blob: 06302eaa3e94291d4c418d39458a8152bc62f767 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <linux/pm_qos.h>
28#include <trace/events/power.h>
29
30#include <asm/div64.h>
31#include <asm/msr.h>
32#include <asm/cpu_device_id.h>
33#include <asm/cpufeature.h>
34#include <asm/intel-family.h>
35
36#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
37
38#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39#define INTEL_CPUFREQ_TRANSITION_DELAY 500
40
41#ifdef CONFIG_ACPI
42#include <acpi/processor.h>
43#include <acpi/cppc_acpi.h>
44#endif
45
46#define FRAC_BITS 8
47#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48#define fp_toint(X) ((X) >> FRAC_BITS)
49
50#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52#define EXT_BITS 6
53#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57static inline int32_t mul_fp(int32_t x, int32_t y)
58{
59 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60}
61
62static inline int32_t div_fp(s64 x, s64 y)
63{
64 return div64_s64((int64_t)x << FRAC_BITS, y);
65}
66
67static inline int ceiling_fp(int32_t x)
68{
69 int mask, ret;
70
71 ret = fp_toint(x);
72 mask = (1 << FRAC_BITS) - 1;
73 if (x & mask)
74 ret += 1;
75 return ret;
76}
77
78static inline int32_t percent_fp(int percent)
79{
80 return div_fp(percent, 100);
81}
82
83static inline u64 mul_ext_fp(u64 x, u64 y)
84{
85 return (x * y) >> EXT_FRAC_BITS;
86}
87
88static inline u64 div_ext_fp(u64 x, u64 y)
89{
90 return div64_u64(x << EXT_FRAC_BITS, y);
91}
92
93static inline int32_t percent_ext_fp(int percent)
94{
95 return div_ext_fp(percent, 100);
96}
97
98/**
99 * struct sample - Store performance sample
100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
101 * performance during last sample period
102 * @busy_scaled: Scaled busy value which is used to calculate next
103 * P state. This can be different than core_avg_perf
104 * to account for cpu idle period
105 * @aperf: Difference of actual performance frequency clock count
106 * read from APERF MSR between last and current sample
107 * @mperf: Difference of maximum performance frequency clock count
108 * read from MPERF MSR between last and current sample
109 * @tsc: Difference of time stamp counter between last and
110 * current sample
111 * @time: Current time from scheduler
112 *
113 * This structure is used in the cpudata structure to store performance sample
114 * data for choosing next P State.
115 */
116struct sample {
117 int32_t core_avg_perf;
118 int32_t busy_scaled;
119 u64 aperf;
120 u64 mperf;
121 u64 tsc;
122 u64 time;
123};
124
125/**
126 * struct pstate_data - Store P state data
127 * @current_pstate: Current requested P state
128 * @min_pstate: Min P state possible for this platform
129 * @max_pstate: Max P state possible for this platform
130 * @max_pstate_physical:This is physical Max P state for a processor
131 * This can be higher than the max_pstate which can
132 * be limited by platform thermal design power limits
133 * @scaling: Scaling factor to convert frequency to cpufreq
134 * frequency units
135 * @turbo_pstate: Max Turbo P state possible for this platform
136 * @max_freq: @max_pstate frequency in cpufreq units
137 * @turbo_freq: @turbo_pstate frequency in cpufreq units
138 *
139 * Stores the per cpu model P state limits and current P state.
140 */
141struct pstate_data {
142 int current_pstate;
143 int min_pstate;
144 int max_pstate;
145 int max_pstate_physical;
146 int scaling;
147 int turbo_pstate;
148 unsigned int max_freq;
149 unsigned int turbo_freq;
150};
151
152/**
153 * struct vid_data - Stores voltage information data
154 * @min: VID data for this platform corresponding to
155 * the lowest P state
156 * @max: VID data corresponding to the highest P State.
157 * @turbo: VID data for turbo P state
158 * @ratio: Ratio of (vid max - vid min) /
159 * (max P state - Min P State)
160 *
161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162 * This data is used in Atom platforms, where in addition to target P state,
163 * the voltage data needs to be specified to select next P State.
164 */
165struct vid_data {
166 int min;
167 int max;
168 int turbo;
169 int32_t ratio;
170};
171
172/**
173 * struct global_params - Global parameters, mostly tunable via sysfs.
174 * @no_turbo: Whether or not to use turbo P-states.
175 * @turbo_disabled: Whethet or not turbo P-states are available at all,
176 * based on the MSR_IA32_MISC_ENABLE value and whether or
177 * not the maximum reported turbo P-state is different from
178 * the maximum reported non-turbo one.
179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
183 * P-state capacity.
184 */
185struct global_params {
186 bool no_turbo;
187 bool turbo_disabled;
188 bool turbo_disabled_mf;
189 int max_perf_pct;
190 int min_perf_pct;
191};
192
193/**
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
211 * current sample
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
222 * preference/bias
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
224 * operation
225 * @hwp_req_cached: Cached value of the last HWP Request MSR
226 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
227 * @last_io_update: Last time when IO wake flag was set
228 * @sched_flags: Store scheduler flags for possible cross CPU update
229 * @hwp_boost_min: Last HWP boosted min performance
230 *
231 * This structure stores per CPU instance data for all CPUs.
232 */
233struct cpudata {
234 int cpu;
235
236 unsigned int policy;
237 struct update_util_data update_util;
238 bool update_util_set;
239
240 struct pstate_data pstate;
241 struct vid_data vid;
242
243 u64 last_update;
244 u64 last_sample_time;
245 u64 aperf_mperf_shift;
246 u64 prev_aperf;
247 u64 prev_mperf;
248 u64 prev_tsc;
249 u64 prev_cummulative_iowait;
250 struct sample sample;
251 int32_t min_perf_ratio;
252 int32_t max_perf_ratio;
253#ifdef CONFIG_ACPI
254 struct acpi_processor_performance acpi_perf_data;
255 bool valid_pss_table;
256#endif
257 unsigned int iowait_boost;
258 s16 epp_powersave;
259 s16 epp_policy;
260 s16 epp_default;
261 s16 epp_saved;
262 u64 hwp_req_cached;
263 u64 hwp_cap_cached;
264 u64 last_io_update;
265 unsigned int sched_flags;
266 u32 hwp_boost_min;
267};
268
269static struct cpudata **all_cpu_data;
270
271/**
272 * struct pstate_funcs - Per CPU model specific callbacks
273 * @get_max: Callback to get maximum non turbo effective P state
274 * @get_max_physical: Callback to get maximum non turbo physical P state
275 * @get_min: Callback to get minimum P state
276 * @get_turbo: Callback to get turbo P state
277 * @get_scaling: Callback to get frequency scaling factor
278 * @get_val: Callback to convert P state to actual MSR write value
279 * @get_vid: Callback to get VID data for Atom platforms
280 *
281 * Core and Atom CPU models have different way to get P State limits. This
282 * structure is used to store those callbacks.
283 */
284struct pstate_funcs {
285 int (*get_max)(void);
286 int (*get_max_physical)(void);
287 int (*get_min)(void);
288 int (*get_turbo)(void);
289 int (*get_scaling)(void);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293};
294
295static struct pstate_funcs pstate_funcs __read_mostly;
296
297static int hwp_active __read_mostly;
298static int hwp_mode_bdw __read_mostly;
299static bool per_cpu_limits __read_mostly;
300static bool hwp_boost __read_mostly;
301
302static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304#ifdef CONFIG_ACPI
305static bool acpi_ppc;
306#endif
307
308static struct global_params global;
309
310static DEFINE_MUTEX(intel_pstate_driver_lock);
311static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313#ifdef CONFIG_ACPI
314
315static bool intel_pstate_acpi_pm_profile_server(void)
316{
317 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 return true;
320
321 return false;
322}
323
324static bool intel_pstate_get_ppc_enable_status(void)
325{
326 if (intel_pstate_acpi_pm_profile_server())
327 return true;
328
329 return acpi_ppc;
330}
331
332#ifdef CONFIG_ACPI_CPPC_LIB
333
334/* The work item is needed to avoid CPU hotplug locking issues */
335static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336{
337 sched_set_itmt_support();
338}
339
340static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342static void intel_pstate_set_itmt_prio(int cpu)
343{
344 struct cppc_perf_caps cppc_perf;
345 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346 int ret;
347
348 ret = cppc_get_perf_caps(cpu, &cppc_perf);
349 if (ret)
350 return;
351
352 /*
353 * The priorities can be set regardless of whether or not
354 * sched_set_itmt_support(true) has been called and it is valid to
355 * update them at any time after it has been called.
356 */
357 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359 if (max_highest_perf <= min_highest_perf) {
360 if (cppc_perf.highest_perf > max_highest_perf)
361 max_highest_perf = cppc_perf.highest_perf;
362
363 if (cppc_perf.highest_perf < min_highest_perf)
364 min_highest_perf = cppc_perf.highest_perf;
365
366 if (max_highest_perf > min_highest_perf) {
367 /*
368 * This code can be run during CPU online under the
369 * CPU hotplug locks, so sched_set_itmt_support()
370 * cannot be called from here. Queue up a work item
371 * to invoke it.
