b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Arch specific cpu topology information |
| 4 | * |
| 5 | * Copyright (C) 2016, ARM Ltd. |
| 6 | * Written by: Juri Lelli, ARM Ltd. |
| 7 | */ |
| 8 | |
| 9 | #include <linux/acpi.h> |
| 10 | #include <linux/cpu.h> |
| 11 | #include <linux/cpufreq.h> |
| 12 | #include <linux/device.h> |
| 13 | #include <linux/of.h> |
| 14 | #include <linux/slab.h> |
| 15 | #include <linux/string.h> |
| 16 | #include <linux/sched/topology.h> |
| 17 | #include <linux/cpuset.h> |
| 18 | #include <linux/cpumask.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/percpu.h> |
| 21 | #include <linux/sched.h> |
| 22 | #include <linux/smp.h> |
| 23 | #include <trace/hooks/topology.h> |
| 24 | |
| 25 | DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; |
| 26 | DEFINE_PER_CPU(unsigned long, max_cpu_freq); |
| 27 | DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE; |
| 28 | |
| 29 | void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, |
| 30 | unsigned long max_freq) |
| 31 | { |
| 32 | unsigned long scale; |
| 33 | int i; |
| 34 | |
| 35 | scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| 36 | |
| 37 | trace_android_vh_arch_set_freq_scale(cpus, cur_freq, max_freq, &scale); |
| 38 | |
| 39 | for_each_cpu(i, cpus) { |
| 40 | per_cpu(freq_scale, i) = scale; |
| 41 | per_cpu(max_cpu_freq, i) = max_freq; |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | void arch_set_max_freq_scale(struct cpumask *cpus, |
| 46 | unsigned long policy_max_freq) |
| 47 | { |
| 48 | unsigned long scale, max_freq; |
| 49 | int cpu = cpumask_first(cpus); |
| 50 | |
| 51 | if (cpu > nr_cpu_ids) |
| 52 | return; |
| 53 | |
| 54 | max_freq = per_cpu(max_cpu_freq, cpu); |
| 55 | if (!max_freq) |
| 56 | return; |
| 57 | |
| 58 | scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| 59 | |
| 60 | trace_android_vh_arch_set_freq_scale(cpus, policy_max_freq, max_freq, &scale); |
| 61 | |
| 62 | for_each_cpu(cpu, cpus) |
| 63 | per_cpu(max_freq_scale, cpu) = scale; |
| 64 | } |
| 65 | |
| 66 | DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| 67 | |
| 68 | void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) |
| 69 | { |
| 70 | per_cpu(cpu_scale, cpu) = capacity; |
| 71 | } |
| 72 | |
| 73 | static ssize_t cpu_capacity_show(struct device *dev, |
| 74 | struct device_attribute *attr, |
| 75 | char *buf) |
| 76 | { |
| 77 | struct cpu *cpu = container_of(dev, struct cpu, dev); |
| 78 | |
| 79 | return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); |
| 80 | } |
| 81 | |
| 82 | static void update_topology_flags_workfn(struct work_struct *work); |
| 83 | static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); |
| 84 | |
| 85 | static DEVICE_ATTR_RO(cpu_capacity); |
| 86 | |
| 87 | static int register_cpu_capacity_sysctl(void) |
| 88 | { |
| 89 | int i; |
| 90 | struct device *cpu; |
| 91 | |
| 92 | for_each_possible_cpu(i) { |
| 93 | cpu = get_cpu_device(i); |
| 94 | if (!cpu) { |
| 95 | pr_err("%s: too early to get CPU%d device!\n", |
| 96 | __func__, i); |
| 97 | continue; |
| 98 | } |
| 99 | device_create_file(cpu, &dev_attr_cpu_capacity); |
| 100 | } |
| 101 | |
| 102 | return 0; |
| 103 | } |
| 104 | subsys_initcall(register_cpu_capacity_sysctl); |
| 105 | |
| 106 | static int update_topology; |
| 107 | |
| 108 | int topology_update_cpu_topology(void) |
| 109 | { |
| 110 | return update_topology; |
| 111 | } |
| 112 | |
| 113 | /* |
| 114 | * Updating the sched_domains can't be done directly from cpufreq callbacks |
| 115 | * due to locking, so queue the work for later. |
| 116 | */ |
| 117 | static void update_topology_flags_workfn(struct work_struct *work) |
