptr->control.address; |
| 1953 | } else { |
| 1954 | ec->command_addr = ecdt_ptr->control.address; |
| 1955 | ec->data_addr = ecdt_ptr->data.address; |
| 1956 | } |
| 1957 | ec->gpe = ecdt_ptr->gpe; |
| 1958 | ec->handle = ACPI_ROOT_OBJECT; |
| 1959 | |
| 1960 | /* |
| 1961 | * At this point, the namespace is not initialized, so do not find |
| 1962 | * the namespace objects, or handle the events. |
| 1963 | */ |
| 1964 | ret = acpi_ec_setup(ec, false); |
| 1965 | if (ret) { |
| 1966 | acpi_ec_free(ec); |
| 1967 | return; |
| 1968 | } |
| 1969 | |
| 1970 | boot_ec = ec; |
| 1971 | boot_ec_is_ecdt = true; |
| 1972 | |
| 1973 | pr_info("Boot ECDT EC used to handle transactions\n"); |
| 1974 | } |
| 1975 | |
| 1976 | #ifdef CONFIG_PM_SLEEP |
| 1977 | static int acpi_ec_suspend(struct device *dev) |
| 1978 | { |
| 1979 | struct acpi_ec *ec = |
| 1980 | acpi_driver_data(to_acpi_device(dev)); |
| 1981 | |
| 1982 | if (!pm_suspend_no_platform() && ec_freeze_events) |
| 1983 | acpi_ec_disable_event(ec); |
| 1984 | return 0; |
| 1985 | } |
| 1986 | |
| 1987 | static int acpi_ec_suspend_noirq(struct device *dev) |
| 1988 | { |
| 1989 | struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); |
| 1990 | |
| 1991 | /* |
| 1992 | * The SCI handler doesn't run at this point, so the GPE can be |
| 1993 | * masked at the low level without side effects. |
| 1994 | */ |
| 1995 | if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 1996 | ec->reference_count >= 1) |
| 1997 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE); |
| 1998 | |
| 1999 | acpi_ec_enter_noirq(ec); |
| 2000 | |
| 2001 | return 0; |
| 2002 | } |
| 2003 | |
| 2004 | static int acpi_ec_resume_noirq(struct device *dev) |
| 2005 | { |
| 2006 | struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev)); |
| 2007 | |
| 2008 | acpi_ec_leave_noirq(ec); |
| 2009 | |
| 2010 | if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) && |
| 2011 | ec->reference_count >= 1) |
| 2012 | acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE); |
| 2013 | |
| 2014 | return 0; |
| 2015 | } |
| 2016 | |
| 2017 | static int acpi_ec_resume(struct device *dev) |
| 2018 | { |
| 2019 | struct acpi_ec *ec = |
| 2020 | acpi_driver_data(to_acpi_device(dev)); |
| 2021 | |
| 2022 | acpi_ec_enable_event(ec); |
| 2023 | return 0; |
| 2024 | } |
| 2025 | |
| 2026 | void acpi_ec_mark_gpe_for_wake(void) |
| 2027 | { |
| 2028 | if (first_ec && !ec_no_wakeup) |
| 2029 | acpi_mark_gpe_for_wake(NULL, first_ec->gpe); |
| 2030 | } |
| 2031 | EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake); |
| 2032 | |
| 2033 | void acpi_ec_set_gpe_wake_mask(u8 action) |
| 2034 | { |
| 2035 | if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup) |
| 2036 | acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action); |
| 2037 | } |
| 2038 | |
| 2039 | bool acpi_ec_dispatch_gpe(void) |
| 2040 | { |
| 2041 | bool work_in_progress; |
| 2042 | u32 ret; |
| 2043 | |
| 2044 | if (!first_ec) |
| 2045 | return acpi_any_gpe_status_set(U32_MAX); |
| 2046 | |
| 2047 | /* |
| 2048 | * Report wakeup if the status bit is set for any enabled GPE other |
| 2049 | * than the EC one. |
| 2050 | */ |
| 2051 | if (acpi_any_gpe_status_set(first_ec->gpe)) |
| 2052 | return true; |
| 2053 | |
| 2054 | /* |
| 2055 | * Dispatch the EC GPE in-band, but do not report wakeup in any case |
| 2056 | * to allow the caller to process events properly after that. |
| 2057 | */ |
| 2058 | ret = acpi_dispatch_gpe(NULL, first_ec->gpe); |
| 2059 | if (ret == ACPI_INTERRUPT_HANDLED) |
| 2060 | pm_pr_dbg("EC GPE dispatched\n"); |
| 2061 | |
| 2062 | /* Drain EC work. */ |
| 2063 | do { |
| 2064 | acpi_ec_flush_work(); |
| 2065 | |
| 2066 | pm_pr_dbg("ACPI EC work flushed\n"); |
| 2067 | |
| 2068 | spin_lock_irq(&first_ec->lock); |
| 2069 | |
| 2070 | work_in_progress = first_ec->events_in_progress + |
| 2071 | first_ec->queries_in_progress > 0; |
| 2072 | |
| 2073 | spin_unlock_irq(&first_ec->lock); |
| 2074 | } while (work_in_progress && !pm_wakeup_pending()); |
| 2075 | |
| 2076 | return false; |
| 2077 | } |
| 2078 | #endif /* CONFIG_PM_SLEEP */ |
| 2079 | |
| 2080 | static const struct dev_pm_ops acpi_ec_pm = { |
| 2081 | SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq) |
| 2082 | SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume) |
| 2083 | }; |
| 2084 | |
| 2085 | static int param_set_event_clearing(const char *val, |
| 2086 | const struct kernel_param *kp) |
| 2087 | { |
