blob: 66789b3838d05da0107602b0db916c45ef2a6e4a [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/ioport.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28struct sh_cmt_device;
29
30/*
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
34 *
35 * 16B 32B 32B-F 48B R-Car Gen2
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
41 *
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
45 *
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
53 * block at 0x60.
54 *
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57 */
58
59enum sh_cmt_model {
60 SH_CMT_16BIT,
61 SH_CMT_32BIT,
62 SH_CMT_48BIT,
63 SH_CMT0_RCAR_GEN2,
64 SH_CMT1_RCAR_GEN2,
65};
66
67struct sh_cmt_info {
68 enum sh_cmt_model model;
69
70 unsigned int channels_mask;
71
72 unsigned long width; /* 16 or 32 bit version of hardware block */
73 u32 overflow_bit;
74 u32 clear_bits;
75
76 /* callbacks for CMSTR and CMCSR access */
77 u32 (*read_control)(void __iomem *base, unsigned long offs);
78 void (*write_control)(void __iomem *base, unsigned long offs,
79 u32 value);
80
81 /* callbacks for CMCNT and CMCOR access */
82 u32 (*read_count)(void __iomem *base, unsigned long offs);
83 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
84};
85
86struct sh_cmt_channel {
87 struct sh_cmt_device *cmt;
88
89 unsigned int index; /* Index in the documentation */
90 unsigned int hwidx; /* Real hardware index */
91
92 void __iomem *iostart;
93 void __iomem *ioctrl;
94
95 unsigned int timer_bit;
96 unsigned long flags;
97 u32 match_value;
98 u32 next_match_value;
99 u32 max_match_value;
100 raw_spinlock_t lock;
101 struct clock_event_device ced;
102 struct clocksource cs;
103 u64 total_cycles;
104 bool cs_enabled;
105};
106
107struct sh_cmt_device {
108 struct platform_device *pdev;
109
110 const struct sh_cmt_info *info;
111
112 void __iomem *mapbase;
113 struct clk *clk;
114 unsigned long rate;
115
116 raw_spinlock_t lock; /* Protect the shared start/stop register */
117
118 struct sh_cmt_channel *channels;
119 unsigned int num_channels;
120 unsigned int hw_channels;
121
122 bool has_clockevent;
123 bool has_clocksource;
124};
125
126#define SH_CMT16_CMCSR_CMF (1 << 7)
127#define SH_CMT16_CMCSR_CMIE (1 << 6)
128#define SH_CMT16_CMCSR_CKS8 (0 << 0)
129#define SH_CMT16_CMCSR_CKS32 (1 << 0)
130#define SH_CMT16_CMCSR_CKS128 (2 << 0)
131#define SH_CMT16_CMCSR_CKS512 (3 << 0)
132#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
133
134#define SH_CMT32_CMCSR_CMF (1 << 15)
135#define SH_CMT32_CMCSR_OVF (1 << 14)
136#define SH_CMT32_CMCSR_WRFLG (1 << 13)
137#define SH_CMT32_CMCSR_STTF (1 << 12)
138#define SH_CMT32_CMCSR_STPF (1 << 11)
139#define SH_CMT32_CMCSR_SSIE (1 << 10)
140#define SH_CMT32_CMCSR_CMS (1 << 9)
141#define SH_CMT32_CMCSR_CMM (1 << 8)
142#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
153
154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
155{
156 return ioread16(base + (offs << 1));
157}
158
159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
160{
161 return ioread32(base + (offs << 2));
162}
163
164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
165{
166 iowrite16(value, base + (offs << 1));
167}
168
169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
170{
171 iowrite32(value, base + (offs << 2));
172}
173
174static const struct sh_cmt_info sh_cmt_info[] = {
175 [SH_CMT_16BIT] = {
176 .model = SH_CMT_16BIT,
177 .width = 16,
178 .overflow_bit = SH_CMT16_CMCSR_CMF,
179 .clear_bits = ~SH_CMT16_CMCSR_CMF,
180 .read_control = sh_cmt_read16,
181 .write_control = sh_cmt_write16,
182 .read_count = sh_cmt_read16,
183 .write_count = sh_cmt_write16,
184 },
185 [SH_CMT_32BIT] = {
186 .model = SH_CMT_32BIT,
187 .width = 32,
188 .overflow_bit = SH_CMT32_CMCSR_CMF,
189 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
190 .read_control = sh_cmt_read16,
191 .write_control = sh_cmt_write16,
192 .read_count = sh_cmt_read32,
193 .write_count = sh_cmt_write32,
194 },
195 [SH_CMT_48BIT] = {
196 .model = SH_CMT_48BIT,
197 .channels_mask = 0x3f,
198 .width = 32,
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201 .read_control = sh_cmt_read32,
