blob: b1fd6992cd51e42c22ac864b91d61632040d1e22 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpufreq_times.h>
20#include <linux/cpu_cooling.h>
21#include <linux/delay.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/kernel_stat.h>
25#include <linux/module.h>
26#include <linux/mutex.h>
27#include <linux/pm_qos.h>
28#include <linux/slab.h>
29#include <linux/suspend.h>
30#include <linux/syscore_ops.h>
31#include <linux/tick.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46#define for_each_policy(__policy) \
47 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
48
49/* Iterate over governors */
50static LIST_HEAD(cpufreq_governor_list);
51#define for_each_governor(__governor) \
52 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
53
54/**
55 * The "cpufreq driver" - the arch- or hardware-dependent low
56 * level driver of CPUFreq support, and its spinlock. This lock
57 * also protects the cpufreq_cpu_data array.
58 */
59static struct cpufreq_driver *cpufreq_driver;
60static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61static DEFINE_RWLOCK(cpufreq_driver_lock);
62
63/* Flag to suspend/resume CPUFreq governors */
64static bool cpufreq_suspended;
65
66static inline bool has_target(void)
67{
68 return cpufreq_driver->target_index || cpufreq_driver->target;
69}
70
71/* internal prototypes */
72static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
73static int cpufreq_init_governor(struct cpufreq_policy *policy);
74static void cpufreq_exit_governor(struct cpufreq_policy *policy);
75static int cpufreq_start_governor(struct cpufreq_policy *policy);
76static void cpufreq_stop_governor(struct cpufreq_policy *policy);
77static void cpufreq_governor_limits(struct cpufreq_policy *policy);
78static int cpufreq_set_policy(struct cpufreq_policy *policy,
79 struct cpufreq_governor *new_gov,
80 unsigned int new_pol);
81
82/**
83 * Two notifier lists: the "policy" list is involved in the
84 * validation process for a new CPU frequency policy; the
85 * "transition" list for kernel code that needs to handle
86 * changes to devices when the CPU clock speed changes.
87 * The mutex locks both lists.
88 */
89static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
90SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
91
92static int off __read_mostly;
93static int cpufreq_disabled(void)
94{
95 return off;
96}
97void disable_cpufreq(void)
98{
99 off = 1;
100}
101static DEFINE_MUTEX(cpufreq_governor_mutex);
102
103bool have_governor_per_policy(void)
104{
105 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
106}
107EXPORT_SYMBOL_GPL(have_governor_per_policy);
108
109static struct kobject *cpufreq_global_kobject;
110
111struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
112{
113 if (have_governor_per_policy())
114 return &policy->kobj;
115 else
116 return cpufreq_global_kobject;
117}
118EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
119
120static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
121{
122 u64 idle_time;
123 u64 cur_wall_time;
124 u64 busy_time;
125
126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
134
135 idle_time = cur_wall_time - busy_time;
136 if (wall)
137 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
138
139 return div_u64(idle_time, NSEC_PER_USEC);
140}
141
142u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
143{
144 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
145
146 if (idle_time == -1ULL)
147 return get_cpu_idle_time_jiffy(cpu, wall);
148 else if (!io_busy)
149 idle_time += get_cpu_iowait_time_us(cpu, wall);
150
151 return idle_time;
152}
153EXPORT_SYMBOL_GPL(get_cpu_idle_time);
154
155__weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
156 unsigned long max_freq)
157{
158}
159EXPORT_SYMBOL_GPL(arch_set_freq_scale);
160
161__weak void arch_set_max_freq_scale(struct cpumask *cpus,
162 unsigned long policy_max_freq)
163{
164}
165EXPORT_SYMBOL_GPL(arch_set_max_freq_scale);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177{
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(&policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252 kobject_put(&policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(&policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(&policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299}
300
301/*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - adjust the system "loops_per_jiffy"
307 *
308 * This function alters the system "loops_per_jiffy" for the clock
309 * speed change. Note that loops_per_jiffy cannot be updated on SMP
310 * systems as each CPU might be scaled differently. So, use the arch
311 * per-CPU loops_per_jiffy value wherever possible.
312 */
313static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
314{
315#ifndef CONFIG_SMP
316 static unsigned long l_p_j_ref;
317 static unsigned int l_p_j_ref_freq;
318
319 if (ci->flags & CPUFREQ_CONST_LOOPS)
320 return;
321
322 if (!l_p_j_ref_freq) {
323 l_p_j_ref = loops_per_jiffy;
324 l_p_j_ref_freq = ci->old;
325 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
326 l_p_j_ref, l_p_j_ref_freq);
327 }
328 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
329 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
330 ci->new);
331 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
332 loops_per_jiffy, ci->new);
333 }
334#endif
335}
336
337/**
338 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
339 * @policy: cpufreq policy to enable fast frequency switching for.
340 * @freqs: contain details of the frequency update.
341 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
342 *
343 * This function calls the transition notifiers and the "adjust_jiffies"
344 * function. It is called twice on all CPU frequency changes that have
345 * external effects.
346 */
347static void cpufreq_notify_transition(struct cpufreq_policy *policy,
348 struct cpufreq_freqs *freqs,
349 unsigned int state)
350{
351 int cpu;
352
353 BUG_ON(irqs_disabled());
354
355 if (cpufreq_disabled())
356 return;
357
358 freqs->policy = policy;
359 freqs->flags = cpufreq_driver->flags;
360 pr_debug("notification %u of frequency transition to %u kHz\n",
361 state, freqs->new);
362
363 switch (state) {
364 case CPUFREQ_PRECHANGE:
365 /*
366 * Detect if the driver reported a value as "old frequency"
367 * which is not equal to what the cpufreq core thinks is
368 * "old frequency".
369 */
370 if (policy->cur && policy->cur != freqs->old) {
371 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
372 freqs->old, policy->cur);
373 freqs->old = policy->cur;
374 }
375
376 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
377 CPUFREQ_PRECHANGE, freqs);
378
379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
380 break;
381
382 case CPUFREQ_POSTCHANGE:
383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
384 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
385 cpumask_pr_args(policy->cpus));
386
387 for_each_cpu(cpu, policy->cpus)
388 trace_cpu_frequency(freqs->new, cpu);
389
390 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
391 CPUFREQ_POSTCHANGE, freqs);
392
393 cpufreq_stats_record_transition(policy, freqs->new);
394 cpufreq_times_record_transition(policy, freqs->new);
395 policy->cur = freqs->new;
396 }
397}
398
399/* Do post notifications when there are chances that transition has failed */
400static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
401 struct cpufreq_freqs *freqs, int transition_failed)
402{
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 if (!transition_failed)
405 return;
406
407 swap(freqs->old, freqs->new);
408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
410}
411
412void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
413 struct cpufreq_freqs *freqs)
414{
415
416 /*
417 * Catch double invocations of _begin() which lead to self-deadlock.
418 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
419 * doesn't invoke _begin() on their behalf, and hence the chances of
420 * double invocations are very low. Moreover, there are scenarios
421 * where these checks can emit false-positive warnings in these
422 * drivers; so we avoid that by skipping them altogether.
423 */
424 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
425 && current == policy->transition_task);
426
427wait:
428 wait_event(policy->transition_wait, !policy->transition_ongoing);
429
430 spin_lock(&policy->transition_lock);
431
432 if (unlikely(policy->transition_ongoing)) {
433 spin_unlock(&policy->transition_lock);
434 goto wait;
435 }
436
437 policy->transition_ongoing = true;
438 policy->transition_task = current;
439
440 spin_unlock(&policy->transition_lock);
441
442 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
443}
444EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
445
446void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
447 struct cpufreq_freqs *freqs, int transition_failed)
448{
449 if (WARN_ON(!policy->transition_ongoing))
450 return;
451
452 cpufreq_notify_post_transition(policy, freqs, transition_failed);
453
454 spin_lock(&policy->transition_lock);
455 policy->transition_ongoing = false;
456 policy->transition_task = NULL;
457 spin_unlock(&policy->transition_lock);
458
459 wake_up(&policy->transition_wait);
460}
461EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
462
463/*
464 * Fast frequency switching status count. Positive means "enabled", negative
465 * means "disabled" and 0 means "not decided yet".
466 */
467static int cpufreq_fast_switch_count;
468static DEFINE_MUTEX(cpufreq_fast_switch_lock);
469
470static void cpufreq_list_transition_notifiers(void)
471{
472 struct notifier_block *nb;
473
474 pr_info("Registered transition notifiers:\n");
475
476 mutex_lock(&cpufreq_transition_notifier_list.mutex);
477
478 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
479 pr_info("%pS\n", nb->notifier_call);
480
481 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
482}
483
484/**
485 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
486 * @policy: cpufreq policy to enable fast frequency switching for.
487 *
488 * Try to enable fast frequency switching for @policy.
489 *
490 * The attempt will fail if there is at least one transition notifier registered
491 * at this point, as fast frequency switching is quite fundamentally at odds
492 * with transition notifiers. Thus if successful, it will make registration of
493 * transition notifiers fail going forward.
494 */
495void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
496{
497 lockdep_assert_held(&policy->rwsem);
498
499 if (!policy->fast_switch_possible)
500 return;
501
502 mutex_lock(&cpufreq_fast_switch_lock);
503 if (cpufreq_fast_switch_count >= 0) {
504 cpufreq_fast_switch_count++;
505 policy->fast_switch_enabled = true;
506 } else {
507 pr_warn("CPU%u: Fast frequency switching not enabled\n",
508 policy->cpu);
509 cpufreq_list_transition_notifiers();
510 }
511 mutex_unlock(&cpufreq_fast_switch_lock);
512}
513EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
514
515/**
516 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
517 * @policy: cpufreq policy to disable fast frequency switching for.
