b.liu | e958203 | 2025-04-17 19:18:16 +0800 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */ |
| 3 | |
| 4 | #include <crypto/internal/aead.h> |
| 5 | #include <crypto/authenc.h> |
| 6 | #include <crypto/scatterwalk.h> |
| 7 | #include <linux/dmapool.h> |
| 8 | #include <linux/dma-mapping.h> |
| 9 | |
| 10 | #include "cc_buffer_mgr.h" |
| 11 | #include "cc_lli_defs.h" |
| 12 | #include "cc_cipher.h" |
| 13 | #include "cc_hash.h" |
| 14 | #include "cc_aead.h" |
| 15 | |
| 16 | enum dma_buffer_type { |
| 17 | DMA_NULL_TYPE = -1, |
| 18 | DMA_SGL_TYPE = 1, |
| 19 | DMA_BUFF_TYPE = 2, |
| 20 | }; |
| 21 | |
| 22 | struct buff_mgr_handle { |
| 23 | struct dma_pool *mlli_buffs_pool; |
| 24 | }; |
| 25 | |
| 26 | union buffer_array_entry { |
| 27 | struct scatterlist *sgl; |
| 28 | dma_addr_t buffer_dma; |
| 29 | }; |
| 30 | |
| 31 | struct buffer_array { |
| 32 | unsigned int num_of_buffers; |
| 33 | union buffer_array_entry entry[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 34 | unsigned int offset[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 35 | int nents[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 36 | int total_data_len[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 37 | enum dma_buffer_type type[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 38 | bool is_last[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 39 | u32 *mlli_nents[MAX_NUM_OF_BUFFERS_IN_MLLI]; |
| 40 | }; |
| 41 | |
| 42 | static inline char *cc_dma_buf_type(enum cc_req_dma_buf_type type) |
| 43 | { |
| 44 | switch (type) { |
| 45 | case CC_DMA_BUF_NULL: |
| 46 | return "BUF_NULL"; |
| 47 | case CC_DMA_BUF_DLLI: |
| 48 | return "BUF_DLLI"; |
| 49 | case CC_DMA_BUF_MLLI: |
| 50 | return "BUF_MLLI"; |
| 51 | default: |
| 52 | return "BUF_INVALID"; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * cc_copy_mac() - Copy MAC to temporary location |
| 58 | * |
| 59 | * @dev: device object |
| 60 | * @req: aead request object |
| 61 | * @dir: [IN] copy from/to sgl |
| 62 | */ |
| 63 | static void cc_copy_mac(struct device *dev, struct aead_request *req, |
| 64 | enum cc_sg_cpy_direct dir) |
| 65 | { |
| 66 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 67 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 68 | u32 skip = areq_ctx->assoclen + req->cryptlen; |
| 69 | |
| 70 | if (areq_ctx->is_gcm4543) |
| 71 | skip += crypto_aead_ivsize(tfm); |
| 72 | |
| 73 | cc_copy_sg_portion(dev, areq_ctx->backup_mac, req->src, |
| 74 | (skip - areq_ctx->req_authsize), skip, dir); |
| 75 | } |
| 76 | |
| 77 | /** |
| 78 | * cc_get_sgl_nents() - Get scatterlist number of entries. |
| 79 | * |
| 80 | * @sg_list: SG list |
| 81 | * @nbytes: [IN] Total SGL data bytes. |
| 82 | * @lbytes: [OUT] Returns the amount of bytes at the last entry |
| 83 | */ |
| 84 | static unsigned int cc_get_sgl_nents(struct device *dev, |
| 85 | struct scatterlist *sg_list, |
| 86 | unsigned int nbytes, u32 *lbytes) |
| 87 | { |
| 88 | unsigned int nents = 0; |