| 118 | { |
| 119 | update_topology = 1; |
| 120 | rebuild_sched_domains(); |
| 121 | pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); |
| 122 | update_topology = 0; |
| 123 | } |
| 124 | |
| 125 | static u32 capacity_scale; |
| 126 | static u32 *raw_capacity; |
| 127 | |
| 128 | static int free_raw_capacity(void) |
| 129 | { |
| 130 | kfree(raw_capacity); |
| 131 | raw_capacity = NULL; |
| 132 | |
| 133 | return 0; |
| 134 | } |
| 135 | |
| 136 | void topology_normalize_cpu_scale(void) |
| 137 | { |
| 138 | u64 capacity; |
| 139 | int cpu; |
| 140 | |
| 141 | if (!raw_capacity) |
| 142 | return; |
| 143 | |
| 144 | pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale); |
| 145 | for_each_possible_cpu(cpu) { |
| 146 | pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n", |
| 147 | cpu, raw_capacity[cpu]); |
| 148 | capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT) |
| 149 | / capacity_scale; |
| 150 | topology_set_cpu_scale(cpu, capacity); |
| 151 | pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", |
| 152 | cpu, topology_get_cpu_scale(cpu)); |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) |
| 157 | { |
| 158 | static bool cap_parsing_failed; |
| 159 | int ret; |
| 160 | u32 cpu_capacity; |
| 161 | |
| 162 | if (cap_parsing_failed) |
| 163 | return false; |
| 164 | |
| 165 | ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", |
| 166 | &cpu_capacity); |
| 167 | if (!ret) { |
| 168 | if (!raw_capacity) { |
| 169 | raw_capacity = kcalloc(num_possible_cpus(), |
| 170 | sizeof(*raw_capacity), |
| 171 | GFP_KERNEL); |
| 172 | if (!raw_capacity) { |
| 173 | cap_parsing_failed = true; |
| 174 | return false; |
| 175 | } |
| 176 | } |
| 177 | capacity_scale = max(cpu_capacity, capacity_scale); |
| 178 | raw_capacity[cpu] = cpu_capacity; |
| 179 | pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", |
| 180 | cpu_node, raw_capacity[cpu]); |
| 181 | } else { |
| 182 | if (raw_capacity) { |
| 183 | pr_err("cpu_capacity: missing %pOF raw capacity\n", |
| 184 | cpu_node); |
| 185 | pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); |
| 186 | } |
| 187 | cap_parsing_failed = true; |
| 188 | free_raw_capacity(); |
| 189 | } |
| 190 | |
| 191 | return !ret; |
| 192 | } |
| 193 | |
| 194 | #ifdef CONFIG_CPU_FREQ |
| 195 | static cpumask_var_t cpus_to_visit; |
| 196 | static void parsing_done_workfn(struct work_struct *work); |
| 197 | static DECLARE_WORK(parsing_done_work, parsing_done_workfn); |
| 198 | |
| 199 | static int |
| 200 | init_cpu_capacity_callback(struct notifier_block *nb, |
| 201 | unsigned long val, |
| 202 | void *data) |
| 203 | { |
| 204 | struct cpufreq_policy *policy = data; |
| 205 | int cpu; |
| 206 | |
| 207 | if (!raw_capacity) |
| 208 | return 0; |
| 209 | |
| 210 | if (val != CPUFREQ_CREATE_POLICY) |
| 211 | return 0; |
| 212 | |
| 213 | pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", |
| 214 | cpumask_pr_args(policy->related_cpus), |
| 215 | cpumask_pr_args(cpus_to_visit)); |
| 216 | |
| 217 | cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); |
| 218 | |
| 219 | for_each_cpu(cpu, policy->related_cpus) { |
| 220 | raw_capacity[cpu] = topology_get_cpu_scale(cpu) * |
| 221 | policy->cpuinfo.max_freq / 1000UL; |
| 222 | capacity_scale = max(raw_capacity[cpu], capacity_scale); |
| 223 | } |
| 224 | |
| 225 | if (cpumask_empty(cpus_to_visit)) { |
| 226 | topology_normalize_cpu_scale(); |
| 227 | schedule_work(&update_topology_flags_work); |
| 228 | free_raw_capacity(); |
| 229 | pr_debug("cpu_capacity: parsing done\n"); |
| 230 | schedule_work(&parsing_done_work); |