518 */
519void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
520{
521 mutex_lock(&cpufreq_fast_switch_lock);
522 if (policy->fast_switch_enabled) {
523 policy->fast_switch_enabled = false;
524 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
525 cpufreq_fast_switch_count--;
526 }
527 mutex_unlock(&cpufreq_fast_switch_lock);
528}
529EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
530
531/**
532 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
533 * one.
534 * @target_freq: target frequency to resolve.
535 *
536 * The target to driver frequency mapping is cached in the policy.
537 *
538 * Return: Lowest driver-supported frequency greater than or equal to the
539 * given target_freq, subject to policy (min/max) and driver limitations.
540 */
541unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
542 unsigned int target_freq)
543{
544 target_freq = clamp_val(target_freq, policy->min, policy->max);
545 policy->cached_target_freq = target_freq;
546
547 if (cpufreq_driver->target_index) {
548 int idx;
549
550 idx = cpufreq_frequency_table_target(policy, target_freq,
551 CPUFREQ_RELATION_L);
552 policy->cached_resolved_idx = idx;
553 return policy->freq_table[idx].frequency;
554 }
555
556 if (cpufreq_driver->resolve_freq)
557 return cpufreq_driver->resolve_freq(policy, target_freq);
558
559 return target_freq;
560}
561EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
562
563unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
564{
565 unsigned int latency;
566
567 if (policy->transition_delay_us)
568 return policy->transition_delay_us;
569
570 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
571 if (latency) {
572 /*
573 * For platforms that can change the frequency very fast (< 10
574 * us), the above formula gives a decent transition delay. But
575 * for platforms where transition_latency is in milliseconds, it
576 * ends up giving unrealistic values.
577 *
578 * Cap the default transition delay to 10 ms, which seems to be
579 * a reasonable amount of time after which we should reevaluate
580 * the frequency.
581 */
582 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
583 }
584
585 return LATENCY_MULTIPLIER;
586}
587EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
588
589/*********************************************************************
590 * SYSFS INTERFACE *
591 *********************************************************************/
592static ssize_t show_boost(struct kobject *kobj,
593 struct kobj_attribute *attr, char *buf)
594{
595 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
596}
597
598static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
599 const char *buf, size_t count)
600{
601 int ret, enable;
602
603 ret = sscanf(buf, "%d", &enable);
604 if (ret != 1 || enable < 0 || enable > 1)
605 return -EINVAL;
606
607 if (cpufreq_boost_trigger_state(enable)) {
608 pr_err("%s: Cannot %s BOOST!\n",
609 __func__, enable ? "enable" : "disable");
610 return -EINVAL;
611 }
612
613 pr_debug("%s: cpufreq BOOST %s\n",
614 __func__, enable ? "enabled" : "disabled");
615
616 return count;
617}
618define_one_global_rw(boost);
619
620static struct cpufreq_governor *find_governor(const char *str_governor)
621{
622 struct cpufreq_governor *t;
623
624 for_each_governor(t)
625 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
626 return t;
627
628 return NULL;
629}
630
631static struct cpufreq_governor *get_governor(const char *str_governor)
632{
633 struct cpufreq_governor *t;
634
635 mutex_lock(&cpufreq_governor_mutex);
636 t = find_governor(str_governor);
637 if (!t)
638 goto unlock;
639
640 if (!try_module_get(t->owner))
641 t = NULL;
642
643unlock:
644 mutex_unlock(&cpufreq_governor_mutex);
645
646 return t;
647}
648
649static unsigned int cpufreq_parse_policy(char *str_governor)
650{
651 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
652 return CPUFREQ_POLICY_PERFORMANCE;
653
654 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
655 return CPUFREQ_POLICY_POWERSAVE;
656
657 return CPUFREQ_POLICY_UNKNOWN;
658}
659
660/**
661 * cpufreq_parse_governor - parse a governor string only for has_target()
662 * @str_governor: Governor name.
663 */
664static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
665{
666 struct cpufreq_governor *t;
667
668 t = get_governor(str_governor);
669 if (t)
670 return t;
671
672 if (request_module("cpufreq_%s", str_governor))
673 return NULL;
674
675 return get_governor(str_governor);
676}
677
678/**
679 * cpufreq_per_cpu_attr_read() / show_##file_name() -
680 * print out cpufreq information
681 *
682 * Write out information from cpufreq_driver->policy[cpu]; object must be
683 * "unsigned int".
684 */
685
686#define show_one(file_name, object) \
687static ssize_t show_##file_name \
688(struct cpufreq_policy *policy, char *buf) \
689{ \
690 return sprintf(buf, "%u\n", policy->object); \
691}
692
693show_one(cpuinfo_min_freq, cpuinfo.min_freq);
694show_one(cpuinfo_max_freq, cpuinfo.max_freq);
695show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
696show_one(scaling_min_freq, min);
697show_one(scaling_max_freq, max);
698
699__weak unsigned int arch_freq_get_on_cpu(int cpu)
700{
701 return 0;
702}
703
704static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
705{
706 ssize_t ret;
707 unsigned int freq;
708
709 freq = arch_freq_get_on_cpu(policy->cpu);
710 if (freq)
711 ret = sprintf(buf, "%u\n", freq);
712 else if (cpufreq_driver && cpufreq_driver->setpolicy &&
713 cpufreq_driver->get)
714 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
715 else
716 ret = sprintf(buf, "%u\n", policy->cur);
717 return ret;
718}
719
720/**
721 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
722 */
723#define store_one(file_name, object) \
724static ssize_t store_##file_name \
725(struct cpufreq_policy *policy, const char *buf, size_t count) \
726{ \
727 unsigned long val; \
728 int ret; \
729 \
730 ret = sscanf(buf, "%lu", &val); \
731 if (ret != 1) \
732 return -EINVAL; \
733 \
734 ret = freq_qos_update_request(policy->object##_freq_req, val);\
735 return ret >= 0 ? count : ret; \
736}
737
738store_one(scaling_min_freq, min);
739store_one(scaling_max_freq, max);
740
741/**
742 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
743 */
744static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
745 char *buf)
746{
747 unsigned int cur_freq = __cpufreq_get(policy);
748
749 if (cur_freq)
750 return sprintf(buf, "%u\n", cur_freq);
751
752 return sprintf(buf, "<unknown>\n");
753}
754
755/**
756 * show_scaling_governor - show the current policy for the specified CPU
757 */
758static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
759{
760 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
761 return sprintf(buf, "powersave\n");
762 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
763 return sprintf(buf, "performance\n");
764 else if (policy->governor)
765 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
766 policy->governor->name);
767 return -EINVAL;
768}
769
770/**
771 * store_scaling_governor - store policy for the specified CPU
772 */
773static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
774 const char *buf, size_t count)
775{
776 char str_governor[16];
777 int ret;
778
779 ret = sscanf(buf, "%15s", str_governor);
780 if (ret != 1)
781 return -EINVAL;
782
783 if (cpufreq_driver->setpolicy) {
784 unsigned int new_pol;
785
786 new_pol = cpufreq_parse_policy(str_governor);
787 if (!new_pol)
788 return -EINVAL;
789
790 ret = cpufreq_set_policy(policy, NULL, new_pol);
791 } else {
792 struct cpufreq_governor *new_gov;
793
794 new_gov = cpufreq_parse_governor(str_governor);
795 if (!new_gov)
796 return -EINVAL;
797
798 ret = cpufreq_set_policy(policy, new_gov,
799 CPUFREQ_POLICY_UNKNOWN);
800
801 module_put(new_gov->owner);
802 }
803
804 return ret ? ret : count;
805}
806
807/**
808 * show_scaling_driver - show the cpufreq driver currently loaded
809 */
810static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
811{
812 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
813}
814
815/**
816 * show_scaling_available_governors - show the available CPUfreq governors
817 */
818static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
819 char *buf)
820{
821 ssize_t i = 0;
822 struct cpufreq_governor *t;
823
824 if (!has_target()) {
825 i += sprintf(buf, "performance powersave");
826 goto out;
827 }
828
829 mutex_lock(&cpufreq_governor_mutex);
830 for_each_governor(t) {
831 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
832 - (CPUFREQ_NAME_LEN + 2)))
833 break;
834 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
835 }
836 mutex_unlock(&cpufreq_governor_mutex);
837out:
838 i += sprintf(&buf[i], "\n");
839 return i;
840}
841
842ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
843{
844 ssize_t i = 0;
845 unsigned int cpu;
846
847 for_each_cpu(cpu, mask) {
848 if (i)
849 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
850 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
851 if (i >= (PAGE_SIZE - 5))
852 break;
853 }
854 i += sprintf(&buf[i], "\n");
855 return i;
856}
857EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
858
859/**
860 * show_related_cpus - show the CPUs affected by each transition even if
861 * hw coordination is in use
862 */
863static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
864{
865 return cpufreq_show_cpus(policy->related_cpus, buf);
866}
867
868/**
869 * show_affected_cpus - show the CPUs affected by each transition
870 */
871static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
872{
873 return cpufreq_show_cpus(policy->cpus, buf);
874}
875
876static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
877 const char *buf, size_t count)
878{
879 unsigned int freq = 0;
880 unsigned int ret;
881
882 if (!policy->governor || !policy->governor->store_setspeed)
883 return -EINVAL;
884
885 ret = sscanf(buf, "%u", &freq);
886 if (ret != 1)
887 return -EINVAL;
888
889 policy->governor->store_setspeed(policy, freq);
890
891 return count;
892}
893
894static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
895{
896 if (!policy->governor || !policy->governor->show_setspeed)
897 return sprintf(buf, "<unsupported>\n");
898
899 return policy->governor->show_setspeed(policy, buf);
900}
901
902/**
903 * show_bios_limit - show the current cpufreq HW/BIOS limitation
904 */
905static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
906{
907 unsigned int limit;
908 int ret;
909 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
910 if (!ret)
911 return sprintf(buf, "%u\n", limit);
912 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
913}
914
915cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
916cpufreq_freq_attr_ro(cpuinfo_min_freq);
917cpufreq_freq_attr_ro(cpuinfo_max_freq);
918cpufreq_freq_attr_ro(cpuinfo_transition_latency);
919cpufreq_freq_attr_ro(scaling_available_governors);
920cpufreq_freq_attr_ro(scaling_driver);
921cpufreq_freq_attr_ro(scaling_cur_freq);
922cpufreq_freq_attr_ro(bios_limit);
923cpufreq_freq_attr_ro(related_cpus);
924cpufreq_freq_attr_ro(affected_cpus);
925cpufreq_freq_attr_rw(scaling_min_freq);
926cpufreq_freq_attr_rw(scaling_max_freq);
927cpufreq_freq_attr_rw(scaling_governor);
928cpufreq_freq_attr_rw(scaling_setspeed);
929
930static struct attribute *default_attrs[] = {
931 &cpuinfo_min_freq.attr,
932 &cpuinfo_max_freq.attr,
933 &cpuinfo_transition_latency.attr,
934 &scaling_min_freq.attr,
935 &scaling_max_freq.attr,
936 &affected_cpus.attr,
937 &related_cpus.attr,
938 &scaling_governor.attr,
939 &scaling_driver.attr,
940 &scaling_available_governors.attr,
941 &scaling_setspeed.attr,
942 NULL
943};
944
945#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
946#define to_attr(a) container_of(a, struct freq_attr, attr)
947
948static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
949{
950 struct cpufreq_policy *policy = to_policy(kobj);
951 struct freq_attr *fattr = to_attr(attr);
952 ssize_t ret;
953
954 if (!fattr->show)
955 return -EIO;
956
957 down_read(&policy->rwsem);
958 ret = fattr->show(policy, buf);
959 up_read(&policy->rwsem);
960
961 return ret;
962}
963
964static ssize_t store(struct kobject *kobj, struct attribute *attr,
965 const char *buf, size_t count)
966{
967 struct cpufreq_policy *policy = to_policy(kobj);
968 struct freq_attr *fattr = to_attr(attr);
969 ssize_t ret = -EINVAL;
970
971 if (!fattr->store)
972 return -EIO;
973
974 /*
975 * cpus_read_trylock() is used here to work around a circular lock
976 * dependency problem with respect to the cpufreq_register_driver().
977 */
978 if (!cpus_read_trylock())
979 return -EBUSY;
980
981 if (cpu_online(policy->cpu)) {
982 down_write(&policy->rwsem);
983 ret = fattr->store(policy, buf, count);
984 up_write(&policy->rwsem);
985 }
986
987 cpus_read_unlock();
988
989 return ret;
990}
991
992static void cpufreq_sysfs_release(struct kobject *kobj)
993{
994 struct cpufreq_policy *policy = to_policy(kobj);
995 pr_debug("last reference is dropped\n");
996 complete(&policy->kobj_unregister);
997}
998
999static const struct sysfs_ops sysfs_ops = {
1000 .show = show,
1001 .store = store,
1002};
1003
1004static struct kobj_type ktype_cpufreq = {
1005 .sysfs_ops = &sysfs_ops,
1006 .default_attrs = default_attrs,
1007 .release = cpufreq_sysfs_release,
1008};
1009
1010static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1011 struct device *dev)
1012{
1013 if (unlikely(!dev))
1014 return;
1015
1016 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1017 return;
1018
1019 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1020 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1021 dev_err(dev, "cpufreq symlink creation failed\n");
1022}
1023
1024static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1025 struct device *dev)
1026{
1027 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1028 sysfs_remove_link(&dev->kobj, "cpufreq");
1029}
1030
1031static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1032{
1033 struct freq_attr **drv_attr;
1034 int ret = 0;
1035
1036 /* set up files for this cpu device */
1037 drv_attr = cpufreq_driver->attr;
1038 while (drv_attr && *drv_attr) {
1039 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1040 if (ret)
1041 return ret;
1042 drv_attr++;
1043 }
1044 if (cpufreq_driver->get) {
1045 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1046 if (ret)
1047 return ret;
1048 }
1049
1050 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1051 if (ret)
1052 return ret;
1053
1054 if (cpufreq_driver->bios_limit) {
1055 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1056 if (ret)
1057 return ret;
1058 }
1059
1060 return 0;
1061}
1062
1063__weak struct cpufreq_governor *cpufreq_default_governor(void)
1064{
1065 return NULL;
1066}
1067
1068static int cpufreq_init_policy(struct cpufreq_policy *policy)
1069{
1070 struct cpufreq_governor *def_gov = cpufreq_default_governor();
1071 struct cpufreq_governor *gov = NULL;
1072 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1073 int ret;
1074
1075 if (has_target()) {
1076 /* Update policy governor to the one used before hotplug. */
1077 gov = get_governor(policy->last_governor);
1078 if (gov) {
1079 pr_debug("Restoring governor %s for cpu %d\n",
1080 policy->governor->name, policy->cpu);
1081 } else if (def_gov) {
1082 gov = def_gov;
1083 __module_get(gov->owner);
1084 } else {
1085 return -ENODATA;
1086 }
1087 } else {
1088 /* Use the default policy if there is no last_policy. */
1089 if (policy->last_policy) {
1090 pol = policy->last_policy;
1091 } else if (def_gov) {
1092 pol = cpufreq_parse_policy(def_gov->name);
1093 /*
1094 * In case the default governor is neiter "performance"
1095 * nor "powersave", fall back to the initial policy
1096 * value set by the driver.
1097 */
1098 if (pol == CPUFREQ_POLICY_UNKNOWN)
1099 pol = policy->policy;
1100 }
1101 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1102 pol != CPUFREQ_POLICY_POWERSAVE)
1103 return -ENODATA;
1104 }
1105
1106 ret = cpufreq_set_policy(policy, gov, pol);
1107 if (gov)
1108 module_put(gov->owner);
1109
1110 return ret;
1111}
1112
1113static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1114{
1115 int ret = 0;
1116
1117 /* Has this CPU been taken care of already? */
1118 if (cpumask_test_cpu(cpu, policy->cpus))
1119 return 0;
1120
1121 down_write(&policy->rwsem);
1122 if (has_target())
1123 cpufreq_stop_governor(policy);
1124
1125 cpumask_set_cpu(cpu, policy->cpus);
1126
1127 if (has_target()) {
1128 ret = cpufreq_start_governor(policy);
1129 if (ret)
1130 pr_err("%s: Failed to start governor\n", __func__);
1131 }
1132 up_write(&policy->rwsem);
1133 return ret;
1134}
1135
1136void refresh_frequency_limits(struct cpufreq_policy *policy)
1137{
1138 if (!policy_is_inactive(policy)) {
1139 pr_debug("updating policy for CPU %u\n", policy->cpu);
1140
1141 cpufreq_set_policy(policy, policy->governor, policy->policy);
1142 }
1143}
1144EXPORT_SYMBOL(refresh_frequency_limits);
1145
1146static void handle_update(struct work_struct *work)
1147{
1148 struct cpufreq_policy *policy =
1149 container_of(work, struct cpufreq_policy, update);
1150
1151 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1152 down_write(&policy->rwsem);
1153 refresh_frequency_limits(policy);
1154 up_write(&policy->rwsem);
1155}
1156
1157static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1158 void *data)
1159{
1160 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1161
1162 schedule_work(&policy->update);
1163 return 0;
1164}
1165
1166static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1167 void *data)
1168{
1169 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1170
1171 schedule_work(&policy->update);
1172 return 0;
1173}
1174
1175static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1176{
1177 struct kobject *kobj;
1178 struct completion *cmp;
1179
1180 down_write(&policy->rwsem);
1181 cpufreq_stats_free_table(policy);
1182 kobj = &policy->kobj;
1183 cmp = &policy->kobj_unregister;
1184 up_write(&policy->rwsem);
1185 kobject_put(kobj);
1186
1187 /*
1188 * We need to make sure that the underlying kobj is
1189 * actually not referenced anymore by anybody before we
1190 * proceed with unloading.
