b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) |
| 2 | /* |
| 3 | * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. |
| 4 | * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 |
| 5 | * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. |
| 6 | * |
| 7 | * This driver produces cryptographically secure pseudorandom data. It is divided |
| 8 | * into roughly six sections, each with a section header: |
| 9 | * |
| 10 | * - Initialization and readiness waiting. |
| 11 | * - Fast key erasure RNG, the "crng". |
| 12 | * - Entropy accumulation and extraction routines. |
| 13 | * - Entropy collection routines. |
| 14 | * - Userspace reader/writer interfaces. |
| 15 | * - Sysctl interface. |
| 16 | * |
| 17 | * The high level overview is that there is one input pool, into which |
| 18 | * various pieces of data are hashed. Prior to initialization, some of that |
| 19 | * data is then "credited" as having a certain number of bits of entropy. |
| 20 | * When enough bits of entropy are available, the hash is finalized and |
| 21 | * handed as a key to a stream cipher that expands it indefinitely for |
| 22 | * various consumers. This key is periodically refreshed as the various |
| 23 | * entropy collectors, described below, add data to the input pool. |
| 24 | */ |
| 25 | |
| 26 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 27 | |
| 28 | #include <linux/utsname.h> |
| 29 | #include <linux/module.h> |
| 30 | #include <linux/kernel.h> |
| 31 | #include <linux/major.h> |
| 32 | #include <linux/string.h> |
| 33 | #include <linux/fcntl.h> |
| 34 | #include <linux/slab.h> |
| 35 | #include <linux/random.h> |
| 36 | #include <linux/poll.h> |
| 37 | #include <linux/init.h> |
| 38 | #include <linux/fs.h> |
| 39 | #include <linux/genhd.h> |
| 40 | #include <linux/interrupt.h> |
| 41 | #include <linux/mm.h> |
| 42 | #include <linux/nodemask.h> |
| 43 | #include <linux/spinlock.h> |
| 44 | #include <linux/kthread.h> |
| 45 | #include <linux/percpu.h> |
| 46 | #include <linux/ptrace.h> |
| 47 | #include <linux/workqueue.h> |
| 48 | #include <linux/irq.h> |
| 49 | #include <linux/ratelimit.h> |
| 50 | #include <linux/syscalls.h> |
| 51 | #include <linux/completion.h> |
| 52 | #include <linux/uuid.h> |
| 53 | #include <linux/uaccess.h> |
| 54 | #include <linux/siphash.h> |
| 55 | #include <linux/uio.h> |
| 56 | #include <crypto/chacha.h> |
| 57 | #include <crypto/blake2s.h> |
| 58 | #include <asm/processor.h> |
| 59 | #include <asm/irq.h> |
| 60 | #include <asm/irq_regs.h> |
| 61 | #include <asm/io.h> |
| 62 | |
| 63 | /********************************************************************* |
| 64 | * |
| 65 | * Initialization and readiness waiting. |
| 66 | * |
| 67 | * Much of the RNG infrastructure is devoted to various dependencies |
| 68 | * being able to wait until the RNG has collected enough entropy and |
| 69 | * is ready for safe consumption. |
| 70 | * |
| 71 | *********************************************************************/ |
| 72 | |
| 73 | /* |
| 74 | * crng_init is protected by base_crng->lock, and only increases |
| 75 | * its value (from empty->early->ready). |
| 76 | */ |
| 77 | static enum { |
| 78 | CRNG_EMPTY = 0, /* Little to no entropy collected */ |
| 79 | CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ |
| 80 | CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ |
| 81 | } crng_init __read_mostly = CRNG_EMPTY; |
| 82 | #define crng_ready() (likely(crng_init >= CRNG_READY)) |
| 83 | /* Various types of waiters for crng_init->CRNG_READY transition. */ |
| 84 | static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); |
| 85 | static struct fasync_struct *fasync; |
| 86 | static DEFINE_SPINLOCK(random_ready_chain_lock); |
| 87 | static RAW_NOTIFIER_HEAD(random_ready_chain); |
| 88 | |
| 89 | /* Control how we warn userspace. */ |
| 90 | static struct ratelimit_state urandom_warning = |
| 91 | RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); |
| 92 | static int ratelimit_disable __read_mostly = |
| 93 | IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); |
| 94 | module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); |
| 95 | MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); |
| 96 | |
| 97 | /* |
| 98 | * Returns whether or not the input pool has been seeded and thus guaranteed |
| 99 | * to supply cryptographically secure random numbers. This applies to: the |
| 100 | * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, |
| 101 | * ,u64,int,long} family of functions. |
| 102 | * |
| 103 | * Returns: true if the input pool has been seeded. |
| 104 | * false if the input pool has not been seeded. |
| 105 | */ |
| 106 | bool rng_is_initialized(void) |
| 107 | { |
| 108 | return crng_ready(); |
| 109 | } |
| 110 | EXPORT_SYMBOL(rng_is_initialized); |
| 111 | |
| 112 | /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ |
| 113 | static void try_to_generate_entropy(void); |
| 114 | |
| 115 | /* |
| 116 | * Wait for the input pool to be seeded and thus guaranteed to supply |
| 117 | * cryptographically secure random numbers. This applies to: the /dev/urandom |
| 118 | * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} |
| 119 | * family of functions. Using any of these functions without first calling |
| 120 | * this function forfeits the guarantee of security. |
| 121 | * |
| 122 | * Returns: 0 if the input pool has been seeded. |
| 123 | * -ERESTARTSYS if the function was interrupted by a signal. |
| 124 | */ |
| 125 | int wait_for_random_bytes(void) |
| 126 | { |
| 127 | while (!crng_ready()) { |
| 128 | int ret; |
| 129 | |
| 130 | try_to_generate_entropy(); |
| 131 | ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); |
| 132 | if (ret) |
| 133 | return ret > 0 ? 0 : ret; |
| 134 | } |
| 135 | return 0; |
| 136 | } |
| 137 | EXPORT_SYMBOL(wait_for_random_bytes); |
| 138 | |
| 139 | /* |
| 140 | * Add a callback function that will be invoked when the input |
| 141 | * pool is initialised. |
| 142 | * |
| 143 | * returns: 0 if callback is successfully added |
| 144 | * -EALREADY if pool is already initialised (callback not called) |
| 145 | */ |
| 146 | int __cold register_random_ready_notifier(struct notifier_block *nb) |
| 147 | { |
| 148 | unsigned long flags; |
| 149 | int ret = -EALREADY; |
| 150 | |
| 151 | if (crng_ready()) |
| 152 | return ret; |
| 153 | |
| 154 | spin_lock_irqsave(&random_ready_chain_lock, flags); |
| 155 | if (!crng_ready()) |
| 156 | ret = raw_notifier_chain_register(&random_ready_chain, nb); |
| 157 | spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| 158 | return ret; |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * Delete a previously registered readiness callback function. |
| 163 | */ |
| 164 | int __cold unregister_random_ready_notifier(struct notifier_block *nb) |
| 165 | { |
| 166 | unsigned long flags; |
| 167 | int ret; |
| 168 | |
| 169 | spin_lock_irqsave(&random_ready_chain_lock, flags); |
| 170 | ret = raw_notifier_chain_unregister(&random_ready_chain, nb); |
| 171 | spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| 172 | return ret; |
| 173 | } |
| 174 | |
| 175 | static void __cold process_random_ready_list(void) |
| 176 | { |
| 177 | unsigned long flags; |
| 178 | |
| 179 | spin_lock_irqsave(&random_ready_chain_lock, flags); |
| 180 | raw_notifier_call_chain(&random_ready_chain, 0, NULL); |
