b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * AMD Cryptographic Coprocessor (CCP) driver |
| 4 | * |
| 5 | * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. |
| 6 | * |
| 7 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| 8 | * Author: Gary R Hook <gary.hook@amd.com> |
| 9 | */ |
| 10 | |
| 11 | #include <linux/module.h> |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/kthread.h> |
| 14 | #include <linux/interrupt.h> |
| 15 | #include <linux/ccp.h> |
| 16 | |
| 17 | #include "ccp-dev.h" |
| 18 | |
| 19 | static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count) |
| 20 | { |
| 21 | int start; |
| 22 | struct ccp_device *ccp = cmd_q->ccp; |
| 23 | |
| 24 | for (;;) { |
| 25 | mutex_lock(&ccp->sb_mutex); |
| 26 | |
| 27 | start = (u32)bitmap_find_next_zero_area(ccp->sb, |
| 28 | ccp->sb_count, |
| 29 | ccp->sb_start, |
| 30 | count, 0); |
| 31 | if (start <= ccp->sb_count) { |
| 32 | bitmap_set(ccp->sb, start, count); |
| 33 | |
| 34 | mutex_unlock(&ccp->sb_mutex); |
| 35 | break; |
| 36 | } |
| 37 | |
| 38 | ccp->sb_avail = 0; |
| 39 | |
| 40 | mutex_unlock(&ccp->sb_mutex); |
| 41 | |
| 42 | /* Wait for KSB entries to become available */ |
| 43 | if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail)) |
| 44 | return 0; |
| 45 | } |
| 46 | |
| 47 | return KSB_START + start; |
| 48 | } |
| 49 | |
| 50 | static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start, |
| 51 | unsigned int count) |
| 52 | { |
| 53 | struct ccp_device *ccp = cmd_q->ccp; |
| 54 | |
| 55 | if (!start) |
| 56 | return; |
| 57 | |
| 58 | mutex_lock(&ccp->sb_mutex); |
| 59 | |
| 60 | bitmap_clear(ccp->sb, start - KSB_START, count); |
| 61 | |
| 62 | ccp->sb_avail = 1; |
| 63 | |
| 64 | mutex_unlock(&ccp->sb_mutex); |
| 65 | |
| 66 | wake_up_interruptible_all(&ccp->sb_queue); |
| 67 | } |
| 68 | |
| 69 | static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q) |
| 70 | { |
| 71 | return CMD_Q_DEPTH(ioread32(cmd_q->reg_status)); |
| 72 | } |
| 73 | |
| 74 | static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count) |
| 75 | { |
| 76 | struct ccp_cmd_queue *cmd_q = op->cmd_q; |
| 77 | struct ccp_device *ccp = cmd_q->ccp; |
| 78 | void __iomem *cr_addr; |
| 79 | u32 cr0, cmd; |
| 80 | unsigned int i; |
| 81 | int ret = 0; |
| 82 | |
| 83 | /* We could read a status register to see how many free slots |
| 84 | * are actually available, but reading that register resets it |
| 85 | * and you could lose some error information. |
| 86 | */ |
| 87 | cmd_q->free_slots--; |
| 88 | |
| 89 | cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT) |
| 90 | | (op->jobid << REQ0_JOBID_SHIFT) |
| 91 | | REQ0_WAIT_FOR_WRITE; |
| 92 | |
| 93 | if (op->soc) |
| 94 | cr0 |= REQ0_STOP_ON_COMPLETE |
| 95 | | REQ0_INT_ON_COMPLETE; |
| 96 | |
| 97 | if (op->ioc || !cmd_q->free_slots) |
| 98 | cr0 |= REQ0_INT_ON_COMPLETE; |
| 99 | |
| 100 | /* Start at CMD_REQ1 */ |
| 101 | cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR; |
| 102 | |
| 103 | mutex_lock(&ccp->req_mutex); |
| 104 | |
| 105 | /* Write CMD_REQ1 through CMD_REQx first */ |
| 106 | for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR) |
| 107 | iowrite32(*(cr + i), cr_addr); |
| 108 | |
| 109 | /* Tell the CCP to start */ |
| 110 | wmb(); |
| 111 | iowrite32(cr0, ccp->io_regs + CMD_REQ0); |
| 112 | |
| 113 | mutex_unlock(&ccp->req_mutex); |
| 114 | |