372 */
373 schedule_work(&sched_itmt_work);
374 }
375 }
376}
377
378static int intel_pstate_get_cppc_guranteed(int cpu)
379{
380 struct cppc_perf_caps cppc_perf;
381 int ret;
382
383 ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 if (ret)
385 return ret;
386
387 if (cppc_perf.guaranteed_perf)
388 return cppc_perf.guaranteed_perf;
389
390 return cppc_perf.nominal_perf;
391}
392
393#else /* CONFIG_ACPI_CPPC_LIB */
394static void intel_pstate_set_itmt_prio(int cpu)
395{
396}
397#endif /* CONFIG_ACPI_CPPC_LIB */
398
399static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400{
401 struct cpudata *cpu;
402 int ret;
403 int i;
404
405 if (hwp_active) {
406 intel_pstate_set_itmt_prio(policy->cpu);
407 return;
408 }
409
410 if (!intel_pstate_get_ppc_enable_status())
411 return;
412
413 cpu = all_cpu_data[policy->cpu];
414
415 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416 policy->cpu);
417 if (ret)
418 return;
419
420 /*
421 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 * guarantee that the states returned by it map to the states in our
423 * list directly.
424 */
425 if (cpu->acpi_perf_data.control_register.space_id !=
426 ACPI_ADR_SPACE_FIXED_HARDWARE)
427 goto err;
428
429 /*
430 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 * usual without taking _PSS into account
432 */
433 if (cpu->acpi_perf_data.state_count < 2)
434 goto err;
435
436 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
439 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440 (u32) cpu->acpi_perf_data.states[i].core_frequency,
441 (u32) cpu->acpi_perf_data.states[i].power,
442 (u32) cpu->acpi_perf_data.states[i].control);
443 }
444
445 cpu->valid_pss_table = true;
446 pr_debug("_PPC limits will be enforced\n");
447
448 return;
449
450 err:
451 cpu->valid_pss_table = false;
452 acpi_processor_unregister_performance(policy->cpu);
453}
454
455static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
456{
457 struct cpudata *cpu;
458
459 cpu = all_cpu_data[policy->cpu];
460 if (!cpu->valid_pss_table)
461 return;
462
463 acpi_processor_unregister_performance(policy->cpu);
464}
465#else /* CONFIG_ACPI */
466static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
467{
468}
469
470static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471{
472}
473
474static inline bool intel_pstate_acpi_pm_profile_server(void)
475{
476 return false;
477}
478#endif /* CONFIG_ACPI */
479
480#ifndef CONFIG_ACPI_CPPC_LIB
481static int intel_pstate_get_cppc_guranteed(int cpu)
482{
483 return -ENOTSUPP;
484}
485#endif /* CONFIG_ACPI_CPPC_LIB */
486
487static inline void update_turbo_state(void)
488{
489 u64 misc_en;
490 struct cpudata *cpu;
491
492 cpu = all_cpu_data[0];
493 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
494 global.turbo_disabled =
495 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
496 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
497}
498
499static int min_perf_pct_min(void)
500{
501 struct cpudata *cpu = all_cpu_data[0];
502 int turbo_pstate = cpu->pstate.turbo_pstate;
503
504 return turbo_pstate ?
505 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
506}
507
508static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
509{
510 u64 epb;
511 int ret;
512
513 if (!boot_cpu_has(X86_FEATURE_EPB))
514 return -ENXIO;
515
516 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
517 if (ret)
518 return (s16)ret;
519
520 return (s16)(epb & 0x0f);
521}
522
523static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
524{
525 s16 epp;
526
527 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
528 /*
529 * When hwp_req_data is 0, means that caller didn't read
530 * MSR_HWP_REQUEST, so need to read and get EPP.
531 */
532 if (!hwp_req_data) {
533 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
534 &hwp_req_data);
535 if (epp)
536 return epp;
537 }
538 epp = (hwp_req_data >> 24) & 0xff;
539 } else {
540 /* When there is no EPP present, HWP uses EPB settings */
541 epp = intel_pstate_get_epb(cpu_data);
542 }
543
544 return epp;
545}
546
547static int intel_pstate_set_epb(int cpu, s16 pref)
548{
549 u64 epb;
550 int ret;
551
552 if (!boot_cpu_has(X86_FEATURE_EPB))
553 return -ENXIO;
554
555 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
556 if (ret)
557 return ret;
558
559 epb = (epb & ~0x0f) | pref;
560 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
561
562 return 0;
563}
564
565/*
566 * EPP/EPB display strings corresponding to EPP index in the
567 * energy_perf_strings[]
568 * index String
569 *-------------------------------------
570 * 0 default
571 * 1 performance
572 * 2 balance_performance
573 * 3 balance_power
574 * 4 power
575 */
576static const char * const energy_perf_strings[] = {
577 "default",
578 "performance",
579 "balance_performance",
580 "balance_power",
581 "power",
582 NULL
583};
584static const unsigned int epp_values[] = {
585 HWP_EPP_PERFORMANCE,
586 HWP_EPP_BALANCE_PERFORMANCE,
587 HWP_EPP_BALANCE_POWERSAVE,
588 HWP_EPP_POWERSAVE
589};
590
591static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
592{
593 s16 epp;
594 int index = -EINVAL;
595
596 epp = intel_pstate_get_epp(cpu_data, 0);
597 if (epp < 0)
598 return epp;
599
600 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
601 if (epp == HWP_EPP_PERFORMANCE)
602 return 1;
603 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
604 return 2;
605 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
606 return 3;
607 else
608 return 4;
609 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
610 /*
611 * Range:
612 * 0x00-0x03 : Performance
613 * 0x04-0x07 : Balance performance
614 * 0x08-0x0B : Balance power
615 * 0x0C-0x0F : Power
616 * The EPB is a 4 bit value, but our ranges restrict the
617 * value which can be set. Here only using top two bits
618 * effectively.
619 */
620 index = (epp >> 2) + 1;
621 }
622
623 return index;
624}
625
626static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
627 int pref_index)
628{
629 int epp = -EINVAL;
630 int ret;
631
632 if (!pref_index)
633 epp = cpu_data->epp_default;
634
635 mutex_lock(&intel_pstate_limits_lock);
636
637 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
638 /*
639 * Use the cached HWP Request MSR value, because the register
640 * itself may be updated by intel_pstate_hwp_boost_up() or
641 * intel_pstate_hwp_boost_down() at any time.
642 */
643 u64 value = READ_ONCE(cpu_data->hwp_req_cached);
644
645 value &= ~GENMASK_ULL(31, 24);
646
647 if (epp == -EINVAL)
648 epp = epp_values[pref_index - 1];
649
650 value |= (u64)epp << 24;
651 /*
652 * The only other updater of hwp_req_cached in the active mode,
653 * intel_pstate_hwp_set(), is called under the same lock as this
654 * function, so it cannot run in parallel with the update below.
655 */
656 WRITE_ONCE(cpu_data->hwp_req_cached, value);
657 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
658 } else {
659 if (epp == -EINVAL)
660 epp = (pref_index - 1) << 2;
661 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
662 }
663 mutex_unlock(&intel_pstate_limits_lock);
664
665 return ret;
666}
667
668static ssize_t show_energy_performance_available_preferences(
669 struct cpufreq_policy *policy, char *buf)
670{
671 int i = 0;
672 int ret = 0;
673
674 while (energy_perf_strings[i] != NULL)
675 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
676
677 ret += sprintf(&buf[ret], "\n");
678
679 return ret;
680}
681
682cpufreq_freq_attr_ro(energy_performance_available_preferences);
683
684static ssize_t store_energy_performance_preference(
685 struct cpufreq_policy *policy, const char *buf, size_t count)
686{
687 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
688 char str_preference[21];
689 int ret;
690
691 ret = sscanf(buf, "%20s", str_preference);
692 if (ret != 1)
693 return -EINVAL;
694
695 ret = match_string(energy_perf_strings, -1, str_preference);
696 if (ret < 0)
697 return ret;
698
699 intel_pstate_set_energy_pref_index(cpu_data, ret);
700 return count;
701}
702
703static ssize_t show_energy_performance_preference(
704 struct cpufreq_policy *policy, char *buf)
705{
706 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
707 int preference;
708
709 preference = intel_pstate_get_energy_pref_index(cpu_data);
710 if (preference < 0)
711 return preference;
712
713 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
714}
715
716cpufreq_freq_attr_rw(energy_performance_preference);
717
718static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
719{
720 struct cpudata *cpu;
721 u64 cap;
722 int ratio;
723
724 ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
725 if (ratio <= 0) {
726 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
727 ratio = HWP_GUARANTEED_PERF(cap);
728 }
729
730 cpu = all_cpu_data[policy->cpu];
731
732 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
733}
734
735cpufreq_freq_attr_ro(base_frequency);
736
737static struct freq_attr *hwp_cpufreq_attrs[] = {
738 &energy_performance_preference,
739 &energy_performance_available_preferences,
740 &base_frequency,
741 NULL,
742};
743
744static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
745 int *current_max)
746{
747 u64 cap;
748
749 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
750 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
751 if (global.no_turbo || global.turbo_disabled)
752 *current_max = HWP_GUARANTEED_PERF(cap);
753 else
754 *current_max = HWP_HIGHEST_PERF(cap);
755
756 *phy_max = HWP_HIGHEST_PERF(cap);
757}
758
759static void intel_pstate_hwp_set(unsigned int cpu)
760{
761 struct cpudata *cpu_data = all_cpu_data[cpu];
762 int max, min;
763 u64 value;
764 s16 epp;
765
766 max = cpu_data->max_perf_ratio;
767 min = cpu_data->min_perf_ratio;