| 231 | } |
| 232 | |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | static struct notifier_block init_cpu_capacity_notifier = { |
| 237 | .notifier_call = init_cpu_capacity_callback, |
| 238 | }; |
| 239 | |
| 240 | static int __init register_cpufreq_notifier(void) |
| 241 | { |
| 242 | int ret; |
| 243 | |
| 244 | /* |
| 245 | * on ACPI-based systems we need to use the default cpu capacity |
| 246 | * until we have the necessary code to parse the cpu capacity, so |
| 247 | * skip registering cpufreq notifier. |
| 248 | */ |
| 249 | if (!acpi_disabled || !raw_capacity) |
| 250 | return -EINVAL; |
| 251 | |
| 252 | if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) |
| 253 | return -ENOMEM; |
| 254 | |
| 255 | cpumask_copy(cpus_to_visit, cpu_possible_mask); |
| 256 | |
| 257 | ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, |
| 258 | CPUFREQ_POLICY_NOTIFIER); |
| 259 | |
| 260 | if (ret) |
| 261 | free_cpumask_var(cpus_to_visit); |
| 262 | |
| 263 | return ret; |
| 264 | } |
| 265 | core_initcall(register_cpufreq_notifier); |
| 266 | |
| 267 | static void parsing_done_workfn(struct work_struct *work) |
| 268 | { |
| 269 | cpufreq_unregister_notifier(&init_cpu_capacity_notifier, |
| 270 | CPUFREQ_POLICY_NOTIFIER); |
| 271 | free_cpumask_var(cpus_to_visit); |
| 272 | } |
| 273 | |
| 274 | #else |
| 275 | core_initcall(free_raw_capacity); |
| 276 | #endif |
| 277 | |
| 278 | #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
| 279 | static int __init get_cpu_for_node(struct device_node *node) |
| 280 | { |
| 281 | struct device_node *cpu_node; |
| 282 | int cpu; |
| 283 | |
| 284 | cpu_node = of_parse_phandle(node, "cpu", 0); |
| 285 | if (!cpu_node) |
| 286 | return -1; |
| 287 | |
| 288 | cpu = of_cpu_node_to_id(cpu_node); |
| 289 | if (cpu >= 0) |
| 290 | topology_parse_cpu_capacity(cpu_node, cpu); |
| 291 | else |
| 292 | pr_crit("Unable to find CPU node for %pOF\n", cpu_node); |
| 293 | |
| 294 | of_node_put(cpu_node); |
| 295 | return cpu; |
| 296 | } |
| 297 | |
| 298 | static int __init parse_core(struct device_node *core, int package_id, |
| 299 | int core_id) |
| 300 | { |
| 301 | char name[20]; |
| 302 | bool leaf = true; |
| 303 | int i = 0; |
| 304 | int cpu; |
| 305 | struct device_node *t; |
| 306 | |
| 307 | do { |
| 308 | snprintf(name, sizeof(name), "thread%d", i); |
| 309 | t = of_get_child_by_name(core, name); |
| 310 | if (t) { |
| 311 | leaf = false; |
| 312 | cpu = get_cpu_for_node(t); |
| 313 | if (cpu >= 0) { |
| 314 | cpu_topology[cpu].package_id = package_id; |
| 315 | cpu_topology[cpu].core_id = core_id; |
| 316 | cpu_topology[cpu].thread_id = i; |
| 317 | } else { |
| 318 | pr_err("%pOF: Can't get CPU for thread\n", |
| 319 | t); |
| 320 | of_node_put(t); |
| 321 | return -EINVAL; |
| 322 | } |
| 323 | of_node_put(t); |
| 324 | } |
| 325 | i++; |
| 326 | } while (t); |
| 327 | |
| 328 | cpu = get_cpu_for_node(core); |
| 329 | if (cpu >= 0) { |
| 330 | if (!leaf) { |
| 331 | pr_err("%pOF: Core has both threads and CPU\n", |
| 332 | core); |
| 333 | return -EINVAL; |
| 334 | } |
| 335 | |
| 336 | cpu_topology[cpu].package_id = package_id; |
| 337 | cpu_topology[cpu].core_id = core_id; |
| 338 | } else if (leaf) { |
| 339 | pr_err("%pOF: Can't get CPU for leaf core\n", core); |
| 340 | return -EINVAL; |
| 341 | } |
| 342 | |
| 343 | return 0; |
| 344 | } |
| 345 | |
| 346 | static int __init parse_cluster(struct device_node *cluster, int depth) |
| 347 | { |
| 348 | char name[20]; |
| 349 | bool leaf = true; |
| 350 | bool has_cores = false; |
| 351 | struct device_node *c; |
| 352 | static int package_id __initdata; |