| 115 | if (cr0 & REQ0_INT_ON_COMPLETE) { |
| 116 | /* Wait for the job to complete */ |
| 117 | ret = wait_event_interruptible(cmd_q->int_queue, |
| 118 | cmd_q->int_rcvd); |
| 119 | if (ret || cmd_q->cmd_error) { |
| 120 | /* On error delete all related jobs from the queue */ |
| 121 | cmd = (cmd_q->id << DEL_Q_ID_SHIFT) |
| 122 | | op->jobid; |
| 123 | if (cmd_q->cmd_error) |
| 124 | ccp_log_error(cmd_q->ccp, |
| 125 | cmd_q->cmd_error); |
| 126 | |
| 127 | iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB); |
| 128 | |
| 129 | if (!ret) |
| 130 | ret = -EIO; |
| 131 | } else if (op->soc) { |
| 132 | /* Delete just head job from the queue on SoC */ |
| 133 | cmd = DEL_Q_ACTIVE |
| 134 | | (cmd_q->id << DEL_Q_ID_SHIFT) |
| 135 | | op->jobid; |
| 136 | |
| 137 | iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB); |
| 138 | } |
| 139 | |
| 140 | cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status); |
| 141 | |
| 142 | cmd_q->int_rcvd = 0; |
| 143 | } |
| 144 | |
| 145 | return ret; |
| 146 | } |
| 147 | |
| 148 | static int ccp_perform_aes(struct ccp_op *op) |
| 149 | { |
| 150 | u32 cr[6]; |
| 151 | |
| 152 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 153 | cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT) |
| 154 | | (op->u.aes.type << REQ1_AES_TYPE_SHIFT) |
| 155 | | (op->u.aes.mode << REQ1_AES_MODE_SHIFT) |
| 156 | | (op->u.aes.action << REQ1_AES_ACTION_SHIFT) |
| 157 | | (op->sb_key << REQ1_KEY_KSB_SHIFT); |
| 158 | cr[1] = op->src.u.dma.length - 1; |
| 159 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 160 | cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT) |
| 161 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 162 | | ccp_addr_hi(&op->src.u.dma); |
| 163 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 164 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 165 | | ccp_addr_hi(&op->dst.u.dma); |
| 166 | |
| 167 | if (op->u.aes.mode == CCP_AES_MODE_CFB) |
| 168 | cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT); |
| 169 | |
| 170 | if (op->eom) |
| 171 | cr[0] |= REQ1_EOM; |
| 172 | |
| 173 | if (op->init) |
| 174 | cr[0] |= REQ1_INIT; |
| 175 | |
| 176 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 177 | } |
| 178 | |
| 179 | static int ccp_perform_xts_aes(struct ccp_op *op) |
| 180 | { |
| 181 | u32 cr[6]; |
| 182 | |
| 183 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 184 | cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT) |
| 185 | | (op->u.xts.action << REQ1_AES_ACTION_SHIFT) |
| 186 | | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT) |
| 187 | | (op->sb_key << REQ1_KEY_KSB_SHIFT); |
| 188 | cr[1] = op->src.u.dma.length - 1; |
| 189 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 190 | cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT) |
| 191 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 192 | | ccp_addr_hi(&op->src.u.dma); |
| 193 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 194 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 195 | | ccp_addr_hi(&op->dst.u.dma); |
| 196 | |
| 197 | if (op->eom) |
| 198 | cr[0] |= REQ1_EOM; |
| 199 | |
| 200 | if (op->init) |
| 201 | cr[0] |= REQ1_INIT; |
| 202 | |
| 203 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 204 | } |
| 205 | |
| 206 | static int ccp_perform_sha(struct ccp_op *op) |
| 207 | { |
| 208 | u32 cr[6]; |
| 209 | |