| 181 | spin_unlock_irqrestore(&random_ready_chain_lock, flags); |
| 182 | } |
| 183 | |
| 184 | #define warn_unseeded_randomness() \ |
| 185 | if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ |
| 186 | printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ |
| 187 | __func__, (void *)_RET_IP_, crng_init) |
| 188 | |
| 189 | |
| 190 | /********************************************************************* |
| 191 | * |
| 192 | * Fast key erasure RNG, the "crng". |
| 193 | * |
| 194 | * These functions expand entropy from the entropy extractor into |
| 195 | * long streams for external consumption using the "fast key erasure" |
| 196 | * RNG described at <https://blog.cr.yp.to/20170723-random.html>. |
| 197 | * |
| 198 | * There are a few exported interfaces for use by other drivers: |
| 199 | * |
| 200 | * void get_random_bytes(void *buf, size_t len) |
| 201 | * u32 get_random_u32() |
| 202 | * u64 get_random_u64() |
| 203 | * unsigned int get_random_int() |
| 204 | * unsigned long get_random_long() |
| 205 | * |
| 206 | * These interfaces will return the requested number of random bytes |
| 207 | * into the given buffer or as a return value. This is equivalent to |
| 208 | * a read from /dev/urandom. The u32, u64, int, and long family of |
| 209 | * functions may be higher performance for one-off random integers, |
| 210 | * because they do a bit of buffering and do not invoke reseeding |
| 211 | * until the buffer is emptied. |
| 212 | * |
| 213 | *********************************************************************/ |
| 214 | |
| 215 | enum { |
| 216 | CRNG_RESEED_START_INTERVAL = HZ, |
| 217 | CRNG_RESEED_INTERVAL = 60 * HZ |
| 218 | }; |
| 219 | |
| 220 | static struct { |
| 221 | u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); |
| 222 | unsigned long birth; |
| 223 | unsigned long generation; |
| 224 | spinlock_t lock; |
| 225 | } base_crng = { |
| 226 | .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) |
| 227 | }; |
| 228 | |
| 229 | struct crng { |
| 230 | u8 key[CHACHA_KEY_SIZE]; |
| 231 | unsigned long generation; |
| 232 | }; |
| 233 | |
| 234 | static DEFINE_PER_CPU(struct crng, crngs) = { |
| 235 | .generation = ULONG_MAX |
| 236 | }; |
| 237 | |
| 238 | /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ |
| 239 | static void extract_entropy(void *buf, size_t len); |
| 240 | |
| 241 | /* This extracts a new crng key from the input pool. */ |
| 242 | static void crng_reseed(void) |
| 243 | { |
| 244 | unsigned long flags; |
| 245 | unsigned long next_gen; |
| 246 | u8 key[CHACHA_KEY_SIZE]; |
| 247 | |
| 248 | extract_entropy(key, sizeof(key)); |
| 249 | |
| 250 | /* |
| 251 | * We copy the new key into the base_crng, overwriting the old one, |
| 252 | * and update the generation counter. We avoid hitting ULONG_MAX, |
| 253 | * because the per-cpu crngs are initialized to ULONG_MAX, so this |
| 254 | * forces new CPUs that come online to always initialize. |
| 255 | */ |
| 256 | spin_lock_irqsave(&base_crng.lock, flags); |
| 257 | memcpy(base_crng.key, key, sizeof(base_crng.key)); |
| 258 | next_gen = base_crng.generation + 1; |
| 259 | if (next_gen == ULONG_MAX) |
| 260 | ++next_gen; |
| 261 | WRITE_ONCE(base_crng.generation, next_gen); |
| 262 | WRITE_ONCE(base_crng.birth, jiffies); |
| 263 | if (!crng_ready()) |
| 264 | crng_init = CRNG_READY; |
| 265 | spin_unlock_irqrestore(&base_crng.lock, flags); |
| 266 | memzero_explicit(key, sizeof(key)); |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | * This generates a ChaCha block using the provided key, and then |
| 271 | * immediately overwites that key with half the block. It returns |
| 272 | * the resultant ChaCha state to the user, along with the second |
| 273 | * half of the block containing 32 bytes of random data that may |
| 274 | * be used; random_data_len may not be greater than 32. |
| 275 | * |
| 276 | * The returned ChaCha state contains within it a copy of the old |
| 277 | * key value, at index 4, so the state should always be zeroed out |
| 278 | * immediately after using in order to maintain forward secrecy. |
| 279 | * If the state cannot be erased in a timely manner, then it is |
| 280 | * safer to set the random_data parameter to &chacha_state[4] so |
| 281 | * that this function overwrites it before returning. |
| 282 | */ |
| 283 | static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], |
| 284 | u32 chacha_state[CHACHA_BLOCK_SIZE / sizeof(u32)], |
| 285 | u8 *random_data, size_t random_data_len) |
| 286 | { |
| 287 | u8 first_block[CHACHA_BLOCK_SIZE]; |
| 288 | |
| 289 | BUG_ON(random_data_len > 32); |
| 290 | |
| 291 | chacha_init_consts(chacha_state); |
| 292 | memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); |
| 293 | memset(&chacha_state[12], 0, sizeof(u32) * 4); |
| 294 | chacha20_block(chacha_state, first_block); |
| 295 | |
| 296 | memcpy(key, first_block, CHACHA_KEY_SIZE); |
| 297 | memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); |
| 298 | memzero_explicit(first_block, sizeof(first_block)); |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Return whether the crng seed is considered to be sufficiently old |
| 303 | * that a reseeding is needed. This happens if the last reseeding |
| 304 | * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval |
| 305 | * proportional to the uptime. |
| 306 | */ |
| 307 | static bool crng_has_old_seed(void) |
| 308 | { |
| 309 | static bool early_boot = true; |
| 310 | unsigned long interval = CRNG_RESEED_INTERVAL; |
| 311 | |
| 312 | if (unlikely(READ_ONCE(early_boot))) { |
| 313 | time64_t uptime = ktime_get_seconds(); |
| 314 | if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) |
| 315 | WRITE_ONCE(early_boot, false); |
| 316 | else |
| 317 | interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL, |
| 318 | (unsigned int)uptime / 2 * HZ); |
| 319 | } |
| 320 | return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval); |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * This function returns a ChaCha state that you may use for generating |
| 325 | * random data. It also returns up to 32 bytes on its own of random data |
| 326 | * that may be used; random_data_len may not be greater than 32. |
| 327 | */ |
| 328 | static void crng_make_state(u32 chacha_state[CHACHA_BLOCK_SIZE / sizeof(u32)], |
| 329 | u8 *random_data, size_t random_data_len) |
| 330 | { |
| 331 | unsigned long flags; |
| 332 | struct crng *crng; |
| 333 | |
| 334 | BUG_ON(random_data_len > 32); |
| 335 | |
| 336 | /* |
| 337 | * For the fast path, we check whether we're ready, unlocked first, and |
| 338 | * then re-check once locked later. In the case where we're really not |
| 339 | * ready, we do fast key erasure with the base_crng directly, extracting |
| 340 | * when crng_init is CRNG_EMPTY. |
| 341 | */ |
| 342 | if (!crng_ready()) { |
| 343 | bool ready; |
| 344 | |
| 345 | spin_lock_irqsave(&base_crng.lock, flags); |
| 346 | ready = crng_ready(); |
| 347 | if (!ready) { |
| 348 | if (crng_init == CRNG_EMPTY) |
| 349 | extract_entropy(base_crng.key, sizeof(base_crng.key)); |
| 350 | crng_fast_key_erasure(base_crng.key, chacha_state, |
| 351 | random_data, random_data_len); |
| 352 | } |
| 353 | spin_unlock_irqrestore(&base_crng.lock, flags); |
| 354 | if (!ready) |
| 355 | return; |
| 356 | } |
| 357 | |
| 358 | /* |
| 359 | * If the base_crng is old enough, we reseed, which in turn bumps the |