| 89 | |
| 90 | *lbytes = 0; |
| 91 | |
| 92 | while (nbytes && sg_list) { |
| 93 | nents++; |
| 94 | /* get the number of bytes in the last entry */ |
| 95 | *lbytes = nbytes; |
| 96 | nbytes -= (sg_list->length > nbytes) ? |
| 97 | nbytes : sg_list->length; |
| 98 | sg_list = sg_next(sg_list); |
| 99 | } |
| 100 | |
| 101 | dev_dbg(dev, "nents %d last bytes %d\n", nents, *lbytes); |
| 102 | return nents; |
| 103 | } |
| 104 | |
| 105 | /** |
| 106 | * cc_copy_sg_portion() - Copy scatter list data, |
| 107 | * from to_skip to end, to dest and vice versa |
| 108 | * |
| 109 | * @dest: |
| 110 | * @sg: |
| 111 | * @to_skip: |
| 112 | * @end: |
| 113 | * @direct: |
| 114 | */ |
| 115 | void cc_copy_sg_portion(struct device *dev, u8 *dest, struct scatterlist *sg, |
| 116 | u32 to_skip, u32 end, enum cc_sg_cpy_direct direct) |
| 117 | { |
| 118 | u32 nents; |
| 119 | |
| 120 | nents = sg_nents_for_len(sg, end); |
| 121 | sg_copy_buffer(sg, nents, (void *)dest, (end - to_skip + 1), to_skip, |
| 122 | (direct == CC_SG_TO_BUF)); |
| 123 | } |
| 124 | |
| 125 | static int cc_render_buff_to_mlli(struct device *dev, dma_addr_t buff_dma, |
| 126 | u32 buff_size, u32 *curr_nents, |
| 127 | u32 **mlli_entry_pp) |
| 128 | { |
| 129 | u32 *mlli_entry_p = *mlli_entry_pp; |
| 130 | u32 new_nents; |
| 131 | |
| 132 | /* Verify there is no memory overflow*/ |
| 133 | new_nents = (*curr_nents + buff_size / CC_MAX_MLLI_ENTRY_SIZE + 1); |
| 134 | if (new_nents > MAX_NUM_OF_TOTAL_MLLI_ENTRIES) { |
| 135 | dev_err(dev, "Too many mlli entries. current %d max %d\n", |
| 136 | new_nents, MAX_NUM_OF_TOTAL_MLLI_ENTRIES); |
| 137 | return -ENOMEM; |
| 138 | } |
| 139 | |
| 140 | /*handle buffer longer than 64 kbytes */ |
| 141 | while (buff_size > CC_MAX_MLLI_ENTRY_SIZE) { |
| 142 | cc_lli_set_addr(mlli_entry_p, buff_dma); |
| 143 | cc_lli_set_size(mlli_entry_p, CC_MAX_MLLI_ENTRY_SIZE); |
| 144 | dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n", |
| 145 | *curr_nents, mlli_entry_p[LLI_WORD0_OFFSET], |
| 146 | mlli_entry_p[LLI_WORD1_OFFSET]); |
| 147 | buff_dma += CC_MAX_MLLI_ENTRY_SIZE; |
| 148 | buff_size -= CC_MAX_MLLI_ENTRY_SIZE; |
| 149 | mlli_entry_p = mlli_entry_p + 2; |
| 150 | (*curr_nents)++; |
| 151 | } |
| 152 | /*Last entry */ |
| 153 | cc_lli_set_addr(mlli_entry_p, buff_dma); |
| 154 | cc_lli_set_size(mlli_entry_p, buff_size); |
| 155 | dev_dbg(dev, "entry[%d]: single_buff=0x%08X size=%08X\n", |
| 156 | *curr_nents, mlli_entry_p[LLI_WORD0_OFFSET], |
| 157 | mlli_entry_p[LLI_WORD1_OFFSET]); |
| 158 | mlli_entry_p = mlli_entry_p + 2; |
| 159 | *mlli_entry_pp = mlli_entry_p; |
| 160 | (*curr_nents)++; |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | static int cc_render_sg_to_mlli(struct device *dev, struct scatterlist *sgl, |
| 165 | u32 sgl_data_len, u32 sgl_offset, |
| 166 | u32 *curr_nents, u32 **mlli_entry_pp) |
| 167 | { |
| 168 | struct scatterlist *curr_sgl = sgl; |
| 169 | u32 *mlli_entry_p = *mlli_entry_pp; |