| 210 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 211 | cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT) |
| 212 | | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT) |
| 213 | | REQ1_INIT; |
| 214 | cr[1] = op->src.u.dma.length - 1; |
| 215 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 216 | cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT) |
| 217 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 218 | | ccp_addr_hi(&op->src.u.dma); |
| 219 | |
| 220 | if (op->eom) { |
| 221 | cr[0] |= REQ1_EOM; |
| 222 | cr[4] = lower_32_bits(op->u.sha.msg_bits); |
| 223 | cr[5] = upper_32_bits(op->u.sha.msg_bits); |
| 224 | } else { |
| 225 | cr[4] = 0; |
| 226 | cr[5] = 0; |
| 227 | } |
| 228 | |
| 229 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 230 | } |
| 231 | |
| 232 | static int ccp_perform_rsa(struct ccp_op *op) |
| 233 | { |
| 234 | u32 cr[6]; |
| 235 | |
| 236 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 237 | cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT) |
| 238 | | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT) |
| 239 | | (op->sb_key << REQ1_KEY_KSB_SHIFT) |
| 240 | | REQ1_EOM; |
| 241 | cr[1] = op->u.rsa.input_len - 1; |
| 242 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 243 | cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT) |
| 244 | | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 245 | | ccp_addr_hi(&op->src.u.dma); |
| 246 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 247 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 248 | | ccp_addr_hi(&op->dst.u.dma); |
| 249 | |
| 250 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 251 | } |
| 252 | |
| 253 | static int ccp_perform_passthru(struct ccp_op *op) |
| 254 | { |
| 255 | u32 cr[6]; |
| 256 | |
| 257 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 258 | cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT) |
| 259 | | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT) |
| 260 | | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT); |
| 261 | |
| 262 | if (op->src.type == CCP_MEMTYPE_SYSTEM) |
| 263 | cr[1] = op->src.u.dma.length - 1; |
| 264 | else |
| 265 | cr[1] = op->dst.u.dma.length - 1; |
| 266 | |
| 267 | if (op->src.type == CCP_MEMTYPE_SYSTEM) { |
| 268 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 269 | cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 270 | | ccp_addr_hi(&op->src.u.dma); |
| 271 | |
| 272 | if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| 273 | cr[3] |= (op->sb_key << REQ4_KSB_SHIFT); |
| 274 | } else { |
| 275 | cr[2] = op->src.u.sb * CCP_SB_BYTES; |
| 276 | cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT); |
| 277 | } |
| 278 | |
| 279 | if (op->dst.type == CCP_MEMTYPE_SYSTEM) { |
| 280 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 281 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 282 | | ccp_addr_hi(&op->dst.u.dma); |
| 283 | } else { |
| 284 | cr[4] = op->dst.u.sb * CCP_SB_BYTES; |
| 285 | cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT); |
| 286 | } |
| 287 | |
| 288 | if (op->eom) |
| 289 | cr[0] |= REQ1_EOM; |
| 290 | |
| 291 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 292 | } |
| 293 | |
| 294 | static int ccp_perform_ecc(struct ccp_op *op) |
| 295 | { |
| 296 | u32 cr[6]; |
| 297 | |
| 298 | /* Fill out the register contents for REQ1 through REQ6 */ |
| 299 | cr[0] = REQ1_ECC_AFFINE_CONVERT |