| 360 | * generation counter that we check below. |
| 361 | */ |
| 362 | if (unlikely(crng_has_old_seed())) |
| 363 | crng_reseed(); |
| 364 | |
| 365 | local_irq_save(flags); |
| 366 | crng = raw_cpu_ptr(&crngs); |
| 367 | |
| 368 | /* |
| 369 | * If our per-cpu crng is older than the base_crng, then it means |
| 370 | * somebody reseeded the base_crng. In that case, we do fast key |
| 371 | * erasure on the base_crng, and use its output as the new key |
| 372 | * for our per-cpu crng. This brings us up to date with base_crng. |
| 373 | */ |
| 374 | if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { |
| 375 | spin_lock(&base_crng.lock); |
| 376 | crng_fast_key_erasure(base_crng.key, chacha_state, |
| 377 | crng->key, sizeof(crng->key)); |
| 378 | crng->generation = base_crng.generation; |
| 379 | spin_unlock(&base_crng.lock); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Finally, when we've made it this far, our per-cpu crng has an up |
| 384 | * to date key, and we can do fast key erasure with it to produce |
| 385 | * some random data and a ChaCha state for the caller. All other |
| 386 | * branches of this function are "unlikely", so most of the time we |
| 387 | * should wind up here immediately. |
| 388 | */ |
| 389 | crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); |
| 390 | local_irq_restore(flags); |
| 391 | } |
| 392 | |
| 393 | static void _get_random_bytes(void *buf, size_t len) |
| 394 | { |
| 395 | u32 chacha_state[CHACHA_BLOCK_SIZE / sizeof(u32)]; |
| 396 | u8 tmp[CHACHA_BLOCK_SIZE]; |
| 397 | size_t first_block_len; |
| 398 | |
| 399 | if (!len) |
| 400 | return; |
| 401 | |
| 402 | first_block_len = min_t(size_t, 32, len); |
| 403 | crng_make_state(chacha_state, buf, first_block_len); |
| 404 | len -= first_block_len; |
| 405 | buf += first_block_len; |
| 406 | |
| 407 | while (len) { |
| 408 | if (len < CHACHA_BLOCK_SIZE) { |
| 409 | chacha20_block(chacha_state, tmp); |
| 410 | memcpy(buf, tmp, len); |
| 411 | memzero_explicit(tmp, sizeof(tmp)); |
| 412 | break; |
| 413 | } |
| 414 | |
| 415 | chacha20_block(chacha_state, buf); |
| 416 | if (unlikely(chacha_state[12] == 0)) |
| 417 | ++chacha_state[13]; |
| 418 | len -= CHACHA_BLOCK_SIZE; |
| 419 | buf += CHACHA_BLOCK_SIZE; |
| 420 | } |
| 421 | |
| 422 | memzero_explicit(chacha_state, sizeof(chacha_state)); |
| 423 | } |
| 424 | |
| 425 | /* |
| 426 | * This function is the exported kernel interface. It returns some |
| 427 | * number of good random numbers, suitable for key generation, seeding |
| 428 | * TCP sequence numbers, etc. It does not rely on the hardware random |
| 429 | * number generator. For random bytes direct from the hardware RNG |
| 430 | * (when available), use get_random_bytes_arch(). In order to ensure |
| 431 | * that the randomness provided by this function is okay, the function |
| 432 | * wait_for_random_bytes() should be called and return 0 at least once |
| 433 | * at any point prior. |
| 434 | */ |
| 435 | void get_random_bytes(void *buf, size_t len) |
| 436 | { |
| 437 | warn_unseeded_randomness(); |
| 438 | _get_random_bytes(buf, len); |
| 439 | } |
| 440 | EXPORT_SYMBOL(get_random_bytes); |
| 441 | |
| 442 | static ssize_t get_random_bytes_user(struct iov_iter *iter) |
| 443 | { |
| 444 | u32 chacha_state[CHACHA_BLOCK_SIZE / sizeof(u32)]; |
| 445 | u8 block[CHACHA_BLOCK_SIZE]; |
| 446 | size_t ret = 0, copied; |
| 447 | |
| 448 | if (unlikely(!iov_iter_count(iter))) |
| 449 | return 0; |
| 450 | |
| 451 | /* |
| 452 | * Immediately overwrite the ChaCha key at index 4 with random |
| 453 | * bytes, in case userspace causes copy_to_iter() below to sleep |
| 454 | * forever, so that we still retain forward secrecy in that case. |
| 455 | */ |
| 456 | crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); |
| 457 | /* |
| 458 | * However, if we're doing a read of len <= 32, we don't need to |
| 459 | * use chacha_state after, so we can simply return those bytes to |
| 460 | * the user directly. |
| 461 | */ |
| 462 | if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { |
| 463 | ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); |
| 464 | goto out_zero_chacha; |
| 465 | } |
| 466 | |
| 467 | for (;;) { |
| 468 | chacha20_block(chacha_state, block); |
| 469 | if (unlikely(chacha_state[12] == 0)) |
| 470 | ++chacha_state[13]; |
| 471 | |
| 472 | copied = copy_to_iter(block, sizeof(block), iter); |
| 473 | ret += copied; |
| 474 | if (!iov_iter_count(iter) || copied != sizeof(block)) |
| 475 | break; |
| 476 | |
| 477 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| 478 | if (ret % PAGE_SIZE == 0) { |
| 479 | if (signal_pending(current)) |
| 480 | break; |
| 481 | cond_resched(); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | memzero_explicit(block, sizeof(block)); |
| 486 | out_zero_chacha: |
| 487 | memzero_explicit(chacha_state, sizeof(chacha_state)); |
| 488 | return ret ? ret : -EFAULT; |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * Batched entropy returns random integers. The quality of the random |
| 493 | * number is good as /dev/urandom. In order to ensure that the randomness |
| 494 | * provided by this function is okay, the function wait_for_random_bytes() |
| 495 | * should be called and return 0 at least once at any point prior. |
| 496 | */ |
| 497 | |
| 498 | #define DEFINE_BATCHED_ENTROPY(type) \ |
| 499 | struct batch_ ##type { \ |
| 500 | /* \ |
| 501 | * We make this 1.5x a ChaCha block, so that we get the \ |
| 502 | * remaining 32 bytes from fast key erasure, plus one full \ |
| 503 | * block from the detached ChaCha state. We can increase \ |
| 504 | * the size of this later if needed so long as we keep the \ |
| 505 | * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ |
| 506 | */ \ |
| 507 | type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ |
| 508 | unsigned long generation; \ |
| 509 | unsigned int position; \ |
| 510 | }; \ |
| 511 | \ |
| 512 | static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ |
| 513 | .position = UINT_MAX \ |
| 514 | }; \ |
| 515 | \ |
| 516 | type get_random_ ##type(void) \ |
| 517 | { \ |
| 518 | type ret; \ |
| 519 | unsigned long flags; \ |
| 520 | struct batch_ ##type *batch; \ |
| 521 | unsigned long next_gen; \ |
| 522 | \ |
| 523 | warn_unseeded_randomness(); \ |
| 524 | \ |
| 525 | if (!crng_ready()) { \ |
| 526 | _get_random_bytes(&ret, sizeof(ret)); \ |
| 527 | return ret; \ |
| 528 | } \ |
| 529 | \ |
| 530 | local_irq_save(flags); \ |
| 531 | batch = raw_cpu_ptr(&batched_entropy_##type); \ |
| 532 | \ |
| 533 | next_gen = READ_ONCE(base_crng.generation); \ |
| 534 | if (batch->position >= ARRAY_SIZE(batch->entropy) || \ |
| 535 | next_gen != batch->generation) { \ |
| 536 | _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ |
| 537 | batch->position = 0; \ |
| 538 | batch->generation = next_gen; \ |
| 539 | } \ |
| 540 | \ |
| 541 | ret = batch->entropy[batch->position]; \ |
| 542 | batch->entropy[batch->position] = 0; \ |
| 543 | ++batch->position; \ |
| 544 | local_irq_restore(flags); \ |
| 545 | return ret; \ |
| 546 | } \ |
| 547 | EXPORT_SYMBOL(get_random_ ##type); |
| 548 | |
| 549 | DEFINE_BATCHED_ENTROPY(u64) |
| 550 | DEFINE_BATCHED_ENTROPY(u32) |
| 551 | |
| 552 | #ifdef CONFIG_SMP |
| 553 | /* |
| 554 | * This function is called when the CPU is coming up, with entry |
| 555 | * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. |