202 .write_control = sh_cmt_write32,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
206 [SH_CMT0_RCAR_GEN2] = {
207 .model = SH_CMT0_RCAR_GEN2,
208 .channels_mask = 0x60,
209 .width = 32,
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
217 [SH_CMT1_RCAR_GEN2] = {
218 .model = SH_CMT1_RCAR_GEN2,
219 .channels_mask = 0xff,
220 .width = 32,
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228};
229
230#define CMCSR 0 /* channel register */
231#define CMCNT 1 /* channel register */
232#define CMCOR 2 /* channel register */
233
234#define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */
235
236static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
237{
238 if (ch->iostart)
239 return ch->cmt->info->read_control(ch->iostart, 0);
240 else
241 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
242}
243
244static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
245{
246 if (ch->iostart)
247 ch->cmt->info->write_control(ch->iostart, 0, value);
248 else
249 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
250}
251
252static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
253{
254 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
255}
256
257static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
258{
259 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
260}
261
262static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
263{
264 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
265}
266
267static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
268{
269 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
270}
271
272static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
273{
274 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
275}
276
277static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
278{
279 u32 v1, v2, v3;
280 u32 o1, o2;
281
282 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
283
284 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
285 do {
286 o2 = o1;
287 v1 = sh_cmt_read_cmcnt(ch);
288 v2 = sh_cmt_read_cmcnt(ch);
289 v3 = sh_cmt_read_cmcnt(ch);
290 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
292 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
293
294 *has_wrapped = o1;
295 return v2;
296}
297
298static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
299{
300 unsigned long flags;
301 u32 value;
302
303 /* start stop register shared by multiple timer channels */
304 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
305 value = sh_cmt_read_cmstr(ch);
306
307 if (start)
308 value |= 1 << ch->timer_bit;
309 else
310 value &= ~(1 << ch->timer_bit);
311
312 sh_cmt_write_cmstr(ch, value);
313 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
314}
315
316static int sh_cmt_enable(struct sh_cmt_channel *ch)
317{
318 int k, ret;
319
320 pm_runtime_get_sync(&ch->cmt->pdev->dev);
321 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
322
323 /* enable clock */
324 ret = clk_enable(ch->cmt->clk);
325 if (ret) {
326 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
327 ch->index);
328 goto err0;
329 }
330
331 /* make sure channel is disabled */
332 sh_cmt_start_stop_ch(ch, 0);
333
334 /* configure channel, periodic mode and maximum timeout */
335 if (ch->cmt->info->width == 16) {
336 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
337 SH_CMT16_CMCSR_CKS512);
338 } else {
339 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
340 SH_CMT32_CMCSR_CMTOUT_IE |
341 SH_CMT32_CMCSR_CMR_IRQ |
342 SH_CMT32_CMCSR_CKS_RCLK8);
343 }
344
345 sh_cmt_write_cmcor(ch, 0xffffffff);
346 sh_cmt_write_cmcnt(ch, 0);
347
348 /*
349 * According to the sh73a0 user's manual, as CMCNT can be operated
350 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
351 * modifying CMCNT register; two RCLK cycles are necessary before
352 * this register is either read or any modification of the value
353 * it holds is reflected in the LSI's actual operation.
354 *
355 * While at it, we're supposed to clear out the CMCNT as of this
356 * moment, so make sure it's processed properly here. This will
357 * take RCLKx2 at maximum.