768
769 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
770 min = max;
771
772 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
773
774 value &= ~HWP_MIN_PERF(~0L);
775 value |= HWP_MIN_PERF(min);
776
777 value &= ~HWP_MAX_PERF(~0L);
778 value |= HWP_MAX_PERF(max);
779
780 if (cpu_data->epp_policy == cpu_data->policy)
781 goto skip_epp;
782
783 cpu_data->epp_policy = cpu_data->policy;
784
785 if (cpu_data->epp_saved >= 0) {
786 epp = cpu_data->epp_saved;
787 cpu_data->epp_saved = -EINVAL;
788 goto update_epp;
789 }
790
791 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
792 epp = intel_pstate_get_epp(cpu_data, value);
793 cpu_data->epp_powersave = epp;
794 /* If EPP read was failed, then don't try to write */
795 if (epp < 0)
796 goto skip_epp;
797
798 epp = 0;
799 } else {
800 /* skip setting EPP, when saved value is invalid */
801 if (cpu_data->epp_powersave < 0)
802 goto skip_epp;
803
804 /*
805 * No need to restore EPP when it is not zero. This
806 * means:
807 * - Policy is not changed
808 * - user has manually changed
809 * - Error reading EPB
810 */
811 epp = intel_pstate_get_epp(cpu_data, value);
812 if (epp)
813 goto skip_epp;
814
815 epp = cpu_data->epp_powersave;
816 }
817update_epp:
818 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
819 value &= ~GENMASK_ULL(31, 24);
820 value |= (u64)epp << 24;
821 } else {
822 intel_pstate_set_epb(cpu, epp);
823 }
824skip_epp:
825 WRITE_ONCE(cpu_data->hwp_req_cached, value);
826 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
827}
828
829static void intel_pstate_hwp_force_min_perf(int cpu)
830{
831 u64 value;
832 int min_perf;
833
834 value = all_cpu_data[cpu]->hwp_req_cached;
835 value &= ~GENMASK_ULL(31, 0);
836 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
837
838 /* Set hwp_max = hwp_min */
839 value |= HWP_MAX_PERF(min_perf);
840 value |= HWP_MIN_PERF(min_perf);
841
842 /* Set EPP to min */
843 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
844 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
845
846 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
847}
848
849static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
850{
851 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
852
853 if (!hwp_active)
854 return 0;
855
856 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
857
858 return 0;
859}
860
861static void intel_pstate_hwp_enable(struct cpudata *cpudata);
862
863static int intel_pstate_resume(struct cpufreq_policy *policy)
864{
865 if (!hwp_active)
866 return 0;
867
868 mutex_lock(&intel_pstate_limits_lock);
869
870 if (policy->cpu == 0)
871 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
872
873 all_cpu_data[policy->cpu]->epp_policy = 0;
874 intel_pstate_hwp_set(policy->cpu);
875
876 mutex_unlock(&intel_pstate_limits_lock);
877
878 return 0;
879}
880
881static void intel_pstate_update_policies(void)
882{
883 int cpu;
884
885 for_each_possible_cpu(cpu)
886 cpufreq_update_policy(cpu);
887}
888
889static void intel_pstate_update_max_freq(unsigned int cpu)
890{
891 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
892 struct cpudata *cpudata;
893
894 if (!policy)
895 return;
896
897 cpudata = all_cpu_data[cpu];
898 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
899 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
900
901 refresh_frequency_limits(policy);
902
903 cpufreq_cpu_release(policy);
904}
905
906static void intel_pstate_update_limits(unsigned int cpu)
907{
908 mutex_lock(&intel_pstate_driver_lock);
909
910 update_turbo_state();
911 /*
912 * If turbo has been turned on or off globally, policy limits for
913 * all CPUs need to be updated to reflect that.
914 */
915 if (global.turbo_disabled_mf != global.turbo_disabled) {
916 global.turbo_disabled_mf = global.turbo_disabled;
917 for_each_possible_cpu(cpu)
918 intel_pstate_update_max_freq(cpu);
919 } else {
920 cpufreq_update_policy(cpu);
921 }
922
923 mutex_unlock(&intel_pstate_driver_lock);
924}
925
926/************************** sysfs begin ************************/
927#define show_one(file_name, object) \
928 static ssize_t show_##file_name \
929 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
930 { \
931 return sprintf(buf, "%u\n", global.object); \
932 }
933
934static ssize_t intel_pstate_show_status(char *buf);
935static int intel_pstate_update_status(const char *buf, size_t size);
936
937static ssize_t show_status(struct kobject *kobj,
938 struct kobj_attribute *attr, char *buf)
939{
940 ssize_t ret;
941
942 mutex_lock(&intel_pstate_driver_lock);
943 ret = intel_pstate_show_status(buf);
944 mutex_unlock(&intel_pstate_driver_lock);
945
946 return ret;
947}
948
949static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
950 const char *buf, size_t count)
951{
952 char *p = memchr(buf, '\n', count);
953 int ret;
954
955 mutex_lock(&intel_pstate_driver_lock);
956 ret = intel_pstate_update_status(buf, p ? p - buf : count);
957 mutex_unlock(&intel_pstate_driver_lock);
958
959 return ret < 0 ? ret : count;
960}
961
962static ssize_t show_turbo_pct(struct kobject *kobj,
963 struct kobj_attribute *attr, char *buf)
964{
965 struct cpudata *cpu;
966 int total, no_turbo, turbo_pct;
967 uint32_t turbo_fp;
968
969 mutex_lock(&intel_pstate_driver_lock);
970
971 if (!intel_pstate_driver) {
972 mutex_unlock(&intel_pstate_driver_lock);
973 return -EAGAIN;
974 }
975
976 cpu = all_cpu_data[0];
977
978 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
979 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
980 turbo_fp = div_fp(no_turbo, total);
981 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
982
983 mutex_unlock(&intel_pstate_driver_lock);
984
985 return sprintf(buf, "%u\n", turbo_pct);
986}
987
988static ssize_t show_num_pstates(struct kobject *kobj,
989 struct kobj_attribute *attr, char *buf)
990{
991 struct cpudata *cpu;
992 int total;
993
994 mutex_lock(&intel_pstate_driver_lock);
995
996 if (!intel_pstate_driver) {
997 mutex_unlock(&intel_pstate_driver_lock);
998 return -EAGAIN;
999 }
1000
1001 cpu = all_cpu_data[0];
1002 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1003
1004 mutex_unlock(&intel_pstate_driver_lock);
1005
1006 return sprintf(buf, "%u\n", total);
1007}
1008
1009static ssize_t show_no_turbo(struct kobject *kobj,
1010 struct kobj_attribute *attr, char *buf)
1011{
1012 ssize_t ret;
1013
1014 mutex_lock(&intel_pstate_driver_lock);
1015
1016 if (!intel_pstate_driver) {
1017 mutex_unlock(&intel_pstate_driver_lock);
1018 return -EAGAIN;
1019 }
1020
1021 update_turbo_state();
1022 if (global.turbo_disabled)
1023 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1024 else
1025 ret = sprintf(buf, "%u\n", global.no_turbo);
1026
1027 mutex_unlock(&intel_pstate_driver_lock);
1028
1029 return ret;
1030}
1031
1032static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1033 const char *buf, size_t count)
1034{
1035 unsigned int input;
1036 int ret;
1037
1038 ret = sscanf(buf, "%u", &input);
1039 if (ret != 1)
1040 return -EINVAL;
1041
1042 mutex_lock(&intel_pstate_driver_lock);
1043
1044 if (!intel_pstate_driver) {
1045 mutex_unlock(&intel_pstate_driver_lock);
1046 return -EAGAIN;
1047 }
1048
1049 mutex_lock(&intel_pstate_limits_lock);
1050
1051 update_turbo_state();
1052 if (global.turbo_disabled) {
1053 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1054 mutex_unlock(&intel_pstate_limits_lock);
1055 mutex_unlock(&intel_pstate_driver_lock);
1056 return -EPERM;
1057 }
1058
1059 global.no_turbo = clamp_t(int, input, 0, 1);
1060
1061 if (global.no_turbo) {
1062 struct cpudata *cpu = all_cpu_data[0];
1063 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1064
1065 /* Squash the global minimum into the permitted range. */
1066 if (global.min_perf_pct > pct)
1067 global.min_perf_pct = pct;
1068 }
1069
1070 mutex_unlock(&intel_pstate_limits_lock);
1071
1072 intel_pstate_update_policies();
1073
1074 mutex_unlock(&intel_pstate_driver_lock);
1075
1076 return count;
1077}
1078
1079static struct cpufreq_driver intel_pstate;
1080
1081static void update_qos_request(enum freq_qos_req_type type)
1082{
1083 int max_state, turbo_max, freq, i, perf_pct;
1084 struct freq_qos_request *req;
1085 struct cpufreq_policy *policy;
1086
1087 for_each_possible_cpu(i) {
1088 struct cpudata *cpu = all_cpu_data[i];
1089
1090 policy = cpufreq_cpu_get(i);
1091 if (!policy)
1092 continue;
1093
1094 req = policy->driver_data;
1095 cpufreq_cpu_put(policy);
1096
1097 if (!req)
1098 continue;
1099
1100 if (hwp_active)
1101 intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1102 else
1103 turbo_max = cpu->pstate.turbo_pstate;
1104
1105 if (type == FREQ_QOS_MIN) {
1106 perf_pct = global.min_perf_pct;
1107 } else {
1108 req++;
1109 perf_pct = global.max_perf_pct;
1110 }
1111
1112 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1113 freq *= cpu->pstate.scaling;
1114
1115 if (freq_qos_update_request(req, freq) < 0)
1116 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1117 }
1118}
1119
1120static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1121 const char *buf, size_t count)
1122{
1123 unsigned int input;
1124 int ret;
1125
1126 ret = sscanf(buf, "%u", &input);
1127 if (ret != 1)
1128 return -EINVAL;
1129
1130 mutex_lock(&intel_pstate_driver_lock);
1131
1132 if (!intel_pstate_driver) {
1133 mutex_unlock(&intel_pstate_driver_lock);
1134 return -EAGAIN;
1135 }
1136
1137 mutex_lock(&intel_pstate_limits_lock);
1138
1139 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1140
1141 mutex_unlock(&intel_pstate_limits_lock);
1142
1143 if (intel_pstate_driver == &intel_pstate)
1144 intel_pstate_update_policies();
1145 else
1146 update_qos_request(FREQ_QOS_MAX);
1147