| 556 | */ |
| 557 | int __cold random_prepare_cpu(unsigned int cpu) |
| 558 | { |
| 559 | /* |
| 560 | * When the cpu comes back online, immediately invalidate both |
| 561 | * the per-cpu crng and all batches, so that we serve fresh |
| 562 | * randomness. |
| 563 | */ |
| 564 | per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; |
| 565 | per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; |
| 566 | per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; |
| 567 | return 0; |
| 568 | } |
| 569 | #endif |
| 570 | |
| 571 | /* |
| 572 | * This function will use the architecture-specific hardware random |
| 573 | * number generator if it is available. It is not recommended for |
| 574 | * use. Use get_random_bytes() instead. It returns the number of |
| 575 | * bytes filled in. |
| 576 | */ |
| 577 | size_t __must_check get_random_bytes_arch(void *buf, size_t len) |
| 578 | { |
| 579 | size_t left = len; |
| 580 | u8 *p = buf; |
| 581 | |
| 582 | while (left) { |
| 583 | unsigned long v; |
| 584 | size_t block_len = min_t(size_t, left, sizeof(unsigned long)); |
| 585 | |
| 586 | if (!arch_get_random_long(&v)) |
| 587 | break; |
| 588 | |
| 589 | memcpy(p, &v, block_len); |
| 590 | p += block_len; |
| 591 | left -= block_len; |
| 592 | } |
| 593 | |
| 594 | return len - left; |
| 595 | } |
| 596 | EXPORT_SYMBOL(get_random_bytes_arch); |
| 597 | |
| 598 | |
| 599 | /********************************************************************** |
| 600 | * |
| 601 | * Entropy accumulation and extraction routines. |
| 602 | * |
| 603 | * Callers may add entropy via: |
| 604 | * |
| 605 | * static void mix_pool_bytes(const void *buf, size_t len) |
| 606 | * |
| 607 | * After which, if added entropy should be credited: |
| 608 | * |
| 609 | * static void credit_init_bits(size_t bits) |
| 610 | * |
| 611 | * Finally, extract entropy via: |
| 612 | * |
| 613 | * static void extract_entropy(void *buf, size_t len) |
| 614 | * |
| 615 | **********************************************************************/ |
| 616 | |
| 617 | enum { |
| 618 | POOL_BITS = BLAKE2S_HASH_SIZE * 8, |
| 619 | POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ |
| 620 | POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ |
| 621 | }; |
| 622 | |
| 623 | static struct { |
| 624 | struct blake2s_state hash; |
| 625 | spinlock_t lock; |
| 626 | unsigned int init_bits; |
| 627 | } input_pool = { |
| 628 | .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), |
| 629 | BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, |
| 630 | BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, |
| 631 | .hash.outlen = BLAKE2S_HASH_SIZE, |
| 632 | .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), |
| 633 | }; |
| 634 | |
| 635 | static void _mix_pool_bytes(const void *buf, size_t len) |
| 636 | { |
| 637 | blake2s_update(&input_pool.hash, buf, len); |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * This function adds bytes into the input pool. It does not |
| 642 | * update the initialization bit counter; the caller should call |
| 643 | * credit_init_bits if this is appropriate. |
| 644 | */ |
| 645 | static void mix_pool_bytes(const void *buf, size_t len) |
| 646 | { |
| 647 | unsigned long flags; |
| 648 | |
| 649 | spin_lock_irqsave(&input_pool.lock, flags); |
| 650 | _mix_pool_bytes(buf, len); |
| 651 | spin_unlock_irqrestore(&input_pool.lock, flags); |
| 652 | } |
| 653 | |
| 654 | /* |
| 655 | * This is an HKDF-like construction for using the hashed collected entropy |
| 656 | * as a PRF key, that's then expanded block-by-block. |
| 657 | */ |
| 658 | static void extract_entropy(void *buf, size_t len) |
| 659 | { |
| 660 | unsigned long flags; |
| 661 | u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; |
| 662 | struct { |
| 663 | unsigned long rdseed[32 / sizeof(long)]; |
| 664 | size_t counter; |
| 665 | } block; |
| 666 | size_t i; |
| 667 | |
| 668 | for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { |
| 669 | if (!arch_get_random_seed_long(&block.rdseed[i]) && |
| 670 | !arch_get_random_long(&block.rdseed[i])) |
| 671 | block.rdseed[i] = random_get_entropy(); |
| 672 | } |
| 673 | |
| 674 | spin_lock_irqsave(&input_pool.lock, flags); |
| 675 | |
| 676 | /* seed = HASHPRF(last_key, entropy_input) */ |
| 677 | blake2s_final(&input_pool.hash, seed); |
| 678 | |
| 679 | /* next_key = HASHPRF(seed, RDSEED || 0) */ |
| 680 | block.counter = 0; |
| 681 | blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); |
| 682 | blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); |
| 683 | |
| 684 | spin_unlock_irqrestore(&input_pool.lock, flags); |
| 685 | memzero_explicit(next_key, sizeof(next_key)); |
| 686 | |
| 687 | while (len) { |
| 688 | i = min_t(size_t, len, BLAKE2S_HASH_SIZE); |
| 689 | /* output = HASHPRF(seed, RDSEED || ++counter) */ |
| 690 | ++block.counter; |
| 691 | blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); |
| 692 | len -= i; |
| 693 | buf += i; |
| 694 | } |
| 695 | |
| 696 | memzero_explicit(seed, sizeof(seed)); |
| 697 | memzero_explicit(&block, sizeof(block)); |
| 698 | } |
| 699 | |
| 700 | #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) |
| 701 | |
| 702 | static void __cold _credit_init_bits(size_t bits) |
| 703 | { |
| 704 | unsigned int new, orig, add; |
| 705 | unsigned long flags; |
| 706 | |
| 707 | if (!bits) |
| 708 | return; |
| 709 | |
| 710 | add = min_t(size_t, bits, POOL_BITS); |
| 711 | |
| 712 | do { |
| 713 | orig = READ_ONCE(input_pool.init_bits); |
| 714 | new = min_t(unsigned int, POOL_BITS, orig + add); |
| 715 | } while (cmpxchg(&input_pool.init_bits, orig, new) != orig); |
| 716 | |
| 717 | if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { |
| 718 | crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ |
| 719 | process_random_ready_list(); |
| 720 | wake_up_interruptible(&crng_init_wait); |
| 721 | kill_fasync(&fasync, SIGIO, POLL_IN); |
| 722 | pr_notice("crng init done\n"); |
| 723 | if (urandom_warning.missed) |
| 724 | pr_notice("%d urandom warning(s) missed due to ratelimiting\n", |
| 725 | urandom_warning.missed); |
| 726 | } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { |
| 727 | spin_lock_irqsave(&base_crng.lock, flags); |
| 728 | /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ |
| 729 | if (crng_init == CRNG_EMPTY) { |
| 730 | extract_entropy(base_crng.key, sizeof(base_crng.key)); |
| 731 | crng_init = CRNG_EARLY; |
| 732 | } |
| 733 | spin_unlock_irqrestore(&base_crng.lock, flags); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | |
| 738 | /********************************************************************** |
| 739 | * |
| 740 | * Entropy collection routines. |
| 741 | * |
| 742 | * The following exported functions are used for pushing entropy into |
| 743 | * the above entropy accumulation routines: |
| 744 | * |
| 745 | * void add_device_randomness(const void *buf, size_t len); |
| 746 | * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); |
| 747 | * void add_bootloader_randomness(const void *buf, size_t len); |
| 748 | * void add_interrupt_randomness(int irq); |
| 749 | * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); |
| 750 | * void add_disk_randomness(struct gendisk *disk); |
| 751 | * |
| 752 | * add_device_randomness() adds data to the input pool that |
| 753 | * is likely to differ between two devices (or possibly even per boot). |