358 */
359 for (k = 0; k < 100; k++) {
360 if (!sh_cmt_read_cmcnt(ch))
361 break;
362 udelay(1);
363 }
364
365 if (sh_cmt_read_cmcnt(ch)) {
366 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
367 ch->index);
368 ret = -ETIMEDOUT;
369 goto err1;
370 }
371
372 /* enable channel */
373 sh_cmt_start_stop_ch(ch, 1);
374 return 0;
375 err1:
376 /* stop clock */
377 clk_disable(ch->cmt->clk);
378
379 err0:
380 return ret;
381}
382
383static void sh_cmt_disable(struct sh_cmt_channel *ch)
384{
385 /* disable channel */
386 sh_cmt_start_stop_ch(ch, 0);
387
388 /* disable interrupts in CMT block */
389 sh_cmt_write_cmcsr(ch, 0);
390
391 /* stop clock */
392 clk_disable(ch->cmt->clk);
393
394 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
395 pm_runtime_put(&ch->cmt->pdev->dev);
396}
397
398/* private flags */
399#define FLAG_CLOCKEVENT (1 << 0)
400#define FLAG_CLOCKSOURCE (1 << 1)
401#define FLAG_REPROGRAM (1 << 2)
402#define FLAG_SKIPEVENT (1 << 3)
403#define FLAG_IRQCONTEXT (1 << 4)
404
405static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
406 int absolute)
407{
408 u32 value = ch->next_match_value;
409 u32 new_match;
410 u32 delay = 0;
411 u32 now = 0;
412 u32 has_wrapped;
413
414 now = sh_cmt_get_counter(ch, &has_wrapped);
415 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
416
417 if (has_wrapped) {
418 /* we're competing with the interrupt handler.
419 * -> let the interrupt handler reprogram the timer.
420 * -> interrupt number two handles the event.
421 */
422 ch->flags |= FLAG_SKIPEVENT;
423 return;
424 }
425
426 if (absolute)
427 now = 0;
428
429 do {
430 /* reprogram the timer hardware,
431 * but don't save the new match value yet.
432 */
433 new_match = now + value + delay;
434 if (new_match > ch->max_match_value)
435 new_match = ch->max_match_value;
436
437 sh_cmt_write_cmcor(ch, new_match);
438
439 now = sh_cmt_get_counter(ch, &has_wrapped);
440 if (has_wrapped && (new_match > ch->match_value)) {
441 /* we are changing to a greater match value,
442 * so this wrap must be caused by the counter
443 * matching the old value.
444 * -> first interrupt reprograms the timer.
445 * -> interrupt number two handles the event.
446 */
447 ch->flags |= FLAG_SKIPEVENT;
448 break;
449 }
450
451 if (has_wrapped) {
452 /* we are changing to a smaller match value,
453 * so the wrap must be caused by the counter
454 * matching the new value.
455 * -> save programmed match value.
456 * -> let isr handle the event.
457 */
458 ch->match_value = new_match;
459 break;
460 }
461
462 /* be safe: verify hardware settings */
463 if (now < new_match) {
464 /* timer value is below match value, all good.
465 * this makes sure we won't miss any match events.
466 * -> save programmed match value.
467 * -> let isr handle the event.
468 */
469 ch->match_value = new_match;
470 break;
471 }
472
473 /* the counter has reached a value greater
474 * than our new match value. and since the
475 * has_wrapped flag isn't set we must have
476 * programmed a too close event.
477 * -> increase delay and retry.
478 */
479 if (delay)
480 delay <<= 1;
481 else
482 delay = 1;
483
484 if (!delay)
485 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
486 ch->index);
487
488 } while (delay);
489}
490
491static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
492{
493 if (delta > ch->max_match_value)
494 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
495 ch->index);
496
497 ch->next_match_value = delta;
498 sh_cmt_clock_event_program_verify(ch, 0);
499}
500
501static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502{
503 unsigned long flags;
504
505 raw_spin_lock_irqsave(&ch->lock, flags);
506 __sh_cmt_set_next(ch, delta);
507 raw_spin_unlock_irqrestore(&ch->lock, flags);
508}
509
510static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
511{
512 struct sh_cmt_channel *ch = dev_id;
513 unsigned long flags;
514
515 /* clear flags */
516 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
517 ch->cmt->info->clear_bits);
518
519 /* update clock source counter to begin with if enabled
520 * the wrap flag should be cleared by the timer specific
521 * isr before we end up here.