| 353 | int core_id = 0; |
| 354 | int i, ret; |
| 355 | |
| 356 | /* |
| 357 | * First check for child clusters; we currently ignore any |
| 358 | * information about the nesting of clusters and present the |
| 359 | * scheduler with a flat list of them. |
| 360 | */ |
| 361 | i = 0; |
| 362 | do { |
| 363 | snprintf(name, sizeof(name), "cluster%d", i); |
| 364 | c = of_get_child_by_name(cluster, name); |
| 365 | if (c) { |
| 366 | leaf = false; |
| 367 | ret = parse_cluster(c, depth + 1); |
| 368 | of_node_put(c); |
| 369 | if (ret != 0) |
| 370 | return ret; |
| 371 | } |
| 372 | i++; |
| 373 | } while (c); |
| 374 | |
| 375 | /* Now check for cores */ |
| 376 | i = 0; |
| 377 | do { |
| 378 | snprintf(name, sizeof(name), "core%d", i); |
| 379 | c = of_get_child_by_name(cluster, name); |
| 380 | if (c) { |
| 381 | has_cores = true; |
| 382 | |
| 383 | if (depth == 0) { |
| 384 | pr_err("%pOF: cpu-map children should be clusters\n", |
| 385 | c); |
| 386 | of_node_put(c); |
| 387 | return -EINVAL; |
| 388 | } |
| 389 | |
| 390 | if (leaf) { |
| 391 | ret = parse_core(c, package_id, core_id++); |
| 392 | } else { |
| 393 | pr_err("%pOF: Non-leaf cluster with core %s\n", |
| 394 | cluster, name); |
| 395 | ret = -EINVAL; |
| 396 | } |
| 397 | |
| 398 | of_node_put(c); |
| 399 | if (ret != 0) |
| 400 | return ret; |
| 401 | } |
| 402 | i++; |
| 403 | } while (c); |
| 404 | |
| 405 | if (leaf && !has_cores) |
| 406 | pr_warn("%pOF: empty cluster\n", cluster); |
| 407 | |
| 408 | if (leaf) |
| 409 | package_id++; |
| 410 | |
| 411 | return 0; |
| 412 | } |
| 413 | |
| 414 | static int __init parse_dt_topology(void) |
| 415 | { |
| 416 | struct device_node *cn, *map; |
| 417 | int ret = 0; |
| 418 | int cpu; |
| 419 | |
| 420 | cn = of_find_node_by_path("/cpus"); |
| 421 | if (!cn) { |
| 422 | pr_err("No CPU information found in DT\n"); |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | /* |
| 427 | * When topology is provided cpu-map is essentially a root |
| 428 | * cluster with restricted subnodes. |
| 429 | */ |
| 430 | map = of_get_child_by_name(cn, "cpu-map"); |
| 431 | if (!map) |
| 432 | goto out; |
| 433 | |
| 434 | ret = parse_cluster(map, 0); |
| 435 | if (ret != 0) |
| 436 | goto out_map; |
| 437 | |
| 438 | topology_normalize_cpu_scale(); |
| 439 | |
| 440 | /* |
| 441 | * Check that all cores are in the topology; the SMP code will |
| 442 | * only mark cores described in the DT as possible. |
| 443 | */ |
| 444 | for_each_possible_cpu(cpu) |
| 445 | if (cpu_topology[cpu].package_id == -1) |
| 446 | ret = -EINVAL; |
| 447 | |
| 448 | out_map: |
| 449 | of_node_put(map); |
| 450 | out: |
| 451 | of_node_put(cn); |
| 452 | return ret; |
| 453 | } |
| 454 | #endif |
| 455 | |
| 456 | /* |
| 457 | * cpu topology table |
| 458 | */ |
| 459 | struct cpu_topology cpu_topology[NR_CPUS]; |
| 460 | EXPORT_SYMBOL_GPL(cpu_topology); |
| 461 | |
| 462 | const struct cpumask *cpu_coregroup_mask(int cpu) |
| 463 | { |
| 464 | const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); |
| 465 | |
| 466 | /* Find the smaller of NUMA, core or LLC siblings */ |
| 467 | if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { |
| 468 | /* not numa in package, lets use the package siblings */ |
| 469 | core_mask = &cpu_topology[cpu].core_sibling; |
| 470 | } |
| 471 | if (cpu_topology[cpu].llc_id != -1) { |
| 472 | if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) |
| 473 | core_mask = &cpu_topology[cpu].llc_sibling; |
| 474 | } |
| 475 | |
| 476 | return core_mask; |
| 477 | } |
| 478 | |
| 479 | void update_siblings_masks(unsigned int cpuid) |
| 480 | { |