| 754 | * This would be things like MAC addresses or serial numbers, or the |
| 755 | * read-out of the RTC. This does *not* credit any actual entropy to |
| 756 | * the pool, but it initializes the pool to different values for devices |
| 757 | * that might otherwise be identical and have very little entropy |
| 758 | * available to them (particularly common in the embedded world). |
| 759 | * |
| 760 | * add_hwgenerator_randomness() is for true hardware RNGs, and will credit |
| 761 | * entropy as specified by the caller. If the entropy pool is full it will |
| 762 | * block until more entropy is needed. |
| 763 | * |
| 764 | * add_bootloader_randomness() is called by bootloader drivers, such as EFI |
| 765 | * and device tree, and credits its input depending on whether or not the |
| 766 | * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set. |
| 767 | * |
| 768 | * add_interrupt_randomness() uses the interrupt timing as random |
| 769 | * inputs to the entropy pool. Using the cycle counters and the irq source |
| 770 | * as inputs, it feeds the input pool roughly once a second or after 64 |
| 771 | * interrupts, crediting 1 bit of entropy for whichever comes first. |
| 772 | * |
| 773 | * add_input_randomness() uses the input layer interrupt timing, as well |
| 774 | * as the event type information from the hardware. |
| 775 | * |
| 776 | * add_disk_randomness() uses what amounts to the seek time of block |
| 777 | * layer request events, on a per-disk_devt basis, as input to the |
| 778 | * entropy pool. Note that high-speed solid state drives with very low |
| 779 | * seek times do not make for good sources of entropy, as their seek |
| 780 | * times are usually fairly consistent. |
| 781 | * |
| 782 | * The last two routines try to estimate how many bits of entropy |
| 783 | * to credit. They do this by keeping track of the first and second |
| 784 | * order deltas of the event timings. |
| 785 | * |
| 786 | **********************************************************************/ |
| 787 | |
| 788 | static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); |
| 789 | static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); |
| 790 | static int __init parse_trust_cpu(char *arg) |
| 791 | { |
| 792 | return kstrtobool(arg, &trust_cpu); |
| 793 | } |
| 794 | static int __init parse_trust_bootloader(char *arg) |
| 795 | { |
| 796 | return kstrtobool(arg, &trust_bootloader); |
| 797 | } |
| 798 | early_param("random.trust_cpu", parse_trust_cpu); |
| 799 | early_param("random.trust_bootloader", parse_trust_bootloader); |
| 800 | |
| 801 | /* |
| 802 | * The first collection of entropy occurs at system boot while interrupts |
| 803 | * are still turned off. Here we push in latent entropy, RDSEED, a timestamp, |
| 804 | * utsname(), and the command line. Depending on the above configuration knob, |
| 805 | * RDSEED may be considered sufficient for initialization. Note that much |
| 806 | * earlier setup may already have pushed entropy into the input pool by the |
| 807 | * time we get here. |
| 808 | */ |
| 809 | int __init random_init(const char *command_line) |
| 810 | { |
| 811 | ktime_t now = ktime_get_real(); |
| 812 | unsigned int i, arch_bits; |
| 813 | unsigned long entropy; |
| 814 | |
| 815 | #if defined(LATENT_ENTROPY_PLUGIN) |
| 816 | static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; |
| 817 | _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); |
| 818 | #endif |
| 819 | |
| 820 | for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8; |
| 821 | i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) { |
| 822 | if (!arch_get_random_seed_long_early(&entropy) && |
| 823 | !arch_get_random_long_early(&entropy)) { |
| 824 | entropy = random_get_entropy(); |
| 825 | arch_bits -= sizeof(entropy) * 8; |
| 826 | } |
| 827 | _mix_pool_bytes(&entropy, sizeof(entropy)); |
| 828 | } |
| 829 | _mix_pool_bytes(&now, sizeof(now)); |
| 830 | _mix_pool_bytes(utsname(), sizeof(*(utsname()))); |
| 831 | _mix_pool_bytes(command_line, strlen(command_line)); |
| 832 | add_latent_entropy(); |
| 833 | |
| 834 | if (crng_ready()) |
| 835 | crng_reseed(); |
| 836 | else if (trust_cpu) |
| 837 | _credit_init_bits(arch_bits); |
| 838 | |
| 839 | return 0; |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * Add device- or boot-specific data to the input pool to help |
| 844 | * initialize it. |
| 845 | * |
| 846 | * None of this adds any entropy; it is meant to avoid the problem of |
| 847 | * the entropy pool having similar initial state across largely |
| 848 | * identical devices. |
| 849 | */ |
| 850 | void add_device_randomness(const void *buf, size_t len) |
| 851 | { |
| 852 | unsigned long entropy = random_get_entropy(); |
| 853 | unsigned long flags; |
| 854 | |
| 855 | spin_lock_irqsave(&input_pool.lock, flags); |
| 856 | _mix_pool_bytes(&entropy, sizeof(entropy)); |
| 857 | _mix_pool_bytes(buf, len); |
| 858 | spin_unlock_irqrestore(&input_pool.lock, flags); |
| 859 | } |
| 860 | EXPORT_SYMBOL(add_device_randomness); |
| 861 | |
| 862 | /* |
| 863 | * Interface for in-kernel drivers of true hardware RNGs. |
| 864 | * Those devices may produce endless random bits and will be throttled |
| 865 | * when our pool is full. |
| 866 | */ |
| 867 | void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) |
| 868 | { |
| 869 | mix_pool_bytes(buf, len); |
| 870 | credit_init_bits(entropy); |
| 871 | |
| 872 | /* |
| 873 | * Throttle writing to once every CRNG_RESEED_INTERVAL, unless |
| 874 | * we're not yet initialized. |
| 875 | */ |
| 876 | if (!kthread_should_stop() && crng_ready()) |
| 877 | schedule_timeout_interruptible(CRNG_RESEED_INTERVAL); |
| 878 | } |
| 879 | EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); |
| 880 | |
| 881 | /* |
| 882 | * Handle random seed passed by bootloader, and credit it if |
| 883 | * CONFIG_RANDOM_TRUST_BOOTLOADER is set. |
| 884 | */ |
| 885 | void __init add_bootloader_randomness(const void *buf, size_t len) |
| 886 | { |
| 887 | mix_pool_bytes(buf, len); |
| 888 | if (trust_bootloader) |
| 889 | credit_init_bits(len * 8); |
| 890 | } |
| 891 | |
| 892 | struct fast_pool { |
| 893 | unsigned long pool[4]; |
| 894 | unsigned long last; |
| 895 | unsigned int count; |
| 896 | struct timer_list mix; |
| 897 | }; |
| 898 | |
| 899 | static void mix_interrupt_randomness(struct timer_list *work); |
| 900 | |
| 901 | static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { |
| 902 | #ifdef CONFIG_64BIT |
| 903 | #define FASTMIX_PERM SIPHASH_PERMUTATION |
| 904 | .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, |
| 905 | #else |
| 906 | #define FASTMIX_PERM HSIPHASH_PERMUTATION |
| 907 | .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, |
| 908 | #endif |
| 909 | .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) |
| 910 | }; |
| 911 | |
| 912 | /* |
| 913 | * This is [Half]SipHash-1-x, starting from an empty key. Because |
| 914 | * the key is fixed, it assumes that its inputs are non-malicious, |
| 915 | * and therefore this has no security on its own. s represents the |
| 916 | * four-word SipHash state, while v represents a two-word input. |
| 917 | */ |
| 918 | static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) |
| 919 | { |
| 920 | s[3] ^= v1; |
| 921 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| 922 | s[0] ^= v1; |
| 923 | s[3] ^= v2; |