522 */
523 if (ch->flags & FLAG_CLOCKSOURCE)
524 ch->total_cycles += ch->match_value + 1;
525
526 if (!(ch->flags & FLAG_REPROGRAM))
527 ch->next_match_value = ch->max_match_value;
528
529 ch->flags |= FLAG_IRQCONTEXT;
530
531 if (ch->flags & FLAG_CLOCKEVENT) {
532 if (!(ch->flags & FLAG_SKIPEVENT)) {
533 if (clockevent_state_oneshot(&ch->ced)) {
534 ch->next_match_value = ch->max_match_value;
535 ch->flags |= FLAG_REPROGRAM;
536 }
537
538 ch->ced.event_handler(&ch->ced);
539 }
540 }
541
542 ch->flags &= ~FLAG_SKIPEVENT;
543
544 raw_spin_lock_irqsave(&ch->lock, flags);
545
546 if (ch->flags & FLAG_REPROGRAM) {
547 ch->flags &= ~FLAG_REPROGRAM;
548 sh_cmt_clock_event_program_verify(ch, 1);
549
550 if (ch->flags & FLAG_CLOCKEVENT)
551 if ((clockevent_state_shutdown(&ch->ced))
552 || (ch->match_value == ch->next_match_value))
553 ch->flags &= ~FLAG_REPROGRAM;
554 }
555
556 ch->flags &= ~FLAG_IRQCONTEXT;
557
558 raw_spin_unlock_irqrestore(&ch->lock, flags);
559
560 return IRQ_HANDLED;
561}
562
563static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
564{
565 int ret = 0;
566 unsigned long flags;
567
568 raw_spin_lock_irqsave(&ch->lock, flags);
569
570 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
571 ret = sh_cmt_enable(ch);
572
573 if (ret)
574 goto out;
575 ch->flags |= flag;
576
577 /* setup timeout if no clockevent */
578 if (ch->cmt->num_channels == 1 &&
579 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
580 __sh_cmt_set_next(ch, ch->max_match_value);
581 out:
582 raw_spin_unlock_irqrestore(&ch->lock, flags);
583
584 return ret;
585}
586
587static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
588{
589 unsigned long flags;
590 unsigned long f;
591
592 raw_spin_lock_irqsave(&ch->lock, flags);
593
594 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595 ch->flags &= ~flag;
596
597 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
598 sh_cmt_disable(ch);
599
600 /* adjust the timeout to maximum if only clocksource left */
601 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
602 __sh_cmt_set_next(ch, ch->max_match_value);
603
604 raw_spin_unlock_irqrestore(&ch->lock, flags);
605}
606
607static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
608{
609 return container_of(cs, struct sh_cmt_channel, cs);
610}
611
612static u64 sh_cmt_clocksource_read(struct clocksource *cs)
613{
614 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
615 u32 has_wrapped;
616
617 if (ch->cmt->num_channels == 1) {
618 unsigned long flags;
619 u64 value;
620 u32 raw;
621
622 raw_spin_lock_irqsave(&ch->lock, flags);
623 value = ch->total_cycles;
624 raw = sh_cmt_get_counter(ch, &has_wrapped);
625
626 if (unlikely(has_wrapped))
627 raw += ch->match_value + 1;
628 raw_spin_unlock_irqrestore(&ch->lock, flags);
629
630 return value + raw;
631 }
632
633 return sh_cmt_get_counter(ch, &has_wrapped);
634}
635
636static int sh_cmt_clocksource_enable(struct clocksource *cs)
637{
638 int ret;
639 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
640
641 WARN_ON(ch->cs_enabled);
642
643 ch->total_cycles = 0;
644
645 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
646 if (!ret)
647 ch->cs_enabled = true;
648
649 return ret;
650}
651
652static void sh_cmt_clocksource_disable(struct clocksource *cs)
653{
654 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
655
656 WARN_ON(!ch->cs_enabled);
657
658 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
659 ch->cs_enabled = false;
660}
661
662static void sh_cmt_clocksource_suspend(struct clocksource *cs)
663{
664 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
665
666 if (!ch->cs_enabled)
667 return;
668
669 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
670 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
671}
672
673static void sh_cmt_clocksource_resume(struct clocksource *cs)
674{
675 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
676
677 if (!ch->cs_enabled)
678 return;
679
680 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
681 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
682}
683
684static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
685 const char *name)
686{
687 struct clocksource *cs = &ch->cs;
688
689 cs->name = name;
690 cs->rating = 125;
691 cs->read = sh_cmt_clocksource_read;
692 cs->enable = sh_cmt_clocksource_enable;
693 cs->disable = sh_cmt_clocksource_disable;
694 cs->suspend = sh_cmt_clocksource_suspend;
695 cs->resume = sh_cmt_clocksource_resume;
696 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
697 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
698
699 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
700 ch->index);
701
702 clocksource_register_hz(cs, ch->cmt->rate);
703 return 0;
704}
705