| 300 | | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT) |
| 301 | | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT) |
| 302 | | REQ1_EOM; |
| 303 | cr[1] = op->src.u.dma.length - 1; |
| 304 | cr[2] = ccp_addr_lo(&op->src.u.dma); |
| 305 | cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT) |
| 306 | | ccp_addr_hi(&op->src.u.dma); |
| 307 | cr[4] = ccp_addr_lo(&op->dst.u.dma); |
| 308 | cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT) |
| 309 | | ccp_addr_hi(&op->dst.u.dma); |
| 310 | |
| 311 | return ccp_do_cmd(op, cr, ARRAY_SIZE(cr)); |
| 312 | } |
| 313 | |
| 314 | static void ccp_disable_queue_interrupts(struct ccp_device *ccp) |
| 315 | { |
| 316 | iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG); |
| 317 | } |
| 318 | |
| 319 | static void ccp_enable_queue_interrupts(struct ccp_device *ccp) |
| 320 | { |
| 321 | iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG); |
| 322 | } |
| 323 | |
| 324 | static void ccp_irq_bh(unsigned long data) |
| 325 | { |
| 326 | struct ccp_device *ccp = (struct ccp_device *)data; |
| 327 | struct ccp_cmd_queue *cmd_q; |
| 328 | u32 q_int, status; |
| 329 | unsigned int i; |
| 330 | |
| 331 | status = ioread32(ccp->io_regs + IRQ_STATUS_REG); |
| 332 | |
| 333 | for (i = 0; i < ccp->cmd_q_count; i++) { |
| 334 | cmd_q = &ccp->cmd_q[i]; |
| 335 | |
| 336 | q_int = status & (cmd_q->int_ok | cmd_q->int_err); |
| 337 | if (q_int) { |
| 338 | cmd_q->int_status = status; |
| 339 | cmd_q->q_status = ioread32(cmd_q->reg_status); |
| 340 | cmd_q->q_int_status = ioread32(cmd_q->reg_int_status); |
| 341 | |
| 342 | /* On error, only save the first error value */ |
| 343 | if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error) |
| 344 | cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status); |
| 345 | |
| 346 | cmd_q->int_rcvd = 1; |
| 347 | |
| 348 | /* Acknowledge the interrupt and wake the kthread */ |
| 349 | iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG); |
| 350 | wake_up_interruptible(&cmd_q->int_queue); |
| 351 | } |
| 352 | } |
| 353 | ccp_enable_queue_interrupts(ccp); |
| 354 | } |
| 355 | |
| 356 | static irqreturn_t ccp_irq_handler(int irq, void *data) |
| 357 | { |
| 358 | struct ccp_device *ccp = (struct ccp_device *)data; |
| 359 | |
| 360 | ccp_disable_queue_interrupts(ccp); |
| 361 | if (ccp->use_tasklet) |
| 362 | tasklet_schedule(&ccp->irq_tasklet); |
| 363 | else |
| 364 | ccp_irq_bh((unsigned long)ccp); |
| 365 | |
| 366 | return IRQ_HANDLED; |
| 367 | } |
| 368 | |
| 369 | static int ccp_init(struct ccp_device *ccp) |
| 370 | { |
| 371 | struct device *dev = ccp->dev; |
| 372 | struct ccp_cmd_queue *cmd_q; |
| 373 | struct dma_pool *dma_pool; |
| 374 | char dma_pool_name[MAX_DMAPOOL_NAME_LEN]; |
| 375 | unsigned int qmr, i; |
| 376 | int ret; |
| 377 | |
| 378 | /* Find available queues */ |
| 379 | ccp->qim = 0; |
| 380 | qmr = ioread32(ccp->io_regs + Q_MASK_REG); |
| 381 | for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) { |
| 382 | if (!(qmr & (1 << i))) |
| 383 | continue; |
| 384 | |
| 385 | /* Allocate a dma pool for this queue */ |
| 386 | snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d", |
| 387 | ccp->name, i); |
| 388 | dma_pool = dma_pool_create(dma_pool_name, dev, |
| 389 | CCP_DMAPOOL_MAX_SIZE, |
| 390 | CCP_DMAPOOL_ALIGN, 0); |
| 391 | if (!dma_pool) { |
| 392 | dev_err(dev, "unable to allocate dma pool\n"); |