1148 mutex_unlock(&intel_pstate_driver_lock);
1149
1150 return count;
1151}
1152
1153static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1154 const char *buf, size_t count)
1155{
1156 unsigned int input;
1157 int ret;
1158
1159 ret = sscanf(buf, "%u", &input);
1160 if (ret != 1)
1161 return -EINVAL;
1162
1163 mutex_lock(&intel_pstate_driver_lock);
1164
1165 if (!intel_pstate_driver) {
1166 mutex_unlock(&intel_pstate_driver_lock);
1167 return -EAGAIN;
1168 }
1169
1170 mutex_lock(&intel_pstate_limits_lock);
1171
1172 global.min_perf_pct = clamp_t(int, input,
1173 min_perf_pct_min(), global.max_perf_pct);
1174
1175 mutex_unlock(&intel_pstate_limits_lock);
1176
1177 if (intel_pstate_driver == &intel_pstate)
1178 intel_pstate_update_policies();
1179 else
1180 update_qos_request(FREQ_QOS_MIN);
1181
1182 mutex_unlock(&intel_pstate_driver_lock);
1183
1184 return count;
1185}
1186
1187static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1188 struct kobj_attribute *attr, char *buf)
1189{
1190 return sprintf(buf, "%u\n", hwp_boost);
1191}
1192
1193static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1194 struct kobj_attribute *b,
1195 const char *buf, size_t count)
1196{
1197 unsigned int input;
1198 int ret;
1199
1200 ret = kstrtouint(buf, 10, &input);
1201 if (ret)
1202 return ret;
1203
1204 mutex_lock(&intel_pstate_driver_lock);
1205 hwp_boost = !!input;
1206 intel_pstate_update_policies();
1207 mutex_unlock(&intel_pstate_driver_lock);
1208
1209 return count;
1210}
1211
1212show_one(max_perf_pct, max_perf_pct);
1213show_one(min_perf_pct, min_perf_pct);
1214
1215define_one_global_rw(status);
1216define_one_global_rw(no_turbo);
1217define_one_global_rw(max_perf_pct);
1218define_one_global_rw(min_perf_pct);
1219define_one_global_ro(turbo_pct);
1220define_one_global_ro(num_pstates);
1221define_one_global_rw(hwp_dynamic_boost);
1222
1223static struct attribute *intel_pstate_attributes[] = {
1224 &status.attr,
1225 &no_turbo.attr,
1226 &turbo_pct.attr,
1227 &num_pstates.attr,
1228 NULL
1229};
1230
1231static const struct attribute_group intel_pstate_attr_group = {
1232 .attrs = intel_pstate_attributes,
1233};
1234
1235static void __init intel_pstate_sysfs_expose_params(void)
1236{
1237 struct kobject *intel_pstate_kobject;
1238 int rc;
1239
1240 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1241 &cpu_subsys.dev_root->kobj);
1242 if (WARN_ON(!intel_pstate_kobject))
1243 return;
1244
1245 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1246 if (WARN_ON(rc))
1247 return;
1248
1249 /*
1250 * If per cpu limits are enforced there are no global limits, so
1251 * return without creating max/min_perf_pct attributes
1252 */
1253 if (per_cpu_limits)
1254 return;
1255
1256 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1257 WARN_ON(rc);
1258
1259 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1260 WARN_ON(rc);
1261
1262 if (hwp_active) {
1263 rc = sysfs_create_file(intel_pstate_kobject,
1264 &hwp_dynamic_boost.attr);
1265 WARN_ON(rc);
1266 }
1267}
1268/************************** sysfs end ************************/
1269
1270static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1271{
1272 /* First disable HWP notification interrupt as we don't process them */
1273 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1274 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1275
1276 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1277 cpudata->epp_policy = 0;
1278 if (cpudata->epp_default == -EINVAL)
1279 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1280}
1281
1282#define MSR_IA32_POWER_CTL_BIT_EE 19
1283
1284/* Disable energy efficiency optimization */
1285static void intel_pstate_disable_ee(int cpu)
1286{
1287 u64 power_ctl;
1288 int ret;
1289
1290 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1291 if (ret)
1292 return;
1293
1294 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1295 pr_info("Disabling energy efficiency optimization\n");
1296 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1297 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1298 }
1299}
1300
1301static int atom_get_min_pstate(void)
1302{
1303 u64 value;
1304
1305 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1306 return (value >> 8) & 0x7F;
1307}
1308
1309static int atom_get_max_pstate(void)
1310{
1311 u64 value;
1312
1313 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314 return (value >> 16) & 0x7F;
1315}
1316
1317static int atom_get_turbo_pstate(void)
1318{
1319 u64 value;
1320
1321 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1322 return value & 0x7F;
1323}
1324
1325static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1326{
1327 u64 val;
1328 int32_t vid_fp;
1329 u32 vid;
1330
1331 val = (u64)pstate << 8;
1332 if (global.no_turbo && !global.turbo_disabled)
1333 val |= (u64)1 << 32;
1334
1335 vid_fp = cpudata->vid.min + mul_fp(
1336 int_tofp(pstate - cpudata->pstate.min_pstate),
1337 cpudata->vid.ratio);
1338
1339 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1340 vid = ceiling_fp(vid_fp);
1341
1342 if (pstate > cpudata->pstate.max_pstate)
1343 vid = cpudata->vid.turbo;
1344
1345 return val | vid;
1346}
1347
1348static int silvermont_get_scaling(void)
1349{
1350 u64 value;
1351 int i;
1352 /* Defined in Table 35-6 from SDM (Sept 2015) */
1353 static int silvermont_freq_table[] = {
1354 83300, 100000, 133300, 116700, 80000};
1355
1356 rdmsrl(MSR_FSB_FREQ, value);
1357 i = value & 0x7;
1358 WARN_ON(i > 4);
1359
1360 return silvermont_freq_table[i];
1361}
1362
1363static int airmont_get_scaling(void)
1364{
1365 u64 value;
1366 int i;
1367 /* Defined in Table 35-10 from SDM (Sept 2015) */
1368 static int airmont_freq_table[] = {
1369 83300, 100000, 133300, 116700, 80000,
1370 93300, 90000, 88900, 87500};
1371
1372 rdmsrl(MSR_FSB_FREQ, value);
1373 i = value & 0xF;
1374 WARN_ON(i > 8);
1375
1376 return airmont_freq_table[i];
1377}
1378
1379static void atom_get_vid(struct cpudata *cpudata)
1380{
1381 u64 value;
1382
1383 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1384 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1385 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1386 cpudata->vid.ratio = div_fp(
1387 cpudata->vid.max - cpudata->vid.min,
1388 int_tofp(cpudata->pstate.max_pstate -
1389 cpudata->pstate.min_pstate));
1390
1391 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1392 cpudata->vid.turbo = value & 0x7f;
1393}
1394
1395static int core_get_min_pstate(void)
1396{
1397 u64 value;
1398
1399 rdmsrl(MSR_PLATFORM_INFO, value);
1400 return (value >> 40) & 0xFF;
1401}
1402
1403static int core_get_max_pstate_physical(void)
1404{
1405 u64 value;
1406
1407 rdmsrl(MSR_PLATFORM_INFO, value);
1408 return (value >> 8) & 0xFF;
1409}
1410
1411static int core_get_tdp_ratio(u64 plat_info)
1412{
1413 /* Check how many TDP levels present */
1414 if (plat_info & 0x600000000) {
1415 u64 tdp_ctrl;
1416 u64 tdp_ratio;
1417 int tdp_msr;
1418 int err;
1419
1420 /* Get the TDP level (0, 1, 2) to get ratios */
1421 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1422 if (err)
1423 return err;
1424
1425 /* TDP MSR are continuous starting at 0x648 */
1426 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1427 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1428 if (err)
1429 return err;
1430
1431 /* For level 1 and 2, bits[23:16] contain the ratio */
1432 if (tdp_ctrl & 0x03)
1433 tdp_ratio >>= 16;
1434
1435 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1436 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1437
1438 return (int)tdp_ratio;
1439 }
1440
1441 return -ENXIO;
1442}
1443
1444static int core_get_max_pstate(void)
1445{
1446 u64 tar;
1447 u64 plat_info;
1448 int max_pstate;
1449 int tdp_ratio;
1450 int err;
1451
1452 rdmsrl(MSR_PLATFORM_INFO, plat_info);
1453 max_pstate = (plat_info >> 8) & 0xFF;
1454
1455 tdp_ratio = core_get_tdp_ratio(plat_info);
1456 if (tdp_ratio <= 0)
1457 return max_pstate;
1458
1459 if (hwp_active) {
1460 /* Turbo activation ratio is not used on HWP platforms */
1461 return tdp_ratio;
1462 }
1463
1464 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1465 if (!err) {
1466 int tar_levels;
1467
1468 /* Do some sanity checking for safety */
1469 tar_levels = tar & 0xff;
1470 if (tdp_ratio - 1 == tar_levels) {
1471 max_pstate = tar_levels;
1472 pr_debug("max_pstate=TAC %x\n", max_pstate);
1473 }
1474 }
1475
1476 return max_pstate;
1477}
1478
1479static int core_get_turbo_pstate(void)
1480{
1481 u64 value;
1482 int nont, ret;
1483
1484 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1485 nont = core_get_max_pstate();
1486 ret = (value) & 255;
1487 if (ret <= nont)
1488 ret = nont;
1489 return ret;
1490}
1491
1492static inline int core_get_scaling(void)
1493{
1494 return 100000;
1495}
1496
1497static u64 core_get_val(struct cpudata *cpudata, int pstate)
1498{
1499 u64 val;
1500
1501 val = (u64)pstate << 8;
1502 if (global.no_turbo && !global.turbo_disabled)
1503 val |= (u64)1 << 32;
1504
1505 return val;
1506}
1507
1508static int knl_get_aperf_mperf_shift(void)
1509{
1510 return 10;
1511}
1512
1513static int knl_get_turbo_pstate(void)
1514{
1515 u64 value;
1516 int nont, ret;
1517
1518 rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1519 nont = core_get_max_pstate();
1520 ret = (((value) >> 8) & 0xFF);
1521 if (ret <= nont)
1522 ret = nont;
1523 return ret;
1524}
1525
1526static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1527{
1528 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1529 cpu->pstate.current_pstate = pstate;
1530 /*
1531 * Generally, there is no guarantee that this code will always run on
1532 * the CPU being updated, so force the register update to run on the
1533 * right CPU.