| 924 | FASTMIX_PERM(s[0], s[1], s[2], s[3]); |
| 925 | s[0] ^= v2; |
| 926 | } |
| 927 | |
| 928 | #ifdef CONFIG_SMP |
| 929 | /* |
| 930 | * This function is called when the CPU has just come online, with |
| 931 | * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. |
| 932 | */ |
| 933 | int __cold random_online_cpu(unsigned int cpu) |
| 934 | { |
| 935 | /* |
| 936 | * During CPU shutdown and before CPU onlining, add_interrupt_ |
| 937 | * randomness() may schedule mix_interrupt_randomness(), and |
| 938 | * set the MIX_INFLIGHT flag. However, because the worker can |
| 939 | * be scheduled on a different CPU during this period, that |
| 940 | * flag will never be cleared. For that reason, we zero out |
| 941 | * the flag here, which runs just after workqueues are onlined |
| 942 | * for the CPU again. This also has the effect of setting the |
| 943 | * irq randomness count to zero so that new accumulated irqs |
| 944 | * are fresh. |
| 945 | */ |
| 946 | per_cpu_ptr(&irq_randomness, cpu)->count = 0; |
| 947 | return 0; |
| 948 | } |
| 949 | #endif |
| 950 | |
| 951 | static void mix_interrupt_randomness(struct timer_list *work) |
| 952 | { |
| 953 | struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); |
| 954 | /* |
| 955 | * The size of the copied stack pool is explicitly 2 longs so that we |
| 956 | * only ever ingest half of the siphash output each time, retaining |
| 957 | * the other half as the next "key" that carries over. The entropy is |
| 958 | * supposed to be sufficiently dispersed between bits so on average |
| 959 | * we don't wind up "losing" some. |
| 960 | */ |
| 961 | unsigned long pool[2]; |
| 962 | unsigned int count; |
| 963 | |
| 964 | /* Check to see if we're running on the wrong CPU due to hotplug. */ |
| 965 | local_irq_disable(); |
| 966 | if (fast_pool != this_cpu_ptr(&irq_randomness)) { |
| 967 | local_irq_enable(); |
| 968 | return; |
| 969 | } |
| 970 | |
| 971 | /* |
| 972 | * Copy the pool to the stack so that the mixer always has a |
| 973 | * consistent view, before we reenable irqs again. |
| 974 | */ |
| 975 | memcpy(pool, fast_pool->pool, sizeof(pool)); |
| 976 | count = fast_pool->count; |
| 977 | fast_pool->count = 0; |
| 978 | fast_pool->last = jiffies; |
| 979 | local_irq_enable(); |
| 980 | |
| 981 | mix_pool_bytes(pool, sizeof(pool)); |
| 982 | credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); |
| 983 | |
| 984 | memzero_explicit(pool, sizeof(pool)); |
| 985 | } |
| 986 | |
| 987 | void add_interrupt_randomness(int irq) |
| 988 | { |
| 989 | enum { MIX_INFLIGHT = 1U << 31 }; |
| 990 | unsigned long entropy = random_get_entropy(); |
| 991 | struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); |
| 992 | struct pt_regs *regs = get_irq_regs(); |
| 993 | unsigned int new_count; |
| 994 | |
| 995 | fast_mix(fast_pool->pool, entropy, |
| 996 | (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); |
| 997 | new_count = ++fast_pool->count; |
| 998 | |
| 999 | if (new_count & MIX_INFLIGHT) |
| 1000 | return; |
| 1001 | |
| 1002 | if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) |
| 1003 | return; |
| 1004 | |
| 1005 | fast_pool->count |= MIX_INFLIGHT; |
| 1006 | if (!timer_pending(&fast_pool->mix)) { |
| 1007 | fast_pool->mix.expires = jiffies; |
| 1008 | add_timer_on(&fast_pool->mix, raw_smp_processor_id()); |
| 1009 | } |
| 1010 | } |
| 1011 | EXPORT_SYMBOL_GPL(add_interrupt_randomness); |
| 1012 | |
| 1013 | /* There is one of these per entropy source */ |
| 1014 | struct timer_rand_state { |
| 1015 | unsigned long last_time; |
| 1016 | long last_delta, last_delta2; |
| 1017 | }; |
| 1018 | |
| 1019 | /* |
| 1020 | * This function adds entropy to the entropy "pool" by using timing |
| 1021 | * delays. It uses the timer_rand_state structure to make an estimate |
| 1022 | * of how many bits of entropy this call has added to the pool. The |
| 1023 | * value "num" is also added to the pool; it should somehow describe |
| 1024 | * the type of event that just happened. |
| 1025 | */ |
| 1026 | static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) |
| 1027 | { |
| 1028 | unsigned long entropy = random_get_entropy(), now = jiffies, flags; |
| 1029 | long delta, delta2, delta3; |
| 1030 | unsigned int bits; |
| 1031 | |
| 1032 | /* |
| 1033 | * If we're in a hard IRQ, add_interrupt_randomness() will be called |
| 1034 | * sometime after, so mix into the fast pool. |
| 1035 | */ |
| 1036 | if (in_irq()) { |
| 1037 | fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); |
| 1038 | } else { |
| 1039 | spin_lock_irqsave(&input_pool.lock, flags); |
| 1040 | _mix_pool_bytes(&entropy, sizeof(entropy)); |
| 1041 | _mix_pool_bytes(&num, sizeof(num)); |
| 1042 | spin_unlock_irqrestore(&input_pool.lock, flags); |
| 1043 | } |
| 1044 | |
| 1045 | if (crng_ready()) |
| 1046 | return; |
| 1047 | |
| 1048 | /* |
| 1049 | * Calculate number of bits of randomness we probably added. |
| 1050 | * We take into account the first, second and third-order deltas |
| 1051 | * in order to make our estimate. |
| 1052 | */ |
| 1053 | delta = now - READ_ONCE(state->last_time); |
| 1054 | WRITE_ONCE(state->last_time, now); |
| 1055 | |
| 1056 | delta2 = delta - READ_ONCE(state->last_delta); |
| 1057 | WRITE_ONCE(state->last_delta, delta); |
| 1058 | |
| 1059 | delta3 = delta2 - READ_ONCE(state->last_delta2); |
| 1060 | WRITE_ONCE(state->last_delta2, delta2); |
| 1061 | |
| 1062 | if (delta < 0) |
| 1063 | delta = -delta; |
| 1064 | if (delta2 < 0) |
| 1065 | delta2 = -delta2; |
| 1066 | if (delta3 < 0) |
| 1067 | delta3 = -delta3; |
| 1068 | if (delta > delta2) |
| 1069 | delta = delta2; |
| 1070 | if (delta > delta3) |
| 1071 | delta = delta3; |
| 1072 | |
| 1073 | /* |
| 1074 | * delta is now minimum absolute delta. Round down by 1 bit |
| 1075 | * on general principles, and limit entropy estimate to 11 bits. |
| 1076 | */ |
| 1077 | bits = min(fls(delta >> 1), 11); |
| 1078 | |
| 1079 | /* |
| 1080 | * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() |
| 1081 | * will run after this, which uses a different crediting scheme of 1 bit |
| 1082 | * per every 64 interrupts. In order to let that function do accounting |
| 1083 | * close to the one in this function, we credit a full 64/64 bit per bit, |
| 1084 | * and then subtract one to account for the extra one added. |
| 1085 | */ |
| 1086 | if (in_irq()) |
| 1087 | this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; |
| 1088 | else |
| 1089 | _credit_init_bits(bits); |
| 1090 | } |
| 1091 | |
| 1092 | void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) |
| 1093 | { |
| 1094 | static unsigned char last_value; |
| 1095 | static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; |
| 1096 | |
| 1097 | /* Ignore autorepeat and the like. */ |
| 1098 | if (value == last_value) |
| 1099 | return; |
| 1100 | |
| 1101 | last_value = value; |
| 1102 | add_timer_randomness(&input_timer_state, |
| 1103 | (type << 4) ^ code ^ (code >> 4) ^ value); |
| 1104 | } |
| 1105 | EXPORT_SYMBOL_GPL(add_input_randomness); |
| 1106 | |
| 1107 | #ifdef CONFIG_BLOCK |
| 1108 | void add_disk_randomness(struct gendisk *disk) |
| 1109 | { |
| 1110 | if (!disk || !disk->random) |
| 1111 | return; |
| 1112 | /* First major is 1, so we get >= 0x200 here. */ |
| 1113 | add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); |
| 1114 | } |