1191 */
1192 pr_debug("waiting for dropping of refcount\n");
1193 wait_for_completion(cmp);
1194 pr_debug("wait complete\n");
1195}
1196
1197static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1198{
1199 struct cpufreq_policy *policy;
1200 struct device *dev = get_cpu_device(cpu);
1201 int ret;
1202
1203 if (!dev)
1204 return NULL;
1205
1206 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1207 if (!policy)
1208 return NULL;
1209
1210 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1211 goto err_free_policy;
1212
1213 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1214 goto err_free_cpumask;
1215
1216 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1217 goto err_free_rcpumask;
1218
1219 init_completion(&policy->kobj_unregister);
1220 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1221 cpufreq_global_kobject, "policy%u", cpu);
1222 if (ret) {
1223 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1224 /*
1225 * The entire policy object will be freed below, but the extra
1226 * memory allocated for the kobject name needs to be freed by
1227 * releasing the kobject.
1228 */
1229 kobject_put(&policy->kobj);
1230 goto err_free_real_cpus;
1231 }
1232
1233 freq_constraints_init(&policy->constraints);
1234
1235 policy->nb_min.notifier_call = cpufreq_notifier_min;
1236 policy->nb_max.notifier_call = cpufreq_notifier_max;
1237
1238 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1239 &policy->nb_min);
1240 if (ret) {
1241 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1242 ret, cpumask_pr_args(policy->cpus));
1243 goto err_kobj_remove;
1244 }
1245
1246 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1247 &policy->nb_max);
1248 if (ret) {
1249 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1250 ret, cpumask_pr_args(policy->cpus));
1251 goto err_min_qos_notifier;
1252 }
1253
1254 INIT_LIST_HEAD(&policy->policy_list);
1255 init_rwsem(&policy->rwsem);
1256 spin_lock_init(&policy->transition_lock);
1257 init_waitqueue_head(&policy->transition_wait);
1258 INIT_WORK(&policy->update, handle_update);
1259
1260 policy->cpu = cpu;
1261 return policy;
1262
1263err_min_qos_notifier:
1264 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1265 &policy->nb_min);
1266err_kobj_remove:
1267 cpufreq_policy_put_kobj(policy);
1268err_free_real_cpus:
1269 free_cpumask_var(policy->real_cpus);
1270err_free_rcpumask:
1271 free_cpumask_var(policy->related_cpus);
1272err_free_cpumask:
1273 free_cpumask_var(policy->cpus);
1274err_free_policy:
1275 kfree(policy);
1276
1277 return NULL;
1278}
1279
1280static void cpufreq_policy_free(struct cpufreq_policy *policy)
1281{
1282 unsigned long flags;
1283 int cpu;
1284
1285 /* Remove policy from list */
1286 write_lock_irqsave(&cpufreq_driver_lock, flags);
1287 list_del(&policy->policy_list);
1288
1289 for_each_cpu(cpu, policy->related_cpus)
1290 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1291 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1292
1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1294 &policy->nb_max);
1295 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1296 &policy->nb_min);
1297
1298 /* Cancel any pending policy->update work before freeing the policy. */
1299 cancel_work_sync(&policy->update);
1300
1301 if (policy->max_freq_req) {
1302 /*
1303 * CPUFREQ_CREATE_POLICY notification is sent only after
1304 * successfully adding max_freq_req request.
1305 */
1306 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1307 CPUFREQ_REMOVE_POLICY, policy);
1308 freq_qos_remove_request(policy->max_freq_req);
1309 }
1310
1311 freq_qos_remove_request(policy->min_freq_req);
1312 kfree(policy->min_freq_req);
1313
1314 cpufreq_policy_put_kobj(policy);
1315 free_cpumask_var(policy->real_cpus);
1316 free_cpumask_var(policy->related_cpus);
1317 free_cpumask_var(policy->cpus);
1318 kfree(policy);
1319}
1320
1321static int cpufreq_online(unsigned int cpu)
1322{
1323 struct cpufreq_policy *policy;
1324 bool new_policy;
1325 unsigned long flags;
1326 unsigned int j;
1327 int ret;
1328
1329 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1330
1331 /* Check if this CPU already has a policy to manage it */
1332 policy = per_cpu(cpufreq_cpu_data, cpu);
1333 if (policy) {
1334 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1335 if (!policy_is_inactive(policy))
1336 return cpufreq_add_policy_cpu(policy, cpu);
1337
1338 /* This is the only online CPU for the policy. Start over. */
1339 new_policy = false;
1340 down_write(&policy->rwsem);
1341 policy->cpu = cpu;
1342 policy->governor = NULL;
1343 up_write(&policy->rwsem);
1344 } else {
1345 new_policy = true;
1346 policy = cpufreq_policy_alloc(cpu);
1347 if (!policy)
1348 return -ENOMEM;
1349 }
1350
1351 if (!new_policy && cpufreq_driver->online) {
1352 ret = cpufreq_driver->online(policy);
1353 if (ret) {
1354 pr_debug("%s: %d: initialization failed\n", __func__,
1355 __LINE__);
1356 goto out_exit_policy;
1357 }
1358
1359 /* Recover policy->cpus using related_cpus */
1360 cpumask_copy(policy->cpus, policy->related_cpus);
1361 } else {
1362 cpumask_copy(policy->cpus, cpumask_of(cpu));
1363
1364 /*
1365 * Call driver. From then on the cpufreq must be able
1366 * to accept all calls to ->verify and ->setpolicy for this CPU.
1367 */
1368 ret = cpufreq_driver->init(policy);
1369 if (ret) {
1370 pr_debug("%s: %d: initialization failed\n", __func__,
1371 __LINE__);
1372 goto out_free_policy;
1373 }
1374
1375 /*
1376 * The initialization has succeeded and the policy is online.
1377 * If there is a problem with its frequency table, take it
1378 * offline and drop it.
1379 */
1380 ret = cpufreq_table_validate_and_sort(policy);
1381 if (ret)
1382 goto out_offline_policy;
1383
1384 /* related_cpus should at least include policy->cpus. */
1385 cpumask_copy(policy->related_cpus, policy->cpus);
1386 }
1387
1388 down_write(&policy->rwsem);
1389 /*
1390 * affected cpus must always be the one, which are online. We aren't
1391 * managing offline cpus here.
1392 */
1393 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1394
1395 if (new_policy) {
1396 for_each_cpu(j, policy->related_cpus) {
1397 per_cpu(cpufreq_cpu_data, j) = policy;
1398 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1399 }
1400
1401 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1402 GFP_KERNEL);
1403 if (!policy->min_freq_req)
1404 goto out_destroy_policy;
1405
1406 ret = freq_qos_add_request(&policy->constraints,
1407 policy->min_freq_req, FREQ_QOS_MIN,
1408 FREQ_QOS_MIN_DEFAULT_VALUE);
1409 if (ret < 0) {
1410 /*
1411 * So we don't call freq_qos_remove_request() for an
1412 * uninitialized request.
1413 */
1414 kfree(policy->min_freq_req);
1415 policy->min_freq_req = NULL;
1416 goto out_destroy_policy;
1417 }
1418
1419 /*
1420 * This must be initialized right here to avoid calling
1421 * freq_qos_remove_request() on uninitialized request in case
1422 * of errors.
1423 */
1424 policy->max_freq_req = policy->min_freq_req + 1;
1425
1426 ret = freq_qos_add_request(&policy->constraints,
1427 policy->max_freq_req, FREQ_QOS_MAX,
1428 FREQ_QOS_MAX_DEFAULT_VALUE);
1429 if (ret < 0) {
1430 policy->max_freq_req = NULL;
1431 goto out_destroy_policy;
1432 }
1433
1434 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1435 CPUFREQ_CREATE_POLICY, policy);
1436 }
1437
1438 if (cpufreq_driver->get && has_target()) {
1439 policy->cur = cpufreq_driver->get(policy->cpu);
1440 if (!policy->cur) {
1441 pr_err("%s: ->get() failed\n", __func__);
1442 goto out_destroy_policy;
1443 }
1444 }
1445
1446 /*
1447 * Sometimes boot loaders set CPU frequency to a value outside of
1448 * frequency table present with cpufreq core. In such cases CPU might be
1449 * unstable if it has to run on that frequency for long duration of time
1450 * and so its better to set it to a frequency which is specified in
1451 * freq-table. This also makes cpufreq stats inconsistent as
1452 * cpufreq-stats would fail to register because current frequency of CPU
1453 * isn't found in freq-table.
1454 *
1455 * Because we don't want this change to effect boot process badly, we go
1456 * for the next freq which is >= policy->cur ('cur' must be set by now,
1457 * otherwise we will end up setting freq to lowest of the table as 'cur'
1458 * is initialized to zero).
1459 *
1460 * We are passing target-freq as "policy->cur - 1" otherwise
1461 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1462 * equal to target-freq.
1463 */
1464 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1465 && has_target()) {
1466 /* Are we running at unknown frequency ? */
1467 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1468 if (ret == -EINVAL) {
1469 /* Warn user and fix it */
1470 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1471 __func__, policy->cpu, policy->cur);
1472 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1473 CPUFREQ_RELATION_L);
1474
1475 /*
1476 * Reaching here after boot in a few seconds may not
1477 * mean that system will remain stable at "unknown"
1478 * frequency for longer duration. Hence, a BUG_ON().