| 393 | ret = -ENOMEM; |
| 394 | goto e_pool; |
| 395 | } |
| 396 | |
| 397 | cmd_q = &ccp->cmd_q[ccp->cmd_q_count]; |
| 398 | ccp->cmd_q_count++; |
| 399 | |
| 400 | cmd_q->ccp = ccp; |
| 401 | cmd_q->id = i; |
| 402 | cmd_q->dma_pool = dma_pool; |
| 403 | |
| 404 | /* Reserve 2 KSB regions for the queue */ |
| 405 | cmd_q->sb_key = KSB_START + ccp->sb_start++; |
| 406 | cmd_q->sb_ctx = KSB_START + ccp->sb_start++; |
| 407 | ccp->sb_count -= 2; |
| 408 | |
| 409 | /* Preset some register values and masks that are queue |
| 410 | * number dependent |
| 411 | */ |
| 412 | cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE + |
| 413 | (CMD_Q_STATUS_INCR * i); |
| 414 | cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE + |
| 415 | (CMD_Q_STATUS_INCR * i); |
| 416 | cmd_q->int_ok = 1 << (i * 2); |
| 417 | cmd_q->int_err = 1 << ((i * 2) + 1); |
| 418 | |
| 419 | cmd_q->free_slots = ccp_get_free_slots(cmd_q); |
| 420 | |
| 421 | init_waitqueue_head(&cmd_q->int_queue); |
| 422 | |
| 423 | /* Build queue interrupt mask (two interrupts per queue) */ |
| 424 | ccp->qim |= cmd_q->int_ok | cmd_q->int_err; |
| 425 | |
| 426 | #ifdef CONFIG_ARM64 |
| 427 | /* For arm64 set the recommended queue cache settings */ |
| 428 | iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE + |
| 429 | (CMD_Q_CACHE_INC * i)); |
| 430 | #endif |
| 431 | |
| 432 | dev_dbg(dev, "queue #%u available\n", i); |
| 433 | } |
| 434 | if (ccp->cmd_q_count == 0) { |
| 435 | dev_notice(dev, "no command queues available\n"); |
| 436 | ret = -EIO; |
| 437 | goto e_pool; |
| 438 | } |
| 439 | dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count); |
| 440 | |
| 441 | /* Disable and clear interrupts until ready */ |
| 442 | ccp_disable_queue_interrupts(ccp); |
| 443 | for (i = 0; i < ccp->cmd_q_count; i++) { |
| 444 | cmd_q = &ccp->cmd_q[i]; |
| 445 | |
| 446 | ioread32(cmd_q->reg_int_status); |
| 447 | ioread32(cmd_q->reg_status); |
| 448 | } |
| 449 | iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG); |
| 450 | |
| 451 | /* Request an irq */ |
| 452 | ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp); |
| 453 | if (ret) { |
| 454 | dev_err(dev, "unable to allocate an IRQ\n"); |
| 455 | goto e_pool; |
| 456 | } |
| 457 | |
| 458 | /* Initialize the ISR tasklet? */ |
| 459 | if (ccp->use_tasklet) |
| 460 | tasklet_init(&ccp->irq_tasklet, ccp_irq_bh, |
| 461 | (unsigned long)ccp); |
| 462 | |
| 463 | dev_dbg(dev, "Starting threads...\n"); |
| 464 | /* Create a kthread for each queue */ |
| 465 | for (i = 0; i < ccp->cmd_q_count; i++) { |
| 466 | struct task_struct *kthread; |
| 467 | |
| 468 | cmd_q = &ccp->cmd_q[i]; |
| 469 | |
| 470 | kthread = kthread_create(ccp_cmd_queue_thread, cmd_q, |
| 471 | "%s-q%u", ccp->name, cmd_q->id); |
| 472 | if (IS_ERR(kthread)) { |
| 473 | dev_err(dev, "error creating queue thread (%ld)\n", |
| 474 | PTR_ERR(kthread)); |
| 475 | ret = PTR_ERR(kthread); |
| 476 | goto e_kthread; |
| 477 | } |
| 478 | |
| 479 | cmd_q->kthread = kthread; |
| 480 | wake_up_process(kthread); |
| 481 | } |
| 482 | |
| 483 | dev_dbg(dev, "Enabling interrupts...\n"); |
| 484 | /* Enable interrupts */ |
| 485 | ccp_enable_queue_interrupts(ccp); |
| 486 | |
| 487 | dev_dbg(dev, "Registering device...\n"); |
| 488 | ccp_add_device(ccp); |
| 489 | |
| 490 | ret = ccp_register_rng(ccp); |
| 491 | if (ret) |
| 492 | goto e_kthread; |
| 493 | |