1534 */
1535 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1536 pstate_funcs.get_val(cpu, pstate));
1537}
1538
1539static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1540{
1541 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1542}
1543
1544static void intel_pstate_max_within_limits(struct cpudata *cpu)
1545{
1546 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1547
1548 update_turbo_state();
1549 intel_pstate_set_pstate(cpu, pstate);
1550}
1551
1552static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1553{
1554 cpu->pstate.min_pstate = pstate_funcs.get_min();
1555 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1556 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1557 cpu->pstate.scaling = pstate_funcs.get_scaling();
1558
1559 if (hwp_active && !hwp_mode_bdw) {
1560 unsigned int phy_max, current_max;
1561
1562 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1563 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1564 cpu->pstate.turbo_pstate = phy_max;
1565 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(READ_ONCE(cpu->hwp_cap_cached));
1566 } else {
1567 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1568 cpu->pstate.max_pstate = pstate_funcs.get_max();
1569 }
1570 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1571
1572 if (pstate_funcs.get_aperf_mperf_shift)
1573 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1574
1575 if (pstate_funcs.get_vid)
1576 pstate_funcs.get_vid(cpu);
1577
1578 intel_pstate_set_min_pstate(cpu);
1579}
1580
1581/*
1582 * Long hold time will keep high perf limits for long time,
1583 * which negatively impacts perf/watt for some workloads,
1584 * like specpower. 3ms is based on experiements on some
1585 * workoads.
1586 */
1587static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1588
1589static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1590{
1591 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1592 u32 max_limit = (hwp_req & 0xff00) >> 8;
1593 u32 min_limit = (hwp_req & 0xff);
1594 u32 boost_level1;
1595
1596 /*
1597 * Cases to consider (User changes via sysfs or boot time):
1598 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1599 * No boost, return.
1600 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1601 * Should result in one level boost only for P0.
1602 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1603 * Should result in two level boost:
1604 * (min + p1)/2 and P1.
1605 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1606 * Should result in three level boost:
1607 * (min + p1)/2, P1 and P0.
1608 */
1609
1610 /* If max and min are equal or already at max, nothing to boost */
1611 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1612 return;
1613
1614 if (!cpu->hwp_boost_min)
1615 cpu->hwp_boost_min = min_limit;
1616
1617 /* level at half way mark between min and guranteed */
1618 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1619
1620 if (cpu->hwp_boost_min < boost_level1)
1621 cpu->hwp_boost_min = boost_level1;
1622 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1623 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1624 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1625 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1626 cpu->hwp_boost_min = max_limit;
1627 else
1628 return;
1629
1630 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1631 wrmsrl(MSR_HWP_REQUEST, hwp_req);
1632 cpu->last_update = cpu->sample.time;
1633}
1634
1635static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1636{
1637 if (cpu->hwp_boost_min) {
1638 bool expired;
1639
1640 /* Check if we are idle for hold time to boost down */
1641 expired = time_after64(cpu->sample.time, cpu->last_update +
1642 hwp_boost_hold_time_ns);
1643 if (expired) {
1644 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1645 cpu->hwp_boost_min = 0;
1646 }
1647 }
1648 cpu->last_update = cpu->sample.time;
1649}
1650
1651static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1652 u64 time)
1653{
1654 cpu->sample.time = time;
1655
1656 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1657 bool do_io = false;
1658
1659 cpu->sched_flags = 0;
1660 /*
1661 * Set iowait_boost flag and update time. Since IO WAIT flag
1662 * is set all the time, we can't just conclude that there is
1663 * some IO bound activity is scheduled on this CPU with just
1664 * one occurrence. If we receive at least two in two
1665 * consecutive ticks, then we treat as boost candidate.
1666 */
1667 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1668 do_io = true;
1669
1670 cpu->last_io_update = time;
1671
1672 if (do_io)
1673 intel_pstate_hwp_boost_up(cpu);
1674
1675 } else {
1676 intel_pstate_hwp_boost_down(cpu);
1677 }
1678}
1679
1680static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1681 u64 time, unsigned int flags)
1682{
1683 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1684
1685 cpu->sched_flags |= flags;
1686
1687 if (smp_processor_id() == cpu->cpu)
1688 intel_pstate_update_util_hwp_local(cpu, time);
1689}
1690
1691static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1692{
1693 struct sample *sample = &cpu->sample;
1694
1695 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1696}
1697
1698static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1699{
1700 u64 aperf, mperf;
1701 unsigned long flags;
1702 u64 tsc;
1703
1704 local_irq_save(flags);
1705 rdmsrl(MSR_IA32_APERF, aperf);
1706 rdmsrl(MSR_IA32_MPERF, mperf);
1707 tsc = rdtsc();
1708 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1709 local_irq_restore(flags);
1710 return false;
1711 }
1712 local_irq_restore(flags);
1713
1714 cpu->last_sample_time = cpu->sample.time;
1715 cpu->sample.time = time;
1716 cpu->sample.aperf = aperf;
1717 cpu->sample.mperf = mperf;
1718 cpu->sample.tsc = tsc;
1719 cpu->sample.aperf -= cpu->prev_aperf;
1720 cpu->sample.mperf -= cpu->prev_mperf;
1721 cpu->sample.tsc -= cpu->prev_tsc;
1722
1723 cpu->prev_aperf = aperf;
1724 cpu->prev_mperf = mperf;
1725 cpu->prev_tsc = tsc;
1726 /*
1727 * First time this function is invoked in a given cycle, all of the
1728 * previous sample data fields are equal to zero or stale and they must
1729 * be populated with meaningful numbers for things to work, so assume
1730 * that sample.time will always be reset before setting the utilization
1731 * update hook and make the caller skip the sample then.
1732 */
1733 if (cpu->last_sample_time) {
1734 intel_pstate_calc_avg_perf(cpu);
1735 return true;
1736 }
1737 return false;
1738}
1739
1740static inline int32_t get_avg_frequency(struct cpudata *cpu)
1741{
1742 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1743}
1744
1745static inline int32_t get_avg_pstate(struct cpudata *cpu)
1746{
1747 return mul_ext_fp(cpu->pstate.max_pstate_physical,
1748 cpu->sample.core_avg_perf);
1749}
1750
1751static inline int32_t get_target_pstate(struct cpudata *cpu)
1752{
1753 struct sample *sample = &cpu->sample;
1754 int32_t busy_frac;
1755 int target, avg_pstate;
1756
1757 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1758 sample->tsc);
1759
1760 if (busy_frac < cpu->iowait_boost)
1761 busy_frac = cpu->iowait_boost;
1762
1763 sample->busy_scaled = busy_frac * 100;
1764
1765 target = global.no_turbo || global.turbo_disabled ?
1766 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1767 target += target >> 2;
1768 target = mul_fp(target, busy_frac);
1769 if (target < cpu->pstate.min_pstate)
1770 target = cpu->pstate.min_pstate;
1771
1772 /*
1773 * If the average P-state during the previous cycle was higher than the
1774 * current target, add 50% of the difference to the target to reduce
1775 * possible performance oscillations and offset possible performance
1776 * loss related to moving the workload from one CPU to another within
1777 * a package/module.