| 170 | s32 rc = 0; |
| 171 | |
| 172 | for ( ; (curr_sgl && sgl_data_len); |
| 173 | curr_sgl = sg_next(curr_sgl)) { |
| 174 | u32 entry_data_len = |
| 175 | (sgl_data_len > sg_dma_len(curr_sgl) - sgl_offset) ? |
| 176 | sg_dma_len(curr_sgl) - sgl_offset : |
| 177 | sgl_data_len; |
| 178 | sgl_data_len -= entry_data_len; |
| 179 | rc = cc_render_buff_to_mlli(dev, sg_dma_address(curr_sgl) + |
| 180 | sgl_offset, entry_data_len, |
| 181 | curr_nents, &mlli_entry_p); |
| 182 | if (rc) |
| 183 | return rc; |
| 184 | |
| 185 | sgl_offset = 0; |
| 186 | } |
| 187 | *mlli_entry_pp = mlli_entry_p; |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | static int cc_generate_mlli(struct device *dev, struct buffer_array *sg_data, |
| 192 | struct mlli_params *mlli_params, gfp_t flags) |
| 193 | { |
| 194 | u32 *mlli_p; |
| 195 | u32 total_nents = 0, prev_total_nents = 0; |
| 196 | int rc = 0, i; |
| 197 | |
| 198 | dev_dbg(dev, "NUM of SG's = %d\n", sg_data->num_of_buffers); |
| 199 | |
| 200 | /* Allocate memory from the pointed pool */ |
| 201 | mlli_params->mlli_virt_addr = |
| 202 | dma_pool_alloc(mlli_params->curr_pool, flags, |
| 203 | &mlli_params->mlli_dma_addr); |
| 204 | if (!mlli_params->mlli_virt_addr) { |
| 205 | dev_err(dev, "dma_pool_alloc() failed\n"); |
| 206 | rc = -ENOMEM; |
| 207 | goto build_mlli_exit; |
| 208 | } |
| 209 | /* Point to start of MLLI */ |
| 210 | mlli_p = (u32 *)mlli_params->mlli_virt_addr; |
| 211 | /* go over all SG's and link it to one MLLI table */ |
| 212 | for (i = 0; i < sg_data->num_of_buffers; i++) { |
| 213 | union buffer_array_entry *entry = &sg_data->entry[i]; |
| 214 | u32 tot_len = sg_data->total_data_len[i]; |
| 215 | u32 offset = sg_data->offset[i]; |
| 216 | |
| 217 | if (sg_data->type[i] == DMA_SGL_TYPE) |
| 218 | rc = cc_render_sg_to_mlli(dev, entry->sgl, tot_len, |
| 219 | offset, &total_nents, |
| 220 | &mlli_p); |
| 221 | else /*DMA_BUFF_TYPE*/ |
| 222 | rc = cc_render_buff_to_mlli(dev, entry->buffer_dma, |
| 223 | tot_len, &total_nents, |
| 224 | &mlli_p); |
| 225 | if (rc) |
| 226 | return rc; |
| 227 | |
| 228 | /* set last bit in the current table */ |
| 229 | if (sg_data->mlli_nents[i]) { |
| 230 | /*Calculate the current MLLI table length for the |
| 231 | *length field in the descriptor |
| 232 | */ |
| 233 | *sg_data->mlli_nents[i] += |
| 234 | (total_nents - prev_total_nents); |
| 235 | prev_total_nents = total_nents; |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /* Set MLLI size for the bypass operation */ |
| 240 | mlli_params->mlli_len = (total_nents * LLI_ENTRY_BYTE_SIZE); |
| 241 | |
| 242 | dev_dbg(dev, "MLLI params: virt_addr=%pK dma_addr=%pad mlli_len=0x%X\n", |
| 243 | mlli_params->mlli_virt_addr, &mlli_params->mlli_dma_addr, |
| 244 | mlli_params->mlli_len); |
| 245 | |
| 246 | build_mlli_exit: |
| 247 | return rc; |
| 248 | } |
| 249 | |
| 250 | static void cc_add_buffer_entry(struct device *dev, |
| 251 | struct buffer_array *sgl_data, |