1479 */
1480 BUG_ON(ret);
1481 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1482 __func__, policy->cpu, policy->cur);
1483 }
1484 }
1485
1486 if (new_policy) {
1487 ret = cpufreq_add_dev_interface(policy);
1488 if (ret)
1489 goto out_destroy_policy;
1490
1491 cpufreq_stats_create_table(policy);
1492 cpufreq_times_create_policy(policy);
1493
1494 write_lock_irqsave(&cpufreq_driver_lock, flags);
1495 list_add(&policy->policy_list, &cpufreq_policy_list);
1496 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1497 }
1498
1499 ret = cpufreq_init_policy(policy);
1500 if (ret) {
1501 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1502 __func__, cpu, ret);
1503 goto out_destroy_policy;
1504 }
1505
1506 up_write(&policy->rwsem);
1507
1508 kobject_uevent(&policy->kobj, KOBJ_ADD);
1509
1510 /* Callback for handling stuff after policy is ready */
1511 if (cpufreq_driver->ready)
1512 cpufreq_driver->ready(policy);
1513
1514 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1515 policy->cdev = of_cpufreq_cooling_register(policy);
1516
1517 pr_debug("initialization complete\n");
1518
1519 return 0;
1520
1521out_destroy_policy:
1522 for_each_cpu(j, policy->real_cpus)
1523 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1524
1525 up_write(&policy->rwsem);
1526
1527out_offline_policy:
1528 if (cpufreq_driver->offline)
1529 cpufreq_driver->offline(policy);
1530
1531out_exit_policy:
1532 if (cpufreq_driver->exit)
1533 cpufreq_driver->exit(policy);
1534
1535out_free_policy:
1536 cpufreq_policy_free(policy);
1537 return ret;
1538}
1539
1540/**
1541 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1542 * @dev: CPU device.
1543 * @sif: Subsystem interface structure pointer (not used)
1544 */
1545static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1546{
1547 struct cpufreq_policy *policy;
1548 unsigned cpu = dev->id;
1549 int ret;
1550
1551 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1552
1553 if (cpu_online(cpu)) {
1554 ret = cpufreq_online(cpu);
1555 if (ret)
1556 return ret;
1557 }
1558
1559 /* Create sysfs link on CPU registration */
1560 policy = per_cpu(cpufreq_cpu_data, cpu);
1561 if (policy)
1562 add_cpu_dev_symlink(policy, cpu, dev);
1563
1564 return 0;
1565}
1566
1567static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1568{
1569 int ret;
1570
1571 if (has_target())
1572 cpufreq_stop_governor(policy);
1573
1574 cpumask_clear_cpu(cpu, policy->cpus);
1575
1576 if (!policy_is_inactive(policy)) {
1577 /* Nominate a new CPU if necessary. */
1578 if (cpu == policy->cpu)
1579 policy->cpu = cpumask_any(policy->cpus);
1580
1581 /* Start the governor again for the active policy. */
1582 if (has_target()) {
1583 ret = cpufreq_start_governor(policy);
1584 if (ret)
1585 pr_err("%s: Failed to start governor\n", __func__);
1586 }
1587
1588 return;
1589 }
1590
1591 if (has_target())
1592 strncpy(policy->last_governor, policy->governor->name,
1593 CPUFREQ_NAME_LEN);
1594 else
1595 policy->last_policy = policy->policy;
1596
1597 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1598 cpufreq_cooling_unregister(policy->cdev);
1599 policy->cdev = NULL;
1600 }
1601
1602 if (cpufreq_driver->stop_cpu)
1603 cpufreq_driver->stop_cpu(policy);
1604
1605 if (has_target())
1606 cpufreq_exit_governor(policy);
1607
1608 /*
1609 * Perform the ->offline() during light-weight tear-down, as
1610 * that allows fast recovery when the CPU comes back.
1611 */
1612 if (cpufreq_driver->offline) {
1613 cpufreq_driver->offline(policy);
1614 return;
1615 }
1616
1617 if (cpufreq_driver->exit)
1618 cpufreq_driver->exit(policy);
1619
1620 policy->freq_table = NULL;
1621}
1622
1623static int cpufreq_offline(unsigned int cpu)
1624{
1625 struct cpufreq_policy *policy;
1626
1627 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1628
1629 policy = cpufreq_cpu_get_raw(cpu);
1630 if (!policy) {
1631 pr_debug("%s: No cpu_data found\n", __func__);
1632 return 0;
1633 }
1634
1635 down_write(&policy->rwsem);
1636
1637 __cpufreq_offline(cpu, policy);
1638
1639 up_write(&policy->rwsem);
1640 return 0;
1641}
1642
1643/**
1644 * cpufreq_remove_dev - remove a CPU device
1645 *
1646 * Removes the cpufreq interface for a CPU device.
1647 */
1648static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1649{
1650 unsigned int cpu = dev->id;
1651 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1652
1653 if (!policy)
1654 return;
1655
1656 down_write(&policy->rwsem);
1657
1658 if (cpu_online(cpu))
1659 __cpufreq_offline(cpu, policy);
1660
1661 cpumask_clear_cpu(cpu, policy->real_cpus);
1662 remove_cpu_dev_symlink(policy, dev);
1663
1664 if (!cpumask_empty(policy->real_cpus)) {
1665 up_write(&policy->rwsem);
1666 return;
1667 }
1668
1669 /* We did light-weight exit earlier, do full tear down now */
1670 if (cpufreq_driver->offline && cpufreq_driver->exit)
1671 cpufreq_driver->exit(policy);
1672
1673 up_write(&policy->rwsem);
1674
1675 cpufreq_policy_free(policy);
1676}
1677
1678/**
1679 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1680 * in deep trouble.
1681 * @policy: policy managing CPUs
1682 * @new_freq: CPU frequency the CPU actually runs at
1683 *
1684 * We adjust to current frequency first, and need to clean up later.
1685 * So either call to cpufreq_update_policy() or schedule handle_update()).
1686 */
1687static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1688 unsigned int new_freq)
1689{
1690 struct cpufreq_freqs freqs;
1691
1692 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1693 policy->cur, new_freq);
1694
1695 freqs.old = policy->cur;
1696 freqs.new = new_freq;
1697
1698 cpufreq_freq_transition_begin(policy, &freqs);
1699 cpufreq_freq_transition_end(policy, &freqs, 0);
1700}
1701
1702static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1703{
1704 unsigned int new_freq;
1705
1706 new_freq = cpufreq_driver->get(policy->cpu);
1707 if (!new_freq)
1708 return 0;
1709
1710 /*
1711 * If fast frequency switching is used with the given policy, the check
1712 * against policy->cur is pointless, so skip it in that case.
1713 */
1714 if (policy->fast_switch_enabled || !has_target())
1715 return new_freq;
1716
1717 if (policy->cur != new_freq) {
1718 cpufreq_out_of_sync(policy, new_freq);
1719 if (update)
1720 schedule_work(&policy->update);
1721 }
1722
1723 return new_freq;
1724}
1725
1726/**
1727 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1728 * @cpu: CPU number
1729 *
1730 * This is the last known freq, without actually getting it from the driver.
1731 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1732 */
1733unsigned int cpufreq_quick_get(unsigned int cpu)
1734{
1735 struct cpufreq_policy *policy;
1736 unsigned int ret_freq = 0;
1737 unsigned long flags;
1738
1739 read_lock_irqsave(&cpufreq_driver_lock, flags);
1740
1741 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1742 ret_freq = cpufreq_driver->get(cpu);
1743 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1744 return ret_freq;
1745 }
1746
1747 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1748
1749 policy = cpufreq_cpu_get(cpu);
1750 if (policy) {
1751 ret_freq = policy->cur;
1752 cpufreq_cpu_put(policy);
1753 }
1754
1755 return ret_freq;
1756}
1757EXPORT_SYMBOL(cpufreq_quick_get);
1758
1759/**
1760 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1761 * @cpu: CPU number
1762 *
1763 * Just return the max possible frequency for a given CPU.
1764 */
1765unsigned int cpufreq_quick_get_max(unsigned int cpu)
1766{
1767 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1768 unsigned int ret_freq = 0;
1769
1770 if (policy) {
1771 ret_freq = policy->max;
1772 cpufreq_cpu_put(policy);
1773 }
1774
1775 return ret_freq;
1776}
1777EXPORT_SYMBOL(cpufreq_quick_get_max);
1778
1779static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1780{
1781 if (unlikely(policy_is_inactive(policy)))
1782 return 0;
1783
1784 return cpufreq_verify_current_freq(policy, true);
1785}
1786
1787/**
1788 * cpufreq_get - get the current CPU frequency (in kHz)
1789 * @cpu: CPU number
1790 *
1791 * Get the CPU current (static) CPU frequency
1792 */
1793unsigned int cpufreq_get(unsigned int cpu)
1794{
1795 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1796 unsigned int ret_freq = 0;
1797
1798 if (policy) {
1799 down_read(&policy->rwsem);
1800 if (cpufreq_driver->get)
1801 ret_freq = __cpufreq_get(policy);
1802 up_read(&policy->rwsem);
1803
1804 cpufreq_cpu_put(policy);
1805 }
1806
1807 return ret_freq;
1808}
1809EXPORT_SYMBOL(cpufreq_get);
1810
1811static struct subsys_interface cpufreq_interface = {
1812 .name = "cpufreq",
1813 .subsys = &cpu_subsys,
1814 .add_dev = cpufreq_add_dev,
1815 .remove_dev = cpufreq_remove_dev,
1816};
1817
1818/*
1819 * In case platform wants some specific frequency to be configured
1820 * during suspend..