1778 */
1779 avg_pstate = get_avg_pstate(cpu);
1780 if (avg_pstate > target)
1781 target += (avg_pstate - target) >> 1;
1782
1783 return target;
1784}
1785
1786static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1787{
1788 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1789 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1790
1791 return clamp_t(int, pstate, min_pstate, max_pstate);
1792}
1793
1794static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1795{
1796 if (pstate == cpu->pstate.current_pstate)
1797 return;
1798
1799 cpu->pstate.current_pstate = pstate;
1800 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1801}
1802
1803static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1804{
1805 int from = cpu->pstate.current_pstate;
1806 struct sample *sample;
1807 int target_pstate;
1808
1809 update_turbo_state();
1810
1811 target_pstate = get_target_pstate(cpu);
1812 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1813 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1814 intel_pstate_update_pstate(cpu, target_pstate);
1815
1816 sample = &cpu->sample;
1817 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1818 fp_toint(sample->busy_scaled),
1819 from,
1820 cpu->pstate.current_pstate,
1821 sample->mperf,
1822 sample->aperf,
1823 sample->tsc,
1824 get_avg_frequency(cpu),
1825 fp_toint(cpu->iowait_boost * 100));
1826}
1827
1828static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1829 unsigned int flags)
1830{
1831 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1832 u64 delta_ns;
1833
1834 /* Don't allow remote callbacks */
1835 if (smp_processor_id() != cpu->cpu)
1836 return;
1837
1838 delta_ns = time - cpu->last_update;
1839 if (flags & SCHED_CPUFREQ_IOWAIT) {
1840 /* Start over if the CPU may have been idle. */
1841 if (delta_ns > TICK_NSEC) {
1842 cpu->iowait_boost = ONE_EIGHTH_FP;
1843 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1844 cpu->iowait_boost <<= 1;
1845 if (cpu->iowait_boost > int_tofp(1))
1846 cpu->iowait_boost = int_tofp(1);
1847 } else {
1848 cpu->iowait_boost = ONE_EIGHTH_FP;
1849 }
1850 } else if (cpu->iowait_boost) {
1851 /* Clear iowait_boost if the CPU may have been idle. */
1852 if (delta_ns > TICK_NSEC)
1853 cpu->iowait_boost = 0;
1854 else
1855 cpu->iowait_boost >>= 1;
1856 }
1857 cpu->last_update = time;
1858 delta_ns = time - cpu->sample.time;
1859 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1860 return;
1861
1862 if (intel_pstate_sample(cpu, time))
1863 intel_pstate_adjust_pstate(cpu);
1864}
1865
1866static struct pstate_funcs core_funcs = {
1867 .get_max = core_get_max_pstate,
1868 .get_max_physical = core_get_max_pstate_physical,
1869 .get_min = core_get_min_pstate,
1870 .get_turbo = core_get_turbo_pstate,
1871 .get_scaling = core_get_scaling,
1872 .get_val = core_get_val,
1873};
1874
1875static const struct pstate_funcs silvermont_funcs = {
1876 .get_max = atom_get_max_pstate,
1877 .get_max_physical = atom_get_max_pstate,
1878 .get_min = atom_get_min_pstate,
1879 .get_turbo = atom_get_turbo_pstate,
1880 .get_val = atom_get_val,
1881 .get_scaling = silvermont_get_scaling,
1882 .get_vid = atom_get_vid,
1883};
1884
1885static const struct pstate_funcs airmont_funcs = {
1886 .get_max = atom_get_max_pstate,
1887 .get_max_physical = atom_get_max_pstate,
1888 .get_min = atom_get_min_pstate,
1889 .get_turbo = atom_get_turbo_pstate,
1890 .get_val = atom_get_val,
1891 .get_scaling = airmont_get_scaling,
1892 .get_vid = atom_get_vid,
1893};
1894
1895static const struct pstate_funcs knl_funcs = {
1896 .get_max = core_get_max_pstate,
1897 .get_max_physical = core_get_max_pstate_physical,
1898 .get_min = core_get_min_pstate,
1899 .get_turbo = knl_get_turbo_pstate,
1900 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1901 .get_scaling = core_get_scaling,
1902 .get_val = core_get_val,
1903};
1904
1905#define ICPU(model, policy) \
1906 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1907 (unsigned long)&policy }
1908
1909static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1910 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs),
1911 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs),
1912 ICPU(INTEL_FAM6_ATOM_SILVERMONT, silvermont_funcs),
1913 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs),
1914 ICPU(INTEL_FAM6_HASWELL, core_funcs),
1915 ICPU(INTEL_FAM6_BROADWELL, core_funcs),
1916 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs),
1917 ICPU(INTEL_FAM6_HASWELL_X, core_funcs),
1918 ICPU(INTEL_FAM6_HASWELL_L, core_funcs),
1919 ICPU(INTEL_FAM6_HASWELL_G, core_funcs),
1920 ICPU(INTEL_FAM6_BROADWELL_G, core_funcs),
1921 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs),
1922 ICPU(INTEL_FAM6_SKYLAKE_L, core_funcs),
1923 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1924 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1925 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1926 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs),
1927 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs),
1928 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs),
1929 ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS, core_funcs),
1930 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1931 {}
1932};
1933MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1934
1935static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1936 ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1937 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1938 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1939 {}
1940};
1941
1942static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1943 ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1944 {}
1945};
1946
1947static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1948 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1949 ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1950 {}
1951};
1952
1953static int intel_pstate_init_cpu(unsigned int cpunum)
1954{
1955 struct cpudata *cpu;
1956
1957 cpu = all_cpu_data[cpunum];
1958
1959 if (!cpu) {
1960 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1961 if (!cpu)
1962 return -ENOMEM;
1963
1964 all_cpu_data[cpunum] = cpu;
1965
1966 cpu->epp_default = -EINVAL;
1967 cpu->epp_powersave = -EINVAL;
1968 cpu->epp_saved = -EINVAL;
1969 }
1970
1971 cpu = all_cpu_data[cpunum];
1972
1973 cpu->cpu = cpunum;
1974
1975 if (hwp_active) {
1976 const struct x86_cpu_id *id;
1977
1978 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1979 if (id)
1980 intel_pstate_disable_ee(cpunum);
1981
1982 intel_pstate_hwp_enable(cpu);
1983
1984 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1985 if (id && intel_pstate_acpi_pm_profile_server())
1986 hwp_boost = true;
1987 }
1988
1989 intel_pstate_get_cpu_pstates(cpu);
1990
1991 pr_debug("controlling: cpu %d\n", cpunum);
1992
1993 return 0;
1994}
1995
1996static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1997{
1998 struct cpudata *cpu = all_cpu_data[cpu_num];
1999
2000 if (hwp_active && !hwp_boost)
2001 return;
2002
2003 if (cpu->update_util_set)
2004 return;
2005
2006 /* Prevent intel_pstate_update_util() from using stale data. */
2007 cpu->sample.time = 0;
2008 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2009 (hwp_active ?
2010 intel_pstate_update_util_hwp :
2011 intel_pstate_update_util));
2012 cpu->update_util_set = true;
2013}
2014
2015static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2016{
2017 struct cpudata *cpu_data = all_cpu_data[cpu];
2018
2019 if (!cpu_data->update_util_set)
2020 return;
2021
2022 cpufreq_remove_update_util_hook(cpu);
2023 cpu_data->update_util_set = false;
2024 synchronize_rcu();
2025}
2026
2027static int intel_pstate_get_max_freq(struct cpudata *cpu)
2028{
2029 return global.turbo_disabled || global.no_turbo ?
2030 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2031}
2032
2033static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2034 unsigned int policy_min,
2035 unsigned int policy_max)
2036{
2037 int max_freq = intel_pstate_get_max_freq(cpu);
2038 int32_t max_policy_perf, min_policy_perf;
2039 int max_state, turbo_max;
2040
2041 /*
2042 * HWP needs some special consideration, because on BDX the
2043 * HWP_REQUEST uses abstract value to represent performance
2044 * rather than pure ratios.
2045 */
2046 if (hwp_active) {
2047 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2048 } else {
2049 max_state = global.no_turbo || global.turbo_disabled ?
2050 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2051 turbo_max = cpu->pstate.turbo_pstate;
2052 }
2053
2054 max_policy_perf = max_state * policy_max / max_freq;
2055 if (policy_max == policy_min) {
2056 min_policy_perf = max_policy_perf;
2057 } else {
2058 min_policy_perf = max_state * policy_min / max_freq;
2059 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2060 0, max_policy_perf);
2061 }
2062
2063 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2064 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2065
2066 /* Normalize user input to [min_perf, max_perf] */
2067 if (per_cpu_limits) {
2068 cpu->min_perf_ratio = min_policy_perf;
2069 cpu->max_perf_ratio = max_policy_perf;
2070 } else {
2071 int32_t global_min, global_max;
2072
2073 /* Global limits are in percent of the maximum turbo P-state. */
2074 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2075 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2076 global_min = clamp_t(int32_t, global_min, 0, global_max);
2077
2078 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2079 global_min, global_max);
2080
2081 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2082 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2083 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2084 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2085
2086 /* Make sure min_perf <= max_perf */
2087 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2088 cpu->max_perf_ratio);
2089
2090 }
2091 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2092 cpu->max_perf_ratio,
2093 cpu->min_perf_ratio);
2094}
2095
2096static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2097{
2098 struct cpudata *cpu;
2099
2100 if (!policy->cpuinfo.max_freq)
2101 return -ENODEV;
2102
2103 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2104 policy->cpuinfo.max_freq, policy->max);
2105
2106 cpu = all_cpu_data[policy->cpu];
2107 cpu->policy = policy->policy;
2108
2109 mutex_lock(&intel_pstate_limits_lock);
2110
2111 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2112
2113 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2114 /*
2115 * NOHZ_FULL CPUs need this as the governor callback may not
2116 * be invoked on them.
2117 */
2118 intel_pstate_clear_update_util_hook(policy->cpu);
2119 intel_pstate_max_within_limits(cpu);
2120 } else {
2121 intel_pstate_set_update_util_hook(policy->cpu);
2122 }
2123
2124 if (hwp_active) {
2125 /*
2126 * When hwp_boost was active before and dynamically it
2127 * was turned off, in that case we need to clear the
2128 * update util hook.