| 252 | dma_addr_t buffer_dma, unsigned int buffer_len, |
| 253 | bool is_last_entry, u32 *mlli_nents) |
| 254 | { |
| 255 | unsigned int index = sgl_data->num_of_buffers; |
| 256 | |
| 257 | dev_dbg(dev, "index=%u single_buff=%pad buffer_len=0x%08X is_last=%d\n", |
| 258 | index, &buffer_dma, buffer_len, is_last_entry); |
| 259 | sgl_data->nents[index] = 1; |
| 260 | sgl_data->entry[index].buffer_dma = buffer_dma; |
| 261 | sgl_data->offset[index] = 0; |
| 262 | sgl_data->total_data_len[index] = buffer_len; |
| 263 | sgl_data->type[index] = DMA_BUFF_TYPE; |
| 264 | sgl_data->is_last[index] = is_last_entry; |
| 265 | sgl_data->mlli_nents[index] = mlli_nents; |
| 266 | if (sgl_data->mlli_nents[index]) |
| 267 | *sgl_data->mlli_nents[index] = 0; |
| 268 | sgl_data->num_of_buffers++; |
| 269 | } |
| 270 | |
| 271 | static void cc_add_sg_entry(struct device *dev, struct buffer_array *sgl_data, |
| 272 | unsigned int nents, struct scatterlist *sgl, |
| 273 | unsigned int data_len, unsigned int data_offset, |
| 274 | bool is_last_table, u32 *mlli_nents) |
| 275 | { |
| 276 | unsigned int index = sgl_data->num_of_buffers; |
| 277 | |
| 278 | dev_dbg(dev, "index=%u nents=%u sgl=%pK data_len=0x%08X is_last=%d\n", |
| 279 | index, nents, sgl, data_len, is_last_table); |
| 280 | sgl_data->nents[index] = nents; |
| 281 | sgl_data->entry[index].sgl = sgl; |
| 282 | sgl_data->offset[index] = data_offset; |
| 283 | sgl_data->total_data_len[index] = data_len; |
| 284 | sgl_data->type[index] = DMA_SGL_TYPE; |
| 285 | sgl_data->is_last[index] = is_last_table; |
| 286 | sgl_data->mlli_nents[index] = mlli_nents; |
| 287 | if (sgl_data->mlli_nents[index]) |
| 288 | *sgl_data->mlli_nents[index] = 0; |
| 289 | sgl_data->num_of_buffers++; |
| 290 | } |
| 291 | |
| 292 | static int cc_map_sg(struct device *dev, struct scatterlist *sg, |
| 293 | unsigned int nbytes, int direction, u32 *nents, |
| 294 | u32 max_sg_nents, u32 *lbytes, u32 *mapped_nents) |
| 295 | { |
| 296 | int ret = 0; |
| 297 | |
| 298 | if (!nbytes) { |
| 299 | *mapped_nents = 0; |
| 300 | *lbytes = 0; |
| 301 | *nents = 0; |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | *nents = cc_get_sgl_nents(dev, sg, nbytes, lbytes); |
| 306 | if (*nents > max_sg_nents) { |
| 307 | *nents = 0; |
| 308 | dev_err(dev, "Too many fragments. current %d max %d\n", |
| 309 | *nents, max_sg_nents); |
| 310 | return -ENOMEM; |
| 311 | } |
| 312 | |
| 313 | ret = dma_map_sg(dev, sg, *nents, direction); |
| 314 | if (dma_mapping_error(dev, ret)) { |
| 315 | *nents = 0; |
| 316 | dev_err(dev, "dma_map_sg() sg buffer failed %d\n", ret); |
| 317 | return -ENOMEM; |
| 318 | } |
| 319 | |
| 320 | *mapped_nents = ret; |
| 321 | |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | static int |
| 326 | cc_set_aead_conf_buf(struct device *dev, struct aead_req_ctx *areq_ctx, |
| 327 | u8 *config_data, struct buffer_array *sg_data, |
| 328 | unsigned int assoclen) |
| 329 | { |
| 330 | dev_dbg(dev, " handle additional data config set to DLLI\n"); |