| 494 | /* Register the DMA engine support */ |
| 495 | ret = ccp_dmaengine_register(ccp); |
| 496 | if (ret) |
| 497 | goto e_hwrng; |
| 498 | |
| 499 | return 0; |
| 500 | |
| 501 | e_hwrng: |
| 502 | ccp_unregister_rng(ccp); |
| 503 | |
| 504 | e_kthread: |
| 505 | for (i = 0; i < ccp->cmd_q_count; i++) |
| 506 | if (ccp->cmd_q[i].kthread) |
| 507 | kthread_stop(ccp->cmd_q[i].kthread); |
| 508 | |
| 509 | sp_free_ccp_irq(ccp->sp, ccp); |
| 510 | |
| 511 | e_pool: |
| 512 | for (i = 0; i < ccp->cmd_q_count; i++) |
| 513 | dma_pool_destroy(ccp->cmd_q[i].dma_pool); |
| 514 | |
| 515 | return ret; |
| 516 | } |
| 517 | |
| 518 | static void ccp_destroy(struct ccp_device *ccp) |
| 519 | { |
| 520 | struct ccp_cmd_queue *cmd_q; |
| 521 | struct ccp_cmd *cmd; |
| 522 | unsigned int i; |
| 523 | |
| 524 | /* Unregister the DMA engine */ |
| 525 | ccp_dmaengine_unregister(ccp); |
| 526 | |
| 527 | /* Unregister the RNG */ |
| 528 | ccp_unregister_rng(ccp); |
| 529 | |
| 530 | /* Remove this device from the list of available units */ |
| 531 | ccp_del_device(ccp); |
| 532 | |
| 533 | /* Disable and clear interrupts */ |
| 534 | ccp_disable_queue_interrupts(ccp); |
| 535 | for (i = 0; i < ccp->cmd_q_count; i++) { |
| 536 | cmd_q = &ccp->cmd_q[i]; |
| 537 | |
| 538 | ioread32(cmd_q->reg_int_status); |
| 539 | ioread32(cmd_q->reg_status); |
| 540 | } |
| 541 | iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG); |
| 542 | |
| 543 | /* Stop the queue kthreads */ |
| 544 | for (i = 0; i < ccp->cmd_q_count; i++) |
| 545 | if (ccp->cmd_q[i].kthread) |
| 546 | kthread_stop(ccp->cmd_q[i].kthread); |
| 547 | |
| 548 | sp_free_ccp_irq(ccp->sp, ccp); |
| 549 | |
| 550 | for (i = 0; i < ccp->cmd_q_count; i++) |
| 551 | dma_pool_destroy(ccp->cmd_q[i].dma_pool); |
| 552 | |
| 553 | /* Flush the cmd and backlog queue */ |
| 554 | while (!list_empty(&ccp->cmd)) { |
| 555 | /* Invoke the callback directly with an error code */ |
| 556 | cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry); |
| 557 | list_del(&cmd->entry); |
| 558 | cmd->callback(cmd->data, -ENODEV); |
| 559 | } |
| 560 | while (!list_empty(&ccp->backlog)) { |
| 561 | /* Invoke the callback directly with an error code */ |
| 562 | cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry); |
| 563 | list_del(&cmd->entry); |
| 564 | cmd->callback(cmd->data, -ENODEV); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | static const struct ccp_actions ccp3_actions = { |
| 569 | .aes = ccp_perform_aes, |
| 570 | .xts_aes = ccp_perform_xts_aes, |
| 571 | .des3 = NULL, |
| 572 | .sha = ccp_perform_sha, |
| 573 | .rsa = ccp_perform_rsa, |
| 574 | .passthru = ccp_perform_passthru, |
| 575 | .ecc = ccp_perform_ecc, |
| 576 | .sballoc = ccp_alloc_ksb, |
| 577 | .sbfree = ccp_free_ksb, |
| 578 | .init = ccp_init, |
| 579 | .destroy = ccp_destroy, |
| 580 | .get_free_slots = ccp_get_free_slots, |
| 581 | .irqhandler = ccp_irq_handler, |
| 582 | }; |
| 583 | |
| 584 | const struct ccp_vdata ccpv3_platform = { |
| 585 | .version = CCP_VERSION(3, 0), |
| 586 | .setup = NULL, |
| 587 | .perform = &ccp3_actions, |
| 588 | .offset = 0, |
| 589 | .rsamax = CCP_RSA_MAX_WIDTH, |
| 590 | }; |
| 591 | |
| 592 | const struct ccp_vdata ccpv3 = { |
| 593 | .version = CCP_VERSION(3, 0), |
| 594 | .setup = NULL, |
| 595 | .perform = &ccp3_actions, |
| 596 | .offset = 0x20000, |
| 597 | .rsamax = CCP_RSA_MAX_WIDTH, |
| 598 | }; |