706static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
707{
708 return container_of(ced, struct sh_cmt_channel, ced);
709}
710
711static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
712{
713 sh_cmt_start(ch, FLAG_CLOCKEVENT);
714
715 if (periodic)
716 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
717 else
718 sh_cmt_set_next(ch, ch->max_match_value);
719}
720
721static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
722{
723 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724
725 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
726 return 0;
727}
728
729static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
730 int periodic)
731{
732 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
733
734 /* deal with old setting first */
735 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
736 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
737
738 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
739 ch->index, periodic ? "periodic" : "oneshot");
740 sh_cmt_clock_event_start(ch, periodic);
741 return 0;
742}
743
744static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
745{
746 return sh_cmt_clock_event_set_state(ced, 0);
747}
748
749static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
750{
751 return sh_cmt_clock_event_set_state(ced, 1);
752}
753
754static int sh_cmt_clock_event_next(unsigned long delta,
755 struct clock_event_device *ced)
756{
757 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758 unsigned long flags;
759
760 BUG_ON(!clockevent_state_oneshot(ced));
761
762 raw_spin_lock_irqsave(&ch->lock, flags);
763
764 if (likely(ch->flags & FLAG_IRQCONTEXT))
765 ch->next_match_value = delta - 1;
766 else
767 __sh_cmt_set_next(ch, delta - 1);
768
769 raw_spin_unlock_irqrestore(&ch->lock, flags);
770
771 return 0;
772}
773
774static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
775{
776 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
777
778 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
779 clk_unprepare(ch->cmt->clk);
780}
781
782static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
783{
784 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
785
786 clk_prepare(ch->cmt->clk);
787 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
788}
789
790static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
791 const char *name)
792{
793 struct clock_event_device *ced = &ch->ced;
794 int irq;
795 int ret;
796
797 irq = platform_get_irq(ch->cmt->pdev, ch->index);
798 if (irq < 0)
799 return irq;
800
801 ret = request_irq(irq, sh_cmt_interrupt,
802 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
803 dev_name(&ch->cmt->pdev->dev), ch);
804 if (ret) {
805 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
806 ch->index, irq);
807 return ret;
808 }
809
810 ced->name = name;
811 ced->features = CLOCK_EVT_FEAT_PERIODIC;
812 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
813 ced->rating = 125;
814 ced->cpumask = cpu_possible_mask;
815 ced->set_next_event = sh_cmt_clock_event_next;
816 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
817 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
818 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
819 ced->suspend = sh_cmt_clock_event_suspend;
820 ced->resume = sh_cmt_clock_event_resume;
821
822 /* TODO: calculate good shift from rate and counter bit width */
823 ced->shift = 32;
824 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
825 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
826 ced->max_delta_ticks = ch->max_match_value;
827 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
828 ced->min_delta_ticks = 0x1f;
829
830 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
831 ch->index);
832 clockevents_register_device(ced);
833
834 return 0;
835}
836
837static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
838 bool clockevent, bool clocksource)
839{
840 int ret;
841
842 if (clockevent) {
843 ch->cmt->has_clockevent = true;
844 ret = sh_cmt_register_clockevent(ch, name);
845 if (ret < 0)
846 return ret;
847 }
848
849 if (clocksource) {
850 ch->cmt->has_clocksource = true;
851 sh_cmt_register_clocksource(ch, name);
852 }
853
854 return 0;
855}
856
857static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
858 unsigned int hwidx, bool clockevent,
859 bool clocksource, struct sh_cmt_device *cmt)
860{
861 u32 value;
862 int ret;
863
864 /* Skip unused channels. */
865 if (!clockevent && !clocksource)
866 return 0;
867
868 ch->cmt = cmt;
869 ch->index = index;
870 ch->hwidx = hwidx;
871 ch->timer_bit = hwidx;
872
873 /*
874 * Compute the address of the channel control register block. For the
875 * timers with a per-channel start/stop register, compute its address
876 * as well.