2129 */
2130 if (!hwp_boost)
2131 intel_pstate_clear_update_util_hook(policy->cpu);
2132 intel_pstate_hwp_set(policy->cpu);
2133 }
2134
2135 mutex_unlock(&intel_pstate_limits_lock);
2136
2137 return 0;
2138}
2139
2140static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2141 struct cpufreq_policy_data *policy)
2142{
2143 if (!hwp_active &&
2144 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2145 policy->max < policy->cpuinfo.max_freq &&
2146 policy->max > cpu->pstate.max_freq) {
2147 pr_debug("policy->max > max non turbo frequency\n");
2148 policy->max = policy->cpuinfo.max_freq;
2149 }
2150}
2151
2152static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2153{
2154 struct cpudata *cpu = all_cpu_data[policy->cpu];
2155
2156 update_turbo_state();
2157 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2158 intel_pstate_get_max_freq(cpu));
2159
2160 intel_pstate_adjust_policy_max(cpu, policy);
2161
2162 return 0;
2163}
2164
2165static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2166{
2167 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2168}
2169
2170static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2171{
2172 pr_debug("CPU %d exiting\n", policy->cpu);
2173
2174 intel_pstate_clear_update_util_hook(policy->cpu);
2175 if (hwp_active) {
2176 intel_pstate_hwp_save_state(policy);
2177 intel_pstate_hwp_force_min_perf(policy->cpu);
2178 } else {
2179 intel_cpufreq_stop_cpu(policy);
2180 }
2181}
2182
2183static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2184{
2185 intel_pstate_exit_perf_limits(policy);
2186
2187 policy->fast_switch_possible = false;
2188
2189 return 0;
2190}
2191
2192static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2193{
2194 struct cpudata *cpu;
2195 int rc;
2196
2197 rc = intel_pstate_init_cpu(policy->cpu);
2198 if (rc)
2199 return rc;
2200
2201 cpu = all_cpu_data[policy->cpu];
2202
2203 cpu->max_perf_ratio = 0xFF;
2204 cpu->min_perf_ratio = 0;
2205
2206 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2207 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2208
2209 /* cpuinfo and default policy values */
2210 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2211 update_turbo_state();
2212 global.turbo_disabled_mf = global.turbo_disabled;
2213 policy->cpuinfo.max_freq = global.turbo_disabled ?
2214 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2215 policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2216
2217 if (hwp_active) {
2218 unsigned int max_freq;
2219
2220 max_freq = global.turbo_disabled ?
2221 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2222 if (max_freq < policy->cpuinfo.max_freq)
2223 policy->cpuinfo.max_freq = max_freq;
2224 }
2225
2226 intel_pstate_init_acpi_perf_limits(policy);
2227
2228 policy->fast_switch_possible = true;
2229
2230 return 0;
2231}
2232
2233static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2234{
2235 int ret = __intel_pstate_cpu_init(policy);
2236
2237 if (ret)
2238 return ret;
2239
2240 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2241 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2242 else
2243 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2244
2245 return 0;
2246}
2247
2248static struct cpufreq_driver intel_pstate = {
2249 .flags = CPUFREQ_CONST_LOOPS,
2250 .verify = intel_pstate_verify_policy,
2251 .setpolicy = intel_pstate_set_policy,
2252 .suspend = intel_pstate_hwp_save_state,
2253 .resume = intel_pstate_resume,
2254 .init = intel_pstate_cpu_init,
2255 .exit = intel_pstate_cpu_exit,
2256 .stop_cpu = intel_pstate_stop_cpu,
2257 .update_limits = intel_pstate_update_limits,
2258 .name = "intel_pstate",
2259};
2260
2261static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2262{
2263 struct cpudata *cpu = all_cpu_data[policy->cpu];
2264
2265 update_turbo_state();
2266 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2267 intel_pstate_get_max_freq(cpu));
2268
2269 intel_pstate_adjust_policy_max(cpu, policy);
2270
2271 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2272
2273 return 0;
2274}
2275
2276/* Use of trace in passive mode:
2277 *
2278 * In passive mode the trace core_busy field (also known as the
2279 * performance field, and lablelled as such on the graphs; also known as
2280 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2281 * driver call was via the normal or fast switch path. Various graphs
2282 * output from the intel_pstate_tracer.py utility that include core_busy
2283 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2284 * so we use 10 to indicate the the normal path through the driver, and
2285 * 90 to indicate the fast switch path through the driver.
2286 * The scaled_busy field is not used, and is set to 0.
2287 */
2288
2289#define INTEL_PSTATE_TRACE_TARGET 10
2290#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2291
2292static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2293{
2294 struct sample *sample;
2295
2296 if (!trace_pstate_sample_enabled())
2297 return;
2298
2299 if (!intel_pstate_sample(cpu, ktime_get()))
2300 return;
2301
2302 sample = &cpu->sample;
2303 trace_pstate_sample(trace_type,
2304 0,
2305 old_pstate,
2306 cpu->pstate.current_pstate,
2307 sample->mperf,
2308 sample->aperf,
2309 sample->tsc,
2310 get_avg_frequency(cpu),
2311 fp_toint(cpu->iowait_boost * 100));
2312}
2313
2314static int intel_cpufreq_target(struct cpufreq_policy *policy,
2315 unsigned int target_freq,
2316 unsigned int relation)
2317{
2318 struct cpudata *cpu = all_cpu_data[policy->cpu];
2319 struct cpufreq_freqs freqs;
2320 int target_pstate, old_pstate;
2321
2322 update_turbo_state();
2323
2324 freqs.old = policy->cur;
2325 freqs.new = target_freq;
2326
2327 cpufreq_freq_transition_begin(policy, &freqs);
2328 switch (relation) {
2329 case CPUFREQ_RELATION_L:
2330 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2331 break;
2332 case CPUFREQ_RELATION_H:
2333 target_pstate = freqs.new / cpu->pstate.scaling;
2334 break;
2335 default:
2336 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2337 break;
2338 }
2339 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2340 old_pstate = cpu->pstate.current_pstate;
2341 if (target_pstate != cpu->pstate.current_pstate) {
2342 cpu->pstate.current_pstate = target_pstate;
2343 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2344 pstate_funcs.get_val(cpu, target_pstate));
2345 }
2346 freqs.new = target_pstate * cpu->pstate.scaling;
2347 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2348 cpufreq_freq_transition_end(policy, &freqs, false);
2349
2350 return 0;
2351}
2352
2353static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2354 unsigned int target_freq)
2355{
2356 struct cpudata *cpu = all_cpu_data[policy->cpu];
2357 int target_pstate, old_pstate;
2358
2359 update_turbo_state();
2360
2361 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2362 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2363 old_pstate = cpu->pstate.current_pstate;
2364 intel_pstate_update_pstate(cpu, target_pstate);
2365 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2366 return target_pstate * cpu->pstate.scaling;
2367}
2368
2369static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2370{
2371 int max_state, turbo_max, min_freq, max_freq, ret;
2372 struct freq_qos_request *req;
2373 struct cpudata *cpu;
2374 struct device *dev;
2375
2376 dev = get_cpu_device(policy->cpu);
2377 if (!dev)
2378 return -ENODEV;
2379
2380 ret = __intel_pstate_cpu_init(policy);
2381 if (ret)
2382 return ret;
2383
2384 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2385 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2386 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2387 policy->cur = policy->cpuinfo.min_freq;
2388
2389 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2390 if (!req) {
2391 ret = -ENOMEM;
2392 goto pstate_exit;
2393 }
2394
2395 cpu = all_cpu_data[policy->cpu];
2396
2397 if (hwp_active)
2398 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2399 else
2400 turbo_max = cpu->pstate.turbo_pstate;
2401
2402 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2403 min_freq *= cpu->pstate.scaling;
2404 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2405 max_freq *= cpu->pstate.scaling;
2406
2407 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2408 min_freq);
2409 if (ret < 0) {
2410 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2411 goto free_req;
2412 }
2413
2414 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2415 max_freq);
2416 if (ret < 0) {
2417 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2418 goto remove_min_req;
2419 }
2420
2421 policy->driver_data = req;
2422
2423 return 0;
2424
2425remove_min_req:
2426 freq_qos_remove_request(req);
2427free_req:
2428 kfree(req);
2429pstate_exit:
2430 intel_pstate_exit_perf_limits(policy);
2431
2432 return ret;
2433}
2434
2435static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2436{
2437 struct freq_qos_request *req;
2438
2439 req = policy->driver_data;
2440
2441 freq_qos_remove_request(req + 1);
2442 freq_qos_remove_request(req);
2443 kfree(req);
2444
2445 return intel_pstate_cpu_exit(policy);
2446}
2447
2448static struct cpufreq_driver intel_cpufreq = {
2449 .flags = CPUFREQ_CONST_LOOPS,
2450 .verify = intel_cpufreq_verify_policy,
2451 .target = intel_cpufreq_target,
2452 .fast_switch = intel_cpufreq_fast_switch,
2453 .init = intel_cpufreq_cpu_init,
2454 .exit = intel_cpufreq_cpu_exit,
2455 .stop_cpu = intel_cpufreq_stop_cpu,
2456 .update_limits = intel_pstate_update_limits,
2457 .name = "intel_cpufreq",
2458};
2459
2460static struct cpufreq_driver *default_driver = &intel_pstate;
2461
2462static void intel_pstate_driver_cleanup(void)
2463{
2464 unsigned int cpu;
2465
2466 get_online_cpus();
2467 for_each_online_cpu(cpu) {