| 2088 | int result = 0; |
| 2089 | |
| 2090 | if (!strncmp(val, "status", sizeof("status") - 1)) { |
| 2091 | ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS; |
| 2092 | pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n"); |
| 2093 | } else if (!strncmp(val, "query", sizeof("query") - 1)) { |
| 2094 | ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY; |
| 2095 | pr_info("Assuming SCI_EVT clearing on QR_EC writes\n"); |
| 2096 | } else if (!strncmp(val, "event", sizeof("event") - 1)) { |
| 2097 | ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT; |
| 2098 | pr_info("Assuming SCI_EVT clearing on event reads\n"); |
| 2099 | } else |
| 2100 | result = -EINVAL; |
| 2101 | return result; |
| 2102 | } |
| 2103 | |
| 2104 | static int param_get_event_clearing(char *buffer, |
| 2105 | const struct kernel_param *kp) |
| 2106 | { |
| 2107 | switch (ec_event_clearing) { |
| 2108 | case ACPI_EC_EVT_TIMING_STATUS: |
| 2109 | return sprintf(buffer, "status"); |
| 2110 | case ACPI_EC_EVT_TIMING_QUERY: |
| 2111 | return sprintf(buffer, "query"); |
| 2112 | case ACPI_EC_EVT_TIMING_EVENT: |
| 2113 | return sprintf(buffer, "event"); |
| 2114 | default: |
| 2115 | return sprintf(buffer, "invalid"); |
| 2116 | } |
| 2117 | return 0; |
| 2118 | } |
| 2119 | |
| 2120 | module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing, |
| 2121 | NULL, 0644); |
| 2122 | MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing"); |
| 2123 | |
| 2124 | static struct acpi_driver acpi_ec_driver = { |
| 2125 | .name = "ec", |
| 2126 | .class = ACPI_EC_CLASS, |
| 2127 | .ids = ec_device_ids, |
| 2128 | .ops = { |
| 2129 | .add = acpi_ec_add, |
| 2130 | .remove = acpi_ec_remove, |
| 2131 | }, |
| 2132 | .drv.pm = &acpi_ec_pm, |
| 2133 | }; |
| 2134 | |
| 2135 | static void acpi_ec_destroy_workqueues(void) |
| 2136 | { |
| 2137 | if (ec_wq) { |
| 2138 | destroy_workqueue(ec_wq); |
| 2139 | ec_wq = NULL; |
| 2140 | } |
| 2141 | if (ec_query_wq) { |
| 2142 | destroy_workqueue(ec_query_wq); |
| 2143 | ec_query_wq = NULL; |
| 2144 | } |
| 2145 | } |
| 2146 | |
| 2147 | static int acpi_ec_init_workqueues(void) |
| 2148 | { |
| 2149 | if (!ec_wq) |
| 2150 | ec_wq = alloc_ordered_workqueue("kec", 0); |
| 2151 | |
| 2152 | if (!ec_query_wq) |
| 2153 | ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries); |
| 2154 | |
| 2155 | if (!ec_wq || !ec_query_wq) { |
| 2156 | acpi_ec_destroy_workqueues(); |
| 2157 | return -ENODEV; |
| 2158 | } |
| 2159 | return 0; |
| 2160 | } |
| 2161 | |
| 2162 | static const struct dmi_system_id acpi_ec_no_wakeup[] = { |
| 2163 | { |
| 2164 | .ident = "Thinkpad X1 Carbon 6th", |
| 2165 | .matches = { |
| 2166 | DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), |
| 2167 | DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"), |
| 2168 | }, |
| 2169 | }, |
| 2170 | { |
| 2171 | .ident = "ThinkPad X1 Yoga 3rd", |
| 2172 | .matches = { |
| 2173 | DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), |
| 2174 | DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"), |
| 2175 | }, |
| 2176 | }, |
| 2177 | { }, |
| 2178 | }; |
| 2179 | |
| 2180 | int __init acpi_ec_init(void) |
| 2181 | { |
| 2182 | int result; |
| 2183 | int ecdt_fail, dsdt_fail; |
| 2184 | |
| 2185 | result = acpi_ec_init_workqueues(); |
| 2186 | if (result) |
| 2187 | return result; |
| 2188 | |
| 2189 | /* |
| 2190 | * Disable EC wakeup on following systems to prevent periodic |
| 2191 | * wakeup from EC GPE. |
| 2192 | */ |
| 2193 | if (dmi_check_system(acpi_ec_no_wakeup)) { |
| 2194 | ec_no_wakeup = true; |
| 2195 | pr_debug("Disabling EC wakeup on suspend-to-idle\n"); |
| 2196 | } |
| 2197 | |
| 2198 | /* Drivers must be started after acpi_ec_query_init() */ |
| 2199 | dsdt_fail = acpi_bus_register_driver(&acpi_ec_driver); |
| 2200 | /* |
| 2201 | * Register ECDT to ACPI bus only when PNP0C09 probe fails. This is |
| 2202 | * useful for platforms (confirmed on ASUS X550ZE) with valid ECDT |
| 2203 | * settings but invalid DSDT settings. |
| 2204 | * https://bugzilla.kernel.org/show_bug.cgi?id=196847 |
| 2205 | */ |
| 2206 | ecdt_fail = acpi_ec_ecdt_start(); |
| 2207 | return ecdt_fail && dsdt_fail ? -ENODEV : 0; |
| 2208 | } |
| 2209 | |
| 2210 | /* EC driver currently not unloadable */ |
| 2211 | #if 0 |
| 2212 | static void __exit acpi_ec_exit(void) |
| 2213 | { |
| 2214 | |
| 2215 | acpi_bus_unregister_driver(&acpi_ec_driver); |
| 2216 | acpi_ec_destroy_workqueues(); |
| 2217 | } |
| 2218 | #endif /* 0 */ |