877 */
878 switch (cmt->info->model) {
879 case SH_CMT_16BIT:
880 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
881 break;
882 case SH_CMT_32BIT:
883 case SH_CMT_48BIT:
884 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
885 break;
886 case SH_CMT0_RCAR_GEN2:
887 case SH_CMT1_RCAR_GEN2:
888 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
889 ch->ioctrl = ch->iostart + 0x10;
890 ch->timer_bit = 0;
891
892 /* Enable the clock supply to the channel */
893 value = ioread32(cmt->mapbase + CMCLKE);
894 value |= BIT(hwidx);
895 iowrite32(value, cmt->mapbase + CMCLKE);
896 break;
897 }
898
899 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
900 ch->max_match_value = ~0;
901 else
902 ch->max_match_value = (1 << cmt->info->width) - 1;
903
904 ch->match_value = ch->max_match_value;
905 raw_spin_lock_init(&ch->lock);
906
907 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
908 clockevent, clocksource);
909 if (ret) {
910 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
911 ch->index);
912 return ret;
913 }
914 ch->cs_enabled = false;
915
916 return 0;
917}
918
919static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
920{
921 struct resource *mem;
922
923 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
924 if (!mem) {
925 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
926 return -ENXIO;
927 }
928
929 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
930 if (cmt->mapbase == NULL) {
931 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
932 return -ENXIO;
933 }
934
935 return 0;
936}
937
938static const struct platform_device_id sh_cmt_id_table[] = {
939 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
940 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
941 { }
942};
943MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
944
945static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
946 {
947 /* deprecated, preserved for backward compatibility */
948 .compatible = "renesas,cmt-48",
949 .data = &sh_cmt_info[SH_CMT_48BIT]
950 },
951 {
952 /* deprecated, preserved for backward compatibility */
953 .compatible = "renesas,cmt-48-gen2",
954 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
955 },
956 {
957 .compatible = "renesas,r8a7740-cmt1",
958 .data = &sh_cmt_info[SH_CMT_48BIT]
959 },
960 {
961 .compatible = "renesas,sh73a0-cmt1",
962 .data = &sh_cmt_info[SH_CMT_48BIT]
963 },
964 {
965 .compatible = "renesas,rcar-gen2-cmt0",
966 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
967 },
968 {
969 .compatible = "renesas,rcar-gen2-cmt1",
970 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
971 },
972 {
973 .compatible = "renesas,rcar-gen3-cmt0",
974 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
975 },
976 {
977 .compatible = "renesas,rcar-gen3-cmt1",
978 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
979 },
980 { }
981};
982MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
983
984static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
985{
986 unsigned int mask;
987 unsigned int i;
988 int ret;
989
990 cmt->pdev = pdev;
991 raw_spin_lock_init(&cmt->lock);
992
993 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
994 cmt->info = of_device_get_match_data(&pdev->dev);
995 cmt->hw_channels = cmt->info->channels_mask;
996 } else if (pdev->dev.platform_data) {
997 struct sh_timer_config *cfg = pdev->dev.platform_data;
998 const struct platform_device_id *id = pdev->id_entry;
999
1000 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1001 cmt->hw_channels = cfg->channels_mask;
1002 } else {
1003 dev_err(&cmt->pdev->dev, "missing platform data\n");
1004 return -ENXIO;
1005 }
1006
1007 /* Get hold of clock. */
1008 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1009 if (IS_ERR(cmt->clk)) {
1010 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1011 return PTR_ERR(cmt->clk);
1012 }
1013
1014 ret = clk_prepare(cmt->clk);
1015 if (ret < 0)
1016 goto err_clk_put;
1017
1018 /* Determine clock rate. */
1019 ret = clk_enable(cmt->clk);
1020 if (ret < 0)
1021 goto err_clk_unprepare;
1022
1023 if (cmt->info->width == 16)
1024 cmt->rate = clk_get_rate(cmt->clk) / 512;
1025 else
1026 cmt->rate = clk_get_rate(cmt->clk) / 8;
1027
1028 /* Map the memory resource(s). */
1029 ret = sh_cmt_map_memory(cmt);
1030 if (ret < 0)
1031 goto err_clk_disable;
1032
1033 /* Allocate and setup the channels. */
1034 cmt->num_channels = hweight8(cmt->hw_channels);
1035 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1036 GFP_KERNEL);
1037 if (cmt->channels == NULL) {
1038 ret = -ENOMEM;
1039 goto err_unmap;
1040 }
1041
1042 /*
1043 * Use the first channel as a clock event device and the second channel
1044 * as a clock source. If only one channel is available use it for both.