1821 */
1822int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1823{
1824 int ret;
1825
1826 if (!policy->suspend_freq) {
1827 pr_debug("%s: suspend_freq not defined\n", __func__);
1828 return 0;
1829 }
1830
1831 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1832 policy->suspend_freq);
1833
1834 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1835 CPUFREQ_RELATION_H);
1836 if (ret)
1837 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1838 __func__, policy->suspend_freq, ret);
1839
1840 return ret;
1841}
1842EXPORT_SYMBOL(cpufreq_generic_suspend);
1843
1844/**
1845 * cpufreq_suspend() - Suspend CPUFreq governors
1846 *
1847 * Called during system wide Suspend/Hibernate cycles for suspending governors
1848 * as some platforms can't change frequency after this point in suspend cycle.
1849 * Because some of the devices (like: i2c, regulators, etc) they use for
1850 * changing frequency are suspended quickly after this point.
1851 */
1852void cpufreq_suspend(void)
1853{
1854 struct cpufreq_policy *policy;
1855
1856 if (!cpufreq_driver)
1857 return;
1858
1859 if (!has_target() && !cpufreq_driver->suspend)
1860 goto suspend;
1861
1862 pr_debug("%s: Suspending Governors\n", __func__);
1863
1864 for_each_active_policy(policy) {
1865 if (has_target()) {
1866 down_write(&policy->rwsem);
1867 cpufreq_stop_governor(policy);
1868 up_write(&policy->rwsem);
1869 }
1870
1871 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1872 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1873 cpufreq_driver->name);
1874 }
1875
1876suspend:
1877 cpufreq_suspended = true;
1878}
1879
1880/**
1881 * cpufreq_resume() - Resume CPUFreq governors
1882 *
1883 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1884 * are suspended with cpufreq_suspend().
1885 */
1886void cpufreq_resume(void)
1887{
1888 struct cpufreq_policy *policy;
1889 int ret;
1890
1891 if (!cpufreq_driver)
1892 return;
1893
1894 if (unlikely(!cpufreq_suspended))
1895 return;
1896
1897 cpufreq_suspended = false;
1898
1899 if (!has_target() && !cpufreq_driver->resume)
1900 return;
1901
1902 pr_debug("%s: Resuming Governors\n", __func__);
1903
1904 for_each_active_policy(policy) {
1905 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1906 pr_err("%s: Failed to resume driver: %p\n", __func__,
1907 policy);
1908 } else if (has_target()) {
1909 down_write(&policy->rwsem);
1910 ret = cpufreq_start_governor(policy);
1911 up_write(&policy->rwsem);
1912
1913 if (ret)
1914 pr_err("%s: Failed to start governor for policy: %p\n",
1915 __func__, policy);
1916 }
1917 }
1918}
1919
1920/**
1921 * cpufreq_get_current_driver - return current driver's name
1922 *
1923 * Return the name string of the currently loaded cpufreq driver
1924 * or NULL, if none.
1925 */
1926const char *cpufreq_get_current_driver(void)
1927{
1928 if (cpufreq_driver)
1929 return cpufreq_driver->name;
1930
1931 return NULL;
1932}
1933EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1934
1935/**
1936 * cpufreq_get_driver_data - return current driver data
1937 *
1938 * Return the private data of the currently loaded cpufreq
1939 * driver, or NULL if no cpufreq driver is loaded.
1940 */
1941void *cpufreq_get_driver_data(void)
1942{
1943 if (cpufreq_driver)
1944 return cpufreq_driver->driver_data;
1945
1946 return NULL;
1947}
1948EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1949
1950/*********************************************************************
1951 * NOTIFIER LISTS INTERFACE *
1952 *********************************************************************/
1953
1954/**
1955 * cpufreq_register_notifier - register a driver with cpufreq
1956 * @nb: notifier function to register
1957 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1958 *
1959 * Add a driver to one of two lists: either a list of drivers that
1960 * are notified about clock rate changes (once before and once after
1961 * the transition), or a list of drivers that are notified about
1962 * changes in cpufreq policy.
1963 *
1964 * This function may sleep, and has the same return conditions as
1965 * blocking_notifier_chain_register.
1966 */
1967int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1968{
1969 int ret;
1970
1971 if (cpufreq_disabled())
1972 return -EINVAL;
1973
1974 switch (list) {
1975 case CPUFREQ_TRANSITION_NOTIFIER:
1976 mutex_lock(&cpufreq_fast_switch_lock);
1977
1978 if (cpufreq_fast_switch_count > 0) {
1979 mutex_unlock(&cpufreq_fast_switch_lock);
1980 return -EBUSY;
1981 }
1982 ret = srcu_notifier_chain_register(
1983 &cpufreq_transition_notifier_list, nb);
1984 if (!ret)
1985 cpufreq_fast_switch_count--;
1986
1987 mutex_unlock(&cpufreq_fast_switch_lock);
1988 break;
1989 case CPUFREQ_POLICY_NOTIFIER:
1990 ret = blocking_notifier_chain_register(
1991 &cpufreq_policy_notifier_list, nb);
1992 break;
1993 default:
1994 ret = -EINVAL;
1995 }
1996
1997 return ret;
1998}
1999EXPORT_SYMBOL(cpufreq_register_notifier);
2000
2001/**
2002 * cpufreq_unregister_notifier - unregister a driver with cpufreq
2003 * @nb: notifier block to be unregistered
2004 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
2005 *
2006 * Remove a driver from the CPU frequency notifier list.
2007 *
2008 * This function may sleep, and has the same return conditions as
2009 * blocking_notifier_chain_unregister.
2010 */
2011int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2012{
2013 int ret;
2014
2015 if (cpufreq_disabled())
2016 return -EINVAL;
2017
2018 switch (list) {
2019 case CPUFREQ_TRANSITION_NOTIFIER:
2020 mutex_lock(&cpufreq_fast_switch_lock);
2021
2022 ret = srcu_notifier_chain_unregister(
2023 &cpufreq_transition_notifier_list, nb);
2024 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2025 cpufreq_fast_switch_count++;
2026
2027 mutex_unlock(&cpufreq_fast_switch_lock);
2028 break;
2029 case CPUFREQ_POLICY_NOTIFIER:
2030 ret = blocking_notifier_chain_unregister(
2031 &cpufreq_policy_notifier_list, nb);
2032 break;
2033 default:
2034 ret = -EINVAL;
2035 }
2036
2037 return ret;
2038}
2039EXPORT_SYMBOL(cpufreq_unregister_notifier);
2040
2041
2042/*********************************************************************
2043 * GOVERNORS *
2044 *********************************************************************/
2045
2046/**
2047 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2048 * @policy: cpufreq policy to switch the frequency for.
2049 * @target_freq: New frequency to set (may be approximate).
2050 *
2051 * Carry out a fast frequency switch without sleeping.
2052 *
2053 * The driver's ->fast_switch() callback invoked by this function must be
2054 * suitable for being called from within RCU-sched read-side critical sections
2055 * and it is expected to select the minimum available frequency greater than or
2056 * equal to @target_freq (CPUFREQ_RELATION_L).
2057 *
2058 * This function must not be called if policy->fast_switch_enabled is unset.
2059 *
2060 * Governors calling this function must guarantee that it will never be invoked
2061 * twice in parallel for the same policy and that it will never be called in
2062 * parallel with either ->target() or ->target_index() for the same policy.
2063 *
2064 * Returns the actual frequency set for the CPU.
2065 *
2066 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2067 * error condition, the hardware configuration must be preserved.
2068 */
2069unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2070 unsigned int target_freq)
2071{
2072 int ret;
2073
2074 target_freq = clamp_val(target_freq, policy->min, policy->max);
2075
2076 ret = cpufreq_driver->fast_switch(policy, target_freq);
2077 if (ret)
2078 cpufreq_times_record_transition(policy, ret);
2079
2080 return ret;
2081}
2082EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2083
2084/* Must set freqs->new to intermediate frequency */
2085static int __target_intermediate(struct cpufreq_policy *policy,
2086 struct cpufreq_freqs *freqs, int index)
2087{
2088 int ret;
2089
2090 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2091
2092 /* We don't need to switch to intermediate freq */
2093 if (!freqs->new)
2094 return 0;
2095
2096 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2097 __func__, policy->cpu, freqs->old, freqs->new);
2098
2099 cpufreq_freq_transition_begin(policy, freqs);
2100 ret = cpufreq_driver->target_intermediate(policy, index);
2101 cpufreq_freq_transition_end(policy, freqs, ret);
2102
2103 if (ret)
2104 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2105 __func__, ret);
2106
2107 return ret;
2108}
2109
2110static int __target_index(struct cpufreq_policy *policy, int index)
2111{
2112 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2113 unsigned int intermediate_freq = 0;
2114 unsigned int newfreq = policy->freq_table[index].frequency;
2115 int retval = -EINVAL;
2116 bool notify;
2117
2118 if (newfreq == policy->cur)
2119 return 0;
2120
2121 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2122 if (notify) {
2123 /* Handle switching to intermediate frequency */
2124 if (cpufreq_driver->get_intermediate) {
2125 retval = __target_intermediate(policy, &freqs, index);
2126 if (retval)
2127 return retval;
2128
2129 intermediate_freq = freqs.new;
2130 /* Set old freq to intermediate */
2131 if (intermediate_freq)
2132 freqs.old = freqs.new;
2133 }
2134
2135 freqs.new = newfreq;
2136 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2137 __func__, policy->cpu, freqs.old, freqs.new);
2138
2139 cpufreq_freq_transition_begin(policy, &freqs);
2140 }
2141
2142 retval = cpufreq_driver->target_index(policy, index);
2143 if (retval)
2144 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2145 retval);
2146
2147 if (notify) {
2148 cpufreq_freq_transition_end(policy, &freqs, retval);
2149
2150 /*
2151 * Failed after setting to intermediate freq? Driver should have
2152 * reverted back to initial frequency and so should we. Check
2153 * here for intermediate_freq instead of get_intermediate, in
2154 * case we haven't switched to intermediate freq at all.