2468 if (all_cpu_data[cpu]) {
2469 if (intel_pstate_driver == &intel_pstate)
2470 intel_pstate_clear_update_util_hook(cpu);
2471
2472 kfree(all_cpu_data[cpu]);
2473 all_cpu_data[cpu] = NULL;
2474 }
2475 }
2476 put_online_cpus();
2477 intel_pstate_driver = NULL;
2478}
2479
2480static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2481{
2482 int ret;
2483
2484 memset(&global, 0, sizeof(global));
2485 global.max_perf_pct = 100;
2486
2487 intel_pstate_driver = driver;
2488 ret = cpufreq_register_driver(intel_pstate_driver);
2489 if (ret) {
2490 intel_pstate_driver_cleanup();
2491 return ret;
2492 }
2493
2494 global.min_perf_pct = min_perf_pct_min();
2495
2496 return 0;
2497}
2498
2499static int intel_pstate_unregister_driver(void)
2500{
2501 if (hwp_active)
2502 return -EBUSY;
2503
2504 cpufreq_unregister_driver(intel_pstate_driver);
2505 intel_pstate_driver_cleanup();
2506
2507 return 0;
2508}
2509
2510static ssize_t intel_pstate_show_status(char *buf)
2511{
2512 if (!intel_pstate_driver)
2513 return sprintf(buf, "off\n");
2514
2515 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2516 "active" : "passive");
2517}
2518
2519static int intel_pstate_update_status(const char *buf, size_t size)
2520{
2521 int ret;
2522
2523 if (size == 3 && !strncmp(buf, "off", size)) {
2524 if (!intel_pstate_driver)
2525 return -EINVAL;
2526
2527 if (hwp_active)
2528 return -EBUSY;
2529
2530 return intel_pstate_unregister_driver();
2531 }
2532
2533 if (size == 6 && !strncmp(buf, "active", size)) {
2534 if (intel_pstate_driver) {
2535 if (intel_pstate_driver == &intel_pstate)
2536 return 0;
2537
2538 ret = intel_pstate_unregister_driver();
2539 if (ret)
2540 return ret;
2541 }
2542
2543 return intel_pstate_register_driver(&intel_pstate);
2544 }
2545
2546 if (size == 7 && !strncmp(buf, "passive", size)) {
2547 if (intel_pstate_driver) {
2548 if (intel_pstate_driver == &intel_cpufreq)
2549 return 0;
2550
2551 ret = intel_pstate_unregister_driver();
2552 if (ret)
2553 return ret;
2554 }
2555
2556 return intel_pstate_register_driver(&intel_cpufreq);
2557 }
2558
2559 return -EINVAL;
2560}
2561
2562static int no_load __initdata;
2563static int no_hwp __initdata;
2564static int hwp_only __initdata;
2565static unsigned int force_load __initdata;
2566
2567static int __init intel_pstate_msrs_not_valid(void)
2568{
2569 if (!pstate_funcs.get_max() ||
2570 !pstate_funcs.get_min() ||
2571 !pstate_funcs.get_turbo())
2572 return -ENODEV;
2573
2574 return 0;
2575}
2576
2577static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2578{
2579 pstate_funcs.get_max = funcs->get_max;
2580 pstate_funcs.get_max_physical = funcs->get_max_physical;
2581 pstate_funcs.get_min = funcs->get_min;
2582 pstate_funcs.get_turbo = funcs->get_turbo;
2583 pstate_funcs.get_scaling = funcs->get_scaling;
2584 pstate_funcs.get_val = funcs->get_val;
2585 pstate_funcs.get_vid = funcs->get_vid;
2586 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2587}
2588
2589#ifdef CONFIG_ACPI
2590
2591static bool __init intel_pstate_no_acpi_pss(void)
2592{
2593 int i;
2594
2595 for_each_possible_cpu(i) {
2596 acpi_status status;
2597 union acpi_object *pss;
2598 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2599 struct acpi_processor *pr = per_cpu(processors, i);
2600
2601 if (!pr)
2602 continue;
2603
2604 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2605 if (ACPI_FAILURE(status))
2606 continue;
2607
2608 pss = buffer.pointer;
2609 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2610 kfree(pss);
2611 return false;
2612 }
2613
2614 kfree(pss);
2615 }
2616
2617 pr_debug("ACPI _PSS not found\n");
2618 return true;
2619}
2620
2621static bool __init intel_pstate_no_acpi_pcch(void)
2622{
2623 acpi_status status;
2624 acpi_handle handle;
2625
2626 status = acpi_get_handle(NULL, "\\_SB", &handle);
2627 if (ACPI_FAILURE(status))
2628 goto not_found;
2629
2630 if (acpi_has_method(handle, "PCCH"))
2631 return false;
2632
2633not_found:
2634 pr_debug("ACPI PCCH not found\n");
2635 return true;
2636}
2637
2638static bool __init intel_pstate_has_acpi_ppc(void)
2639{
2640 int i;
2641
2642 for_each_possible_cpu(i) {
2643 struct acpi_processor *pr = per_cpu(processors, i);
2644
2645 if (!pr)
2646 continue;
2647 if (acpi_has_method(pr->handle, "_PPC"))
2648 return true;
2649 }
2650 pr_debug("ACPI _PPC not found\n");
2651 return false;
2652}
2653
2654enum {
2655 PSS,
2656 PPC,
2657};
2658
2659/* Hardware vendor-specific info that has its own power management modes */
2660static struct acpi_platform_list plat_info[] __initdata = {
2661 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2662 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2663 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2664 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2665 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2666 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2667 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2668 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2669 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2670 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2671 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2672 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2673 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2674 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2675 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2676 { } /* End */
2677};
2678
2679static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2680{
2681 const struct x86_cpu_id *id;
2682 u64 misc_pwr;
2683 int idx;
2684
2685 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2686 if (id) {
2687 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2688 if (misc_pwr & (1 << 8)) {
2689 pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2690 return true;
2691 }
2692 }
2693
2694 idx = acpi_match_platform_list(plat_info);
2695 if (idx < 0)
2696 return false;
2697
2698 switch (plat_info[idx].data) {
2699 case PSS:
2700 if (!intel_pstate_no_acpi_pss())
2701 return false;
2702
2703 return intel_pstate_no_acpi_pcch();
2704 case PPC:
2705 return intel_pstate_has_acpi_ppc() && !force_load;
2706 }
2707
2708 return false;
2709}
2710
2711static void intel_pstate_request_control_from_smm(void)
2712{
2713 /*
2714 * It may be unsafe to request P-states control from SMM if _PPC support
2715 * has not been enabled.
2716 */
2717 if (acpi_ppc)
2718 acpi_processor_pstate_control();
2719}
2720#else /* CONFIG_ACPI not enabled */
2721static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2722static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2723static inline void intel_pstate_request_control_from_smm(void) {}
2724#endif /* CONFIG_ACPI */
2725
2726#define INTEL_PSTATE_HWP_BROADWELL 0x01
2727
2728#define ICPU_HWP(model, hwp_mode) \
2729 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2730
2731static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2732 ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2733 ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2734 ICPU_HWP(X86_MODEL_ANY, 0),
2735 {}
2736};
2737
2738static int __init intel_pstate_init(void)
2739{
2740 const struct x86_cpu_id *id;
2741 int rc;
2742
2743 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2744 return -ENODEV;
2745
2746 if (no_load)
2747 return -ENODEV;
2748
2749 id = x86_match_cpu(hwp_support_ids);
2750 if (id) {
2751 copy_cpu_funcs(&core_funcs);
2752 if (!no_hwp) {
2753 hwp_active++;
2754 hwp_mode_bdw = id->driver_data;
2755 intel_pstate.attr = hwp_cpufreq_attrs;
2756 goto hwp_cpu_matched;
2757 }
2758 } else {
2759 id = x86_match_cpu(intel_pstate_cpu_ids);
2760 if (!id) {
2761 pr_info("CPU model not supported\n");
2762 return -ENODEV;
2763 }
2764
2765 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2766 }
2767
2768 if (intel_pstate_msrs_not_valid()) {
2769 pr_info("Invalid MSRs\n");
2770 return -ENODEV;
2771 }
2772
2773hwp_cpu_matched:
2774 /*
2775 * The Intel pstate driver will be ignored if the platform
2776 * firmware has its own power management modes.
2777 */
2778 if (intel_pstate_platform_pwr_mgmt_exists()) {
2779 pr_info("P-states controlled by the platform\n");
2780 return -ENODEV;
2781 }
2782
2783 if (!hwp_active && hwp_only)
2784 return -ENOTSUPP;
2785
2786 pr_info("Intel P-state driver initializing\n");
2787
2788 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2789 if (!all_cpu_data)
2790 return -ENOMEM;
2791
2792 intel_pstate_request_control_from_smm();
2793
2794 intel_pstate_sysfs_expose_params();
2795
2796 mutex_lock(&intel_pstate_driver_lock);
2797 rc = intel_pstate_register_driver(default_driver);
2798 mutex_unlock(&intel_pstate_driver_lock);
2799 if (rc)
2800 return rc;
2801
2802 if (hwp_active)
2803 pr_info("HWP enabled\n");
2804
2805 return 0;
2806}
2807device_initcall(intel_pstate_init);
2808
2809static int __init intel_pstate_setup(char *str)
2810{
2811 if (!str)
2812 return -EINVAL;
2813
2814 if (!strcmp(str, "disable")) {
2815 no_load = 1;
2816 } else if (!strcmp(str, "passive")) {
2817 pr_info("Passive mode enabled\n");
2818 default_driver = &intel_cpufreq;
2819 no_hwp = 1;
2820 }
2821 if (!strcmp(str, "no_hwp")) {
2822 pr_info("HWP disabled\n");
2823 no_hwp = 1;
2824 }
2825 if (!strcmp(str, "force"))
2826 force_load = 1;
2827 if (!strcmp(str, "hwp_only"))
2828 hwp_only = 1;
2829 if (!strcmp(str, "per_cpu_perf_limits"))
2830 per_cpu_limits = true;
2831
2832#ifdef CONFIG_ACPI
2833 if (!strcmp(str, "support_acpi_ppc"))
2834 acpi_ppc = true;
2835#endif
2836
2837 return 0;
2838}
2839early_param("intel_pstate", intel_pstate_setup);
2840
2841MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2842MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2843MODULE_LICENSE("GPL");