1045 */
1046 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1047 unsigned int hwidx = ffs(mask) - 1;
1048 bool clocksource = i == 1 || cmt->num_channels == 1;
1049 bool clockevent = i == 0;
1050
1051 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1052 clockevent, clocksource, cmt);
1053 if (ret < 0)
1054 goto err_unmap;
1055
1056 mask &= ~(1 << hwidx);
1057 }
1058
1059 clk_disable(cmt->clk);
1060
1061 platform_set_drvdata(pdev, cmt);
1062
1063 return 0;
1064
1065err_unmap:
1066 kfree(cmt->channels);
1067 iounmap(cmt->mapbase);
1068err_clk_disable:
1069 clk_disable(cmt->clk);
1070err_clk_unprepare:
1071 clk_unprepare(cmt->clk);
1072err_clk_put:
1073 clk_put(cmt->clk);
1074 return ret;
1075}
1076
1077static int sh_cmt_probe(struct platform_device *pdev)
1078{
1079 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1080 int ret;
1081
1082 if (!is_early_platform_device(pdev)) {
1083 pm_runtime_set_active(&pdev->dev);
1084 pm_runtime_enable(&pdev->dev);
1085 }
1086
1087 if (cmt) {
1088 dev_info(&pdev->dev, "kept as earlytimer\n");
1089 goto out;
1090 }
1091
1092 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1093 if (cmt == NULL)
1094 return -ENOMEM;
1095
1096 ret = sh_cmt_setup(cmt, pdev);
1097 if (ret) {
1098 kfree(cmt);
1099 pm_runtime_idle(&pdev->dev);
1100 return ret;
1101 }
1102 if (is_early_platform_device(pdev))
1103 return 0;
1104
1105 out:
1106 if (cmt->has_clockevent || cmt->has_clocksource)
1107 pm_runtime_irq_safe(&pdev->dev);
1108 else
1109 pm_runtime_idle(&pdev->dev);
1110
1111 return 0;
1112}
1113
1114static int sh_cmt_remove(struct platform_device *pdev)
1115{
1116 return -EBUSY; /* cannot unregister clockevent and clocksource */
1117}
1118
1119static struct platform_driver sh_cmt_device_driver = {
1120 .probe = sh_cmt_probe,
1121 .remove = sh_cmt_remove,
1122 .driver = {
1123 .name = "sh_cmt",
1124 .of_match_table = of_match_ptr(sh_cmt_of_table),
1125 },
1126 .id_table = sh_cmt_id_table,
1127};
1128
1129static int __init sh_cmt_init(void)
1130{
1131 return platform_driver_register(&sh_cmt_device_driver);
1132}
1133
1134static void __exit sh_cmt_exit(void)
1135{
1136 platform_driver_unregister(&sh_cmt_device_driver);
1137}
1138
1139early_platform_init("earlytimer", &sh_cmt_device_driver);
1140subsys_initcall(sh_cmt_init);
1141module_exit(sh_cmt_exit);
1142
1143MODULE_AUTHOR("Magnus Damm");
1144MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1145MODULE_LICENSE("GPL v2");