2155 */
2156 if (unlikely(retval && intermediate_freq)) {
2157 freqs.old = intermediate_freq;
2158 freqs.new = policy->restore_freq;
2159 cpufreq_freq_transition_begin(policy, &freqs);
2160 cpufreq_freq_transition_end(policy, &freqs, 0);
2161 }
2162 }
2163
2164 return retval;
2165}
2166
2167int __cpufreq_driver_target(struct cpufreq_policy *policy,
2168 unsigned int target_freq,
2169 unsigned int relation)
2170{
2171 unsigned int old_target_freq = target_freq;
2172 int index;
2173
2174 if (cpufreq_disabled())
2175 return -ENODEV;
2176
2177 /* Make sure that target_freq is within supported range */
2178 target_freq = clamp_val(target_freq, policy->min, policy->max);
2179
2180 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2181 policy->cpu, target_freq, relation, old_target_freq);
2182
2183 /*
2184 * This might look like a redundant call as we are checking it again
2185 * after finding index. But it is left intentionally for cases where
2186 * exactly same freq is called again and so we can save on few function
2187 * calls.
2188 */
2189 if (target_freq == policy->cur)
2190 return 0;
2191
2192 /* Save last value to restore later on errors */
2193 policy->restore_freq = policy->cur;
2194
2195 if (cpufreq_driver->target)
2196 return cpufreq_driver->target(policy, target_freq, relation);
2197
2198 if (!cpufreq_driver->target_index)
2199 return -EINVAL;
2200
2201 index = cpufreq_frequency_table_target(policy, target_freq, relation);
2202
2203 return __target_index(policy, index);
2204}
2205EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2206
2207int cpufreq_driver_target(struct cpufreq_policy *policy,
2208 unsigned int target_freq,
2209 unsigned int relation)
2210{
2211 int ret;
2212
2213 down_write(&policy->rwsem);
2214
2215 ret = __cpufreq_driver_target(policy, target_freq, relation);
2216
2217 up_write(&policy->rwsem);
2218
2219 return ret;
2220}
2221EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2222
2223__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2224{
2225 return NULL;
2226}
2227
2228static int cpufreq_init_governor(struct cpufreq_policy *policy)
2229{
2230 int ret;
2231
2232 /* Don't start any governor operations if we are entering suspend */
2233 if (cpufreq_suspended)
2234 return 0;
2235 /*
2236 * Governor might not be initiated here if ACPI _PPC changed
2237 * notification happened, so check it.
2238 */
2239 if (!policy->governor)
2240 return -EINVAL;
2241
2242 /* Platform doesn't want dynamic frequency switching ? */
2243 if (policy->governor->dynamic_switching &&
2244 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2245 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2246
2247 if (gov) {
2248 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2249 policy->governor->name, gov->name);
2250 policy->governor = gov;
2251 } else {
2252 return -EINVAL;
2253 }
2254 }
2255
2256 if (!try_module_get(policy->governor->owner))
2257 return -EINVAL;
2258
2259 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2260
2261 if (policy->governor->init) {
2262 ret = policy->governor->init(policy);
2263 if (ret) {
2264 module_put(policy->governor->owner);
2265 return ret;
2266 }
2267 }
2268
2269 return 0;
2270}
2271
2272static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2273{
2274 if (cpufreq_suspended || !policy->governor)
2275 return;
2276
2277 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2278
2279 if (policy->governor->exit)
2280 policy->governor->exit(policy);
2281
2282 module_put(policy->governor->owner);
2283}
2284
2285static int cpufreq_start_governor(struct cpufreq_policy *policy)
2286{
2287 int ret;
2288
2289 if (cpufreq_suspended)
2290 return 0;
2291
2292 if (!policy->governor)
2293 return -EINVAL;
2294
2295 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2296
2297 if (cpufreq_driver->get)
2298 cpufreq_verify_current_freq(policy, false);
2299
2300 if (policy->governor->start) {
2301 ret = policy->governor->start(policy);
2302 if (ret)
2303 return ret;
2304 }
2305
2306 if (policy->governor->limits)
2307 policy->governor->limits(policy);
2308
2309 return 0;
2310}
2311
2312static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2313{
2314 if (cpufreq_suspended || !policy->governor)
2315 return;
2316
2317 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2318
2319 if (policy->governor->stop)
2320 policy->governor->stop(policy);
2321}
2322
2323static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2324{
2325 if (cpufreq_suspended || !policy->governor)
2326 return;
2327
2328 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2329
2330 if (policy->governor->limits)
2331 policy->governor->limits(policy);
2332}
2333
2334int cpufreq_register_governor(struct cpufreq_governor *governor)
2335{
2336 int err;
2337
2338 if (!governor)
2339 return -EINVAL;
2340
2341 if (cpufreq_disabled())
2342 return -ENODEV;
2343
2344 mutex_lock(&cpufreq_governor_mutex);
2345
2346 err = -EBUSY;
2347 if (!find_governor(governor->name)) {
2348 err = 0;
2349 list_add(&governor->governor_list, &cpufreq_governor_list);
2350 }
2351
2352 mutex_unlock(&cpufreq_governor_mutex);
2353 return err;
2354}
2355EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2356
2357void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2358{
2359 struct cpufreq_policy *policy;
2360 unsigned long flags;
2361
2362 if (!governor)
2363 return;
2364
2365 if (cpufreq_disabled())
2366 return;
2367
2368 /* clear last_governor for all inactive policies */
2369 read_lock_irqsave(&cpufreq_driver_lock, flags);
2370 for_each_inactive_policy(policy) {
2371 if (!strcmp(policy->last_governor, governor->name)) {
2372 policy->governor = NULL;
2373 strcpy(policy->last_governor, "\0");
2374 }
2375 }
2376 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2377
2378 mutex_lock(&cpufreq_governor_mutex);
2379 list_del(&governor->governor_list);
2380 mutex_unlock(&cpufreq_governor_mutex);
2381}
2382EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2383
2384
2385/*********************************************************************
2386 * POLICY INTERFACE *
2387 *********************************************************************/
2388
2389/**
2390 * cpufreq_get_policy - get the current cpufreq_policy
2391 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2392 * is written
2393 *
2394 * Reads the current cpufreq policy.
2395 */
2396int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2397{
2398 struct cpufreq_policy *cpu_policy;
2399 if (!policy)
2400 return -EINVAL;
2401
2402 cpu_policy = cpufreq_cpu_get(cpu);
2403 if (!cpu_policy)
2404 return -EINVAL;
2405
2406 memcpy(policy, cpu_policy, sizeof(*policy));
2407
2408 cpufreq_cpu_put(cpu_policy);
2409 return 0;
2410}
2411EXPORT_SYMBOL(cpufreq_get_policy);
2412
2413/**
2414 * cpufreq_set_policy - Modify cpufreq policy parameters.
2415 * @policy: Policy object to modify.
2416 * @new_gov: Policy governor pointer.
2417 * @new_pol: Policy value (for drivers with built-in governors).
2418 *
2419 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2420 * limits to be set for the policy, update @policy with the verified limits
2421 * values and either invoke the driver's ->setpolicy() callback (if present) or
2422 * carry out a governor update for @policy. That is, run the current governor's
2423 * ->limits() callback (if @new_gov points to the same object as the one in
2424 * @policy) or replace the governor for @policy with @new_gov.
2425 *
2426 * The cpuinfo part of @policy is not updated by this function.
2427 */
2428static int cpufreq_set_policy(struct cpufreq_policy *policy,
2429 struct cpufreq_governor *new_gov,
2430 unsigned int new_pol)
2431{
2432 struct cpufreq_policy_data new_data;
2433 struct cpufreq_governor *old_gov;
2434 int ret;
2435
2436 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2437 new_data.freq_table = policy->freq_table;
2438 new_data.cpu = policy->cpu;
2439 /*
2440 * PM QoS framework collects all the requests from users and provide us
2441 * the final aggregated value here.
2442 */
2443 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2444 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2445
2446 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2447 new_data.cpu, new_data.min, new_data.max);
2448
2449 /* verify the cpu speed can be set within this limit */
2450 ret = cpufreq_driver->verify(&new_data);
2451 if (ret)
2452 return ret;
2453
2454 policy->min = new_data.min;
2455 policy->max = new_data.max;
2456 trace_cpu_frequency_limits(policy);
2457
2458 arch_set_max_freq_scale(policy->cpus, policy->max);
2459
2460 policy->cached_target_freq = UINT_MAX;
2461
2462 pr_debug("new min and max freqs are %u - %u kHz\n",
2463 policy->min, policy->max);
2464
2465 if (cpufreq_driver->setpolicy) {
2466 policy->policy = new_pol;
2467 pr_debug("setting range\n");
2468 return cpufreq_driver->setpolicy(policy);
2469 }
2470
2471 if (new_gov == policy->governor) {
2472 pr_debug("governor limits update\n");
2473 cpufreq_governor_limits(policy);
2474 return 0;
2475 }
2476
2477 pr_debug("governor switch\n");
2478
2479 /* save old, working values */
2480 old_gov = policy->governor;
2481 /* end old governor */
2482 if (old_gov) {
2483 cpufreq_stop_governor(policy);
2484 cpufreq_exit_governor(policy);
2485 }
2486
2487 /* start new governor */
2488 policy->governor = new_gov;
2489 ret = cpufreq_init_governor(policy);
2490 if (!ret) {
2491 ret = cpufreq_start_governor(policy);
2492 if (!ret) {
2493 pr_debug("governor change\n");
2494 sched_cpufreq_governor_change(policy, old_gov);
2495 return 0;
2496 }
2497 cpufreq_exit_governor(policy);
2498 }
2499
2500 /* new governor failed, so re-start old one */
2501 pr_debug("starting governor %s failed\n", policy->governor->name);
2502 if (old_gov) {
2503 policy->governor = old_gov;
2504 if (cpufreq_init_governor(policy))
2505 policy->governor = NULL;
2506 else
2507 cpufreq_start_governor(policy);
2508 }
2509
2510 return ret;
2511}
2512
2513/**
2514 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2515 * @cpu: CPU to re-evaluate the policy for.