| 481 | struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| 482 | int cpu; |
| 483 | |
| 484 | /* update core and thread sibling masks */ |
| 485 | for_each_online_cpu(cpu) { |
| 486 | cpu_topo = &cpu_topology[cpu]; |
| 487 | |
| 488 | if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) { |
| 489 | cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); |
| 490 | cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); |
| 491 | } |
| 492 | |
| 493 | if (cpuid_topo->package_id != cpu_topo->package_id) |
| 494 | continue; |
| 495 | |
| 496 | cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| 497 | cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| 498 | |
| 499 | if (cpuid_topo->core_id != cpu_topo->core_id) |
| 500 | continue; |
| 501 | |
| 502 | cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| 503 | cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| 504 | } |
| 505 | } |
| 506 | |
| 507 | static void clear_cpu_topology(int cpu) |
| 508 | { |
| 509 | struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| 510 | |
| 511 | cpumask_clear(&cpu_topo->llc_sibling); |
| 512 | cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); |
| 513 | |
| 514 | cpumask_clear(&cpu_topo->core_sibling); |
| 515 | cpumask_set_cpu(cpu, &cpu_topo->core_sibling); |
| 516 | cpumask_clear(&cpu_topo->thread_sibling); |
| 517 | cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); |
| 518 | } |
| 519 | |
| 520 | void __init reset_cpu_topology(void) |
| 521 | { |
| 522 | unsigned int cpu; |
| 523 | |
| 524 | for_each_possible_cpu(cpu) { |
| 525 | struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| 526 | |
| 527 | cpu_topo->thread_id = -1; |
| 528 | cpu_topo->core_id = -1; |
| 529 | cpu_topo->package_id = -1; |
| 530 | cpu_topo->llc_id = -1; |
| 531 | |
| 532 | clear_cpu_topology(cpu); |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | void remove_cpu_topology(unsigned int cpu) |
| 537 | { |
| 538 | int sibling; |
| 539 | |
| 540 | for_each_cpu(sibling, topology_core_cpumask(cpu)) |
| 541 | cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); |
| 542 | for_each_cpu(sibling, topology_sibling_cpumask(cpu)) |
| 543 | cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); |
| 544 | for_each_cpu(sibling, topology_llc_cpumask(cpu)) |
| 545 | cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); |
| 546 | |
| 547 | clear_cpu_topology(cpu); |
| 548 | } |
| 549 | |
| 550 | __weak int __init parse_acpi_topology(void) |
| 551 | { |
| 552 | return 0; |
| 553 | } |
| 554 | |
| 555 | #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
| 556 | void __init init_cpu_topology(void) |
| 557 | { |
| 558 | reset_cpu_topology(); |
| 559 | |
| 560 | /* |
| 561 | * Discard anything that was parsed if we hit an error so we |
| 562 | * don't use partial information. |
| 563 | */ |
| 564 | if (parse_acpi_topology()) |
| 565 | reset_cpu_topology(); |
| 566 | else if (of_have_populated_dt() && parse_dt_topology()) |
| 567 | reset_cpu_topology(); |
| 568 | } |
| 569 | |
| 570 | void store_cpu_topology(unsigned int cpuid) |
| 571 | { |
| 572 | struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; |
| 573 | |
| 574 | if (cpuid_topo->package_id != -1) |
| 575 | goto topology_populated; |
| 576 | |
| 577 | cpuid_topo->thread_id = -1; |
| 578 | cpuid_topo->core_id = cpuid; |
| 579 | cpuid_topo->package_id = cpu_to_node(cpuid); |
| 580 | |
| 581 | pr_debug("CPU%u: package %d core %d thread %d\n", |
| 582 | cpuid, cpuid_topo->package_id, cpuid_topo->core_id, |
| 583 | cpuid_topo->thread_id); |
| 584 | |
| 585 | topology_populated: |
| 586 | update_siblings_masks(cpuid); |
| 587 | } |
| 588 | #endif |