| 1115 | EXPORT_SYMBOL_GPL(add_disk_randomness); |
| 1116 | |
| 1117 | void __cold rand_initialize_disk(struct gendisk *disk) |
| 1118 | { |
| 1119 | struct timer_rand_state *state; |
| 1120 | |
| 1121 | /* |
| 1122 | * If kzalloc returns null, we just won't use that entropy |
| 1123 | * source. |
| 1124 | */ |
| 1125 | state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); |
| 1126 | if (state) { |
| 1127 | state->last_time = INITIAL_JIFFIES; |
| 1128 | disk->random = state; |
| 1129 | } |
| 1130 | } |
| 1131 | #endif |
| 1132 | |
| 1133 | /* |
| 1134 | * Each time the timer fires, we expect that we got an unpredictable |
| 1135 | * jump in the cycle counter. Even if the timer is running on another |
| 1136 | * CPU, the timer activity will be touching the stack of the CPU that is |
| 1137 | * generating entropy.. |
| 1138 | * |
| 1139 | * Note that we don't re-arm the timer in the timer itself - we are |
| 1140 | * happy to be scheduled away, since that just makes the load more |
| 1141 | * complex, but we do not want the timer to keep ticking unless the |
| 1142 | * entropy loop is running. |
| 1143 | * |
| 1144 | * So the re-arming always happens in the entropy loop itself. |
| 1145 | */ |
| 1146 | static void __cold entropy_timer(struct timer_list *t) |
| 1147 | { |
| 1148 | credit_init_bits(1); |
| 1149 | } |
| 1150 | |
| 1151 | /* |
| 1152 | * If we have an actual cycle counter, see if we can |
| 1153 | * generate enough entropy with timing noise |
| 1154 | */ |
| 1155 | static void __cold try_to_generate_entropy(void) |
| 1156 | { |
| 1157 | struct { |
| 1158 | unsigned long entropy; |
| 1159 | struct timer_list timer; |
| 1160 | } stack; |
| 1161 | |
| 1162 | stack.entropy = random_get_entropy(); |
| 1163 | |
| 1164 | /* Slow counter - or none. Don't even bother */ |
| 1165 | if (stack.entropy == random_get_entropy()) |
| 1166 | return; |
| 1167 | |
| 1168 | timer_setup_on_stack(&stack.timer, entropy_timer, 0); |
| 1169 | while (!crng_ready() && !signal_pending(current)) { |
| 1170 | if (!timer_pending(&stack.timer)) |
| 1171 | mod_timer(&stack.timer, jiffies + 1); |
| 1172 | mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); |
| 1173 | schedule(); |
| 1174 | stack.entropy = random_get_entropy(); |
| 1175 | } |
| 1176 | |
| 1177 | del_timer_sync(&stack.timer); |
| 1178 | destroy_timer_on_stack(&stack.timer); |
| 1179 | mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | /********************************************************************** |
| 1184 | * |
| 1185 | * Userspace reader/writer interfaces. |
| 1186 | * |
| 1187 | * getrandom(2) is the primary modern interface into the RNG and should |
| 1188 | * be used in preference to anything else. |
| 1189 | * |
| 1190 | * Reading from /dev/random has the same functionality as calling |
| 1191 | * getrandom(2) with flags=0. In earlier versions, however, it had |
| 1192 | * vastly different semantics and should therefore be avoided, to |
| 1193 | * prevent backwards compatibility issues. |
| 1194 | * |
| 1195 | * Reading from /dev/urandom has the same functionality as calling |
| 1196 | * getrandom(2) with flags=GRND_INSECURE. Because it does not block |
| 1197 | * waiting for the RNG to be ready, it should not be used. |
| 1198 | * |
| 1199 | * Writing to either /dev/random or /dev/urandom adds entropy to |
| 1200 | * the input pool but does not credit it. |
| 1201 | * |
| 1202 | * Polling on /dev/random indicates when the RNG is initialized, on |
| 1203 | * the read side, and when it wants new entropy, on the write side. |
| 1204 | * |
| 1205 | * Both /dev/random and /dev/urandom have the same set of ioctls for |
| 1206 | * adding entropy, getting the entropy count, zeroing the count, and |
| 1207 | * reseeding the crng. |
| 1208 | * |
| 1209 | **********************************************************************/ |
| 1210 | |
| 1211 | SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) |
| 1212 | { |
| 1213 | struct iov_iter iter; |
| 1214 | struct iovec iov; |
| 1215 | int ret; |
| 1216 | |
| 1217 | if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) |
| 1218 | return -EINVAL; |
| 1219 | |
| 1220 | /* |
| 1221 | * Requesting insecure and blocking randomness at the same time makes |
| 1222 | * no sense. |
| 1223 | */ |
| 1224 | if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) |
| 1225 | return -EINVAL; |
| 1226 | |
| 1227 | if (!crng_ready() && !(flags & GRND_INSECURE)) { |
| 1228 | if (flags & GRND_NONBLOCK) |
| 1229 | return -EAGAIN; |
| 1230 | ret = wait_for_random_bytes(); |
| 1231 | if (unlikely(ret)) |
| 1232 | return ret; |
| 1233 | } |
| 1234 | |
| 1235 | ret = import_single_range(READ, ubuf, len, &iov, &iter); |
| 1236 | if (unlikely(ret)) |
| 1237 | return ret; |
| 1238 | return get_random_bytes_user(&iter); |
| 1239 | } |
| 1240 | |
| 1241 | static __poll_t random_poll(struct file *file, poll_table *wait) |
| 1242 | { |
| 1243 | poll_wait(file, &crng_init_wait, wait); |
| 1244 | return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; |
| 1245 | } |
| 1246 | |
| 1247 | static ssize_t write_pool_user(struct iov_iter *iter) |
| 1248 | { |
| 1249 | u8 block[BLAKE2S_BLOCK_SIZE]; |
| 1250 | ssize_t ret = 0; |
| 1251 | size_t copied; |
| 1252 | |
| 1253 | if (unlikely(!iov_iter_count(iter))) |
| 1254 | return 0; |
| 1255 | |
| 1256 | for (;;) { |
| 1257 | copied = copy_from_iter(block, sizeof(block), iter); |
| 1258 | ret += copied; |
| 1259 | mix_pool_bytes(block, copied); |
| 1260 | if (!iov_iter_count(iter) || copied != sizeof(block)) |
| 1261 | break; |
| 1262 | |
| 1263 | BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); |
| 1264 | if (ret % PAGE_SIZE == 0) { |
| 1265 | if (signal_pending(current)) |
| 1266 | break; |
| 1267 | cond_resched(); |
| 1268 | } |
| 1269 | } |
| 1270 | |
| 1271 | memzero_explicit(block, sizeof(block)); |
| 1272 | return ret ? ret : -EFAULT; |
| 1273 | } |
| 1274 | |
| 1275 | static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1276 | { |
| 1277 | return write_pool_user(iter); |
| 1278 | } |
| 1279 | |
| 1280 | static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1281 | { |
| 1282 | static int maxwarn = 10; |
| 1283 | |
| 1284 | if (!crng_ready()) { |
| 1285 | if (!ratelimit_disable && maxwarn <= 0) |
| 1286 | ++urandom_warning.missed; |
| 1287 | else if (ratelimit_disable || __ratelimit(&urandom_warning)) { |
| 1288 | --maxwarn; |
| 1289 | pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", |
| 1290 | current->comm, iov_iter_count(iter)); |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | return get_random_bytes_user(iter); |
| 1295 | } |
| 1296 | |
| 1297 | static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) |
| 1298 | { |
| 1299 | int ret; |
| 1300 | |
| 1301 | if (!crng_ready() && |
| 1302 | ((kiocb->ki_flags & IOCB_NOWAIT) || |
| 1303 | (kiocb->ki_filp->f_flags & O_NONBLOCK))) |
| 1304 | return -EAGAIN; |
| 1305 | |
| 1306 | ret = wait_for_random_bytes(); |
| 1307 | if (ret != 0) |
| 1308 | return ret; |
| 1309 | return get_random_bytes_user(iter); |
| 1310 | } |
| 1311 | |
| 1312 | static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) |
| 1313 | { |
| 1314 | int __user *p = (int __user *)arg; |
| 1315 | int ent_count; |
| 1316 | |
| 1317 | switch (cmd) { |
| 1318 | case RNDGETENTCNT: |
| 1319 | /* Inherently racy, no point locking. */ |
| 1320 | if (put_user(input_pool.init_bits, p)) |
| 1321 | return -EFAULT; |