2516 *
2517 * Update the current frequency for the cpufreq policy of @cpu and use
2518 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2519 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2520 * for the policy in question, among other things.
2521 */
2522void cpufreq_update_policy(unsigned int cpu)
2523{
2524 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2525
2526 if (!policy)
2527 return;
2528
2529 /*
2530 * BIOS might change freq behind our back
2531 * -> ask driver for current freq and notify governors about a change
2532 */
2533 if (cpufreq_driver->get && has_target() &&
2534 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2535 goto unlock;
2536
2537 refresh_frequency_limits(policy);
2538
2539unlock:
2540 cpufreq_cpu_release(policy);
2541}
2542EXPORT_SYMBOL(cpufreq_update_policy);
2543
2544/**
2545 * cpufreq_update_limits - Update policy limits for a given CPU.
2546 * @cpu: CPU to update the policy limits for.
2547 *
2548 * Invoke the driver's ->update_limits callback if present or call
2549 * cpufreq_update_policy() for @cpu.
2550 */
2551void cpufreq_update_limits(unsigned int cpu)
2552{
2553 if (cpufreq_driver->update_limits)
2554 cpufreq_driver->update_limits(cpu);
2555 else
2556 cpufreq_update_policy(cpu);
2557}
2558EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2559
2560/*********************************************************************
2561 * BOOST *
2562 *********************************************************************/
2563static int cpufreq_boost_set_sw(int state)
2564{
2565 struct cpufreq_policy *policy;
2566
2567 for_each_active_policy(policy) {
2568 int ret;
2569
2570 if (!policy->freq_table)
2571 return -ENXIO;
2572
2573 ret = cpufreq_frequency_table_cpuinfo(policy,
2574 policy->freq_table);
2575 if (ret) {
2576 pr_err("%s: Policy frequency update failed\n",
2577 __func__);
2578 return ret;
2579 }
2580
2581 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2582 if (ret < 0)
2583 return ret;
2584 }
2585
2586 return 0;
2587}
2588
2589int cpufreq_boost_trigger_state(int state)
2590{
2591 unsigned long flags;
2592 int ret = 0;
2593
2594 if (cpufreq_driver->boost_enabled == state)
2595 return 0;
2596
2597 write_lock_irqsave(&cpufreq_driver_lock, flags);
2598 cpufreq_driver->boost_enabled = state;
2599 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2600
2601 ret = cpufreq_driver->set_boost(state);
2602 if (ret) {
2603 write_lock_irqsave(&cpufreq_driver_lock, flags);
2604 cpufreq_driver->boost_enabled = !state;
2605 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2606
2607 pr_err("%s: Cannot %s BOOST\n",
2608 __func__, state ? "enable" : "disable");
2609 }
2610
2611 return ret;
2612}
2613
2614static bool cpufreq_boost_supported(void)
2615{
2616 return cpufreq_driver->set_boost;
2617}
2618
2619static int create_boost_sysfs_file(void)
2620{
2621 int ret;
2622
2623 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2624 if (ret)
2625 pr_err("%s: cannot register global BOOST sysfs file\n",
2626 __func__);
2627
2628 return ret;
2629}
2630
2631static void remove_boost_sysfs_file(void)
2632{
2633 if (cpufreq_boost_supported())
2634 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2635}
2636
2637int cpufreq_enable_boost_support(void)
2638{
2639 if (!cpufreq_driver)
2640 return -EINVAL;
2641
2642 if (cpufreq_boost_supported())
2643 return 0;
2644
2645 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2646
2647 /* This will get removed on driver unregister */
2648 return create_boost_sysfs_file();
2649}
2650EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2651
2652int cpufreq_boost_enabled(void)
2653{
2654 return cpufreq_driver->boost_enabled;
2655}
2656EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2657
2658/*********************************************************************
2659 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2660 *********************************************************************/
2661static enum cpuhp_state hp_online;
2662
2663static int cpuhp_cpufreq_online(unsigned int cpu)
2664{
2665 cpufreq_online(cpu);
2666
2667 return 0;
2668}
2669
2670static int cpuhp_cpufreq_offline(unsigned int cpu)
2671{
2672 cpufreq_offline(cpu);
2673
2674 return 0;
2675}
2676
2677/**
2678 * cpufreq_register_driver - register a CPU Frequency driver
2679 * @driver_data: A struct cpufreq_driver containing the values#
2680 * submitted by the CPU Frequency driver.
2681 *
2682 * Registers a CPU Frequency driver to this core code. This code
2683 * returns zero on success, -EEXIST when another driver got here first
2684 * (and isn't unregistered in the meantime).
2685 *
2686 */
2687int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2688{
2689 unsigned long flags;
2690 int ret;
2691
2692 if (cpufreq_disabled())
2693 return -ENODEV;
2694
2695 /*
2696 * The cpufreq core depends heavily on the availability of device
2697 * structure, make sure they are available before proceeding further.
2698 */
2699 if (!get_cpu_device(0))
2700 return -EPROBE_DEFER;
2701
2702 if (!driver_data || !driver_data->verify || !driver_data->init ||
2703 !(driver_data->setpolicy || driver_data->target_index ||
2704 driver_data->target) ||
2705 (driver_data->setpolicy && (driver_data->target_index ||
2706 driver_data->target)) ||
2707 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2708 (!driver_data->online != !driver_data->offline))
2709 return -EINVAL;
2710
2711 pr_debug("trying to register driver %s\n", driver_data->name);
2712
2713 /* Protect against concurrent CPU online/offline. */
2714 cpus_read_lock();
2715
2716 write_lock_irqsave(&cpufreq_driver_lock, flags);
2717 if (cpufreq_driver) {
2718 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2719 ret = -EEXIST;
2720 goto out;
2721 }
2722 cpufreq_driver = driver_data;
2723 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2724
2725 if (driver_data->setpolicy)
2726 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2727
2728 if (cpufreq_boost_supported()) {
2729 ret = create_boost_sysfs_file();
2730 if (ret)
2731 goto err_null_driver;
2732 }
2733
2734 ret = subsys_interface_register(&cpufreq_interface);
2735 if (ret)
2736 goto err_boost_unreg;
2737
2738 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2739 list_empty(&cpufreq_policy_list)) {
2740 /* if all ->init() calls failed, unregister */
2741 ret = -ENODEV;
2742 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2743 driver_data->name);
2744 goto err_if_unreg;
2745 }
2746
2747 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2748 "cpufreq:online",
2749 cpuhp_cpufreq_online,
2750 cpuhp_cpufreq_offline);
2751 if (ret < 0)
2752 goto err_if_unreg;
2753 hp_online = ret;
2754 ret = 0;
2755
2756 pr_debug("driver %s up and running\n", driver_data->name);
2757 goto out;
2758
2759err_if_unreg:
2760 subsys_interface_unregister(&cpufreq_interface);
2761err_boost_unreg:
2762 remove_boost_sysfs_file();
2763err_null_driver:
2764 write_lock_irqsave(&cpufreq_driver_lock, flags);
2765 cpufreq_driver = NULL;
2766 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2767out:
2768 cpus_read_unlock();
2769 return ret;
2770}
2771EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2772
2773/**
2774 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2775 *
2776 * Unregister the current CPUFreq driver. Only call this if you have
2777 * the right to do so, i.e. if you have succeeded in initialising before!
2778 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2779 * currently not initialised.
2780 */
2781int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2782{
2783 unsigned long flags;
2784
2785 if (!cpufreq_driver || (driver != cpufreq_driver))
2786 return -EINVAL;
2787
2788 pr_debug("unregistering driver %s\n", driver->name);
2789
2790 /* Protect against concurrent cpu hotplug */
2791 cpus_read_lock();
2792 subsys_interface_unregister(&cpufreq_interface);
2793 remove_boost_sysfs_file();
2794 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2795
2796 write_lock_irqsave(&cpufreq_driver_lock, flags);
2797
2798 cpufreq_driver = NULL;
2799
2800 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2801 cpus_read_unlock();
2802
2803 return 0;
2804}
2805EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2806
2807static int __init cpufreq_core_init(void)
2808{
2809 if (cpufreq_disabled())
2810 return -ENODEV;
2811
2812 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2813 BUG_ON(!cpufreq_global_kobject);
2814
2815 return 0;
2816}
2817module_param(off, int, 0444);
2818core_initcall(cpufreq_core_init);