| 1322 | return 0; |
| 1323 | case RNDADDTOENTCNT: |
| 1324 | if (!capable(CAP_SYS_ADMIN)) |
| 1325 | return -EPERM; |
| 1326 | if (get_user(ent_count, p)) |
| 1327 | return -EFAULT; |
| 1328 | if (ent_count < 0) |
| 1329 | return -EINVAL; |
| 1330 | credit_init_bits(ent_count); |
| 1331 | return 0; |
| 1332 | case RNDADDENTROPY: { |
| 1333 | struct iov_iter iter; |
| 1334 | struct iovec iov; |
| 1335 | ssize_t ret; |
| 1336 | int len; |
| 1337 | |
| 1338 | if (!capable(CAP_SYS_ADMIN)) |
| 1339 | return -EPERM; |
| 1340 | if (get_user(ent_count, p++)) |
| 1341 | return -EFAULT; |
| 1342 | if (ent_count < 0) |
| 1343 | return -EINVAL; |
| 1344 | if (get_user(len, p++)) |
| 1345 | return -EFAULT; |
| 1346 | ret = import_single_range(WRITE, p, len, &iov, &iter); |
| 1347 | if (unlikely(ret)) |
| 1348 | return ret; |
| 1349 | ret = write_pool_user(&iter); |
| 1350 | if (unlikely(ret < 0)) |
| 1351 | return ret; |
| 1352 | /* Since we're crediting, enforce that it was all written into the pool. */ |
| 1353 | if (unlikely(ret != len)) |
| 1354 | return -EFAULT; |
| 1355 | credit_init_bits(ent_count); |
| 1356 | return 0; |
| 1357 | } |
| 1358 | case RNDZAPENTCNT: |
| 1359 | case RNDCLEARPOOL: |
| 1360 | /* No longer has any effect. */ |
| 1361 | if (!capable(CAP_SYS_ADMIN)) |
| 1362 | return -EPERM; |
| 1363 | return 0; |
| 1364 | case RNDRESEEDCRNG: |
| 1365 | if (!capable(CAP_SYS_ADMIN)) |
| 1366 | return -EPERM; |
| 1367 | if (!crng_ready()) |
| 1368 | return -ENODATA; |
| 1369 | crng_reseed(); |
| 1370 | return 0; |
| 1371 | default: |
| 1372 | return -EINVAL; |
| 1373 | } |
| 1374 | } |
| 1375 | |
| 1376 | static int random_fasync(int fd, struct file *filp, int on) |
| 1377 | { |
| 1378 | return fasync_helper(fd, filp, on, &fasync); |
| 1379 | } |
| 1380 | |
| 1381 | const struct file_operations random_fops = { |
| 1382 | .read_iter = random_read_iter, |
| 1383 | .write_iter = random_write_iter, |
| 1384 | .poll = random_poll, |
| 1385 | .unlocked_ioctl = random_ioctl, |
| 1386 | .compat_ioctl = compat_ptr_ioctl, |
| 1387 | .fasync = random_fasync, |
| 1388 | .llseek = noop_llseek, |
| 1389 | .splice_read = generic_file_splice_read, |
| 1390 | .splice_write = iter_file_splice_write, |
| 1391 | }; |
| 1392 | |
| 1393 | const struct file_operations urandom_fops = { |
| 1394 | .read_iter = urandom_read_iter, |
| 1395 | .write_iter = random_write_iter, |
| 1396 | .unlocked_ioctl = random_ioctl, |
| 1397 | .compat_ioctl = compat_ptr_ioctl, |
| 1398 | .fasync = random_fasync, |
| 1399 | .llseek = noop_llseek, |
| 1400 | .splice_read = generic_file_splice_read, |
| 1401 | .splice_write = iter_file_splice_write, |
| 1402 | }; |
| 1403 | |
| 1404 | |
| 1405 | /******************************************************************** |
| 1406 | * |
| 1407 | * Sysctl interface. |
| 1408 | * |
| 1409 | * These are partly unused legacy knobs with dummy values to not break |
| 1410 | * userspace and partly still useful things. They are usually accessible |
| 1411 | * in /proc/sys/kernel/random/ and are as follows: |
| 1412 | * |
| 1413 | * - boot_id - a UUID representing the current boot. |
| 1414 | * |
| 1415 | * - uuid - a random UUID, different each time the file is read. |
| 1416 | * |
| 1417 | * - poolsize - the number of bits of entropy that the input pool can |
| 1418 | * hold, tied to the POOL_BITS constant. |
| 1419 | * |
| 1420 | * - entropy_avail - the number of bits of entropy currently in the |
| 1421 | * input pool. Always <= poolsize. |
| 1422 | * |
| 1423 | * - write_wakeup_threshold - the amount of entropy in the input pool |
| 1424 | * below which write polls to /dev/random will unblock, requesting |
| 1425 | * more entropy, tied to the POOL_READY_BITS constant. It is writable |
| 1426 | * to avoid breaking old userspaces, but writing to it does not |
| 1427 | * change any behavior of the RNG. |
| 1428 | * |
| 1429 | * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. |
| 1430 | * It is writable to avoid breaking old userspaces, but writing |
| 1431 | * to it does not change any behavior of the RNG. |
| 1432 | * |
| 1433 | ********************************************************************/ |
| 1434 | |
| 1435 | #ifdef CONFIG_SYSCTL |
| 1436 | |
| 1437 | #include <linux/sysctl.h> |
| 1438 | |
| 1439 | static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; |
| 1440 | static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; |
| 1441 | static int sysctl_poolsize = POOL_BITS; |
| 1442 | static u8 sysctl_bootid[UUID_SIZE]; |
| 1443 | |
| 1444 | /* |
| 1445 | * This function is used to return both the bootid UUID, and random |
| 1446 | * UUID. The difference is in whether table->data is NULL; if it is, |
| 1447 | * then a new UUID is generated and returned to the user. |
| 1448 | */ |
| 1449 | static int proc_do_uuid(struct ctl_table *table, int write, void __user *buf, |
| 1450 | size_t *lenp, loff_t *ppos) |
| 1451 | { |
| 1452 | u8 tmp_uuid[UUID_SIZE], *uuid; |
| 1453 | char uuid_string[UUID_STRING_LEN + 1]; |
| 1454 | struct ctl_table fake_table = { |
| 1455 | .data = uuid_string, |
| 1456 | .maxlen = UUID_STRING_LEN |
| 1457 | }; |
| 1458 | |
| 1459 | if (write) |
| 1460 | return -EPERM; |
| 1461 | |
| 1462 | uuid = table->data; |
| 1463 | if (!uuid) { |
| 1464 | uuid = tmp_uuid; |
| 1465 | generate_random_uuid(uuid); |
| 1466 | } else { |
| 1467 | static DEFINE_SPINLOCK(bootid_spinlock); |
| 1468 | |
| 1469 | spin_lock(&bootid_spinlock); |
| 1470 | if (!uuid[8]) |
| 1471 | generate_random_uuid(uuid); |
| 1472 | spin_unlock(&bootid_spinlock); |
| 1473 | } |
| 1474 | |
| 1475 | snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); |
| 1476 | return proc_dostring(&fake_table, 0, buf, lenp, ppos); |
| 1477 | } |
| 1478 | |
| 1479 | /* The same as proc_dointvec, but writes don't change anything. */ |
| 1480 | static int proc_do_rointvec(struct ctl_table *table, int write, void __user *buf, |
| 1481 | size_t *lenp, loff_t *ppos) |
| 1482 | { |
| 1483 | return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); |
| 1484 | } |
| 1485 | |
| 1486 | extern struct ctl_table random_table[]; |
| 1487 | struct ctl_table random_table[] = { |
| 1488 | { |
| 1489 | .procname = "poolsize", |
| 1490 | .data = &sysctl_poolsize, |
| 1491 | .maxlen = sizeof(int), |
| 1492 | .mode = 0444, |
| 1493 | .proc_handler = proc_dointvec, |
| 1494 | }, |
| 1495 | { |
| 1496 | .procname = "entropy_avail", |
| 1497 | .data = &input_pool.init_bits, |
| 1498 | .maxlen = sizeof(int), |
| 1499 | .mode = 0444, |
| 1500 | .proc_handler = proc_dointvec, |
| 1501 | }, |
| 1502 | { |
| 1503 | .procname = "write_wakeup_threshold", |
| 1504 | .data = &sysctl_random_write_wakeup_bits, |
| 1505 | .maxlen = sizeof(int), |
| 1506 | .mode = 0644, |
| 1507 | .proc_handler = proc_do_rointvec, |
| 1508 | }, |
| 1509 | { |
| 1510 | .procname = "urandom_min_reseed_secs", |
| 1511 | .data = &sysctl_random_min_urandom_seed, |
| 1512 | .maxlen = sizeof(int), |
| 1513 | .mode = 0644, |
| 1514 | .proc_handler = proc_do_rointvec, |
| 1515 | }, |
| 1516 | { |
| 1517 | .procname = "boot_id", |
| 1518 | .data = &sysctl_bootid, |
| 1519 | .mode = 0444, |
| 1520 | .proc_handler = proc_do_uuid, |
| 1521 | }, |
| 1522 | { |
| 1523 | .procname = "uuid", |
| 1524 | .mode = 0444, |
| 1525 | .proc_handler = proc_do_uuid, |
| 1526 | }, |
| 1527 | { } |
| 1528 | }; |
| 1529 | #endif /* CONFIG_SYSCTL */ |