| 331 | /* create sg for the current buffer */ |
| 332 | sg_init_one(&areq_ctx->ccm_adata_sg, config_data, |
| 333 | AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size); |
| 334 | if (dma_map_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE) != 1) { |
| 335 | dev_err(dev, "dma_map_sg() config buffer failed\n"); |
| 336 | return -ENOMEM; |
| 337 | } |
| 338 | dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n", |
| 339 | &sg_dma_address(&areq_ctx->ccm_adata_sg), |
| 340 | sg_page(&areq_ctx->ccm_adata_sg), |
| 341 | sg_virt(&areq_ctx->ccm_adata_sg), |
| 342 | areq_ctx->ccm_adata_sg.offset, areq_ctx->ccm_adata_sg.length); |
| 343 | /* prepare for case of MLLI */ |
| 344 | if (assoclen > 0) { |
| 345 | cc_add_sg_entry(dev, sg_data, 1, &areq_ctx->ccm_adata_sg, |
| 346 | (AES_BLOCK_SIZE + areq_ctx->ccm_hdr_size), |
| 347 | 0, false, NULL); |
| 348 | } |
| 349 | return 0; |
| 350 | } |
| 351 | |
| 352 | static int cc_set_hash_buf(struct device *dev, struct ahash_req_ctx *areq_ctx, |
| 353 | u8 *curr_buff, u32 curr_buff_cnt, |
| 354 | struct buffer_array *sg_data) |
| 355 | { |
| 356 | dev_dbg(dev, " handle curr buff %x set to DLLI\n", curr_buff_cnt); |
| 357 | /* create sg for the current buffer */ |
| 358 | sg_init_one(areq_ctx->buff_sg, curr_buff, curr_buff_cnt); |
| 359 | if (dma_map_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE) != 1) { |
| 360 | dev_err(dev, "dma_map_sg() src buffer failed\n"); |
| 361 | return -ENOMEM; |
| 362 | } |
| 363 | dev_dbg(dev, "Mapped curr_buff: dma_address=%pad page=%p addr=%pK offset=%u length=%u\n", |
| 364 | &sg_dma_address(areq_ctx->buff_sg), sg_page(areq_ctx->buff_sg), |
| 365 | sg_virt(areq_ctx->buff_sg), areq_ctx->buff_sg->offset, |
| 366 | areq_ctx->buff_sg->length); |
| 367 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI; |
| 368 | areq_ctx->curr_sg = areq_ctx->buff_sg; |
| 369 | areq_ctx->in_nents = 0; |
| 370 | /* prepare for case of MLLI */ |
| 371 | cc_add_sg_entry(dev, sg_data, 1, areq_ctx->buff_sg, curr_buff_cnt, 0, |
| 372 | false, NULL); |
| 373 | return 0; |
| 374 | } |
| 375 | |
| 376 | void cc_unmap_cipher_request(struct device *dev, void *ctx, |
| 377 | unsigned int ivsize, struct scatterlist *src, |
| 378 | struct scatterlist *dst) |
| 379 | { |
| 380 | struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx; |
| 381 | |
| 382 | if (req_ctx->gen_ctx.iv_dma_addr) { |
| 383 | dev_dbg(dev, "Unmapped iv: iv_dma_addr=%pad iv_size=%u\n", |
| 384 | &req_ctx->gen_ctx.iv_dma_addr, ivsize); |
| 385 | dma_unmap_single(dev, req_ctx->gen_ctx.iv_dma_addr, |
| 386 | ivsize, DMA_BIDIRECTIONAL); |
| 387 | } |
| 388 | /* Release pool */ |
| 389 | if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI && |
| 390 | req_ctx->mlli_params.mlli_virt_addr) { |
| 391 | dma_pool_free(req_ctx->mlli_params.curr_pool, |
| 392 | req_ctx->mlli_params.mlli_virt_addr, |
| 393 | req_ctx->mlli_params.mlli_dma_addr); |
| 394 | } |
| 395 | |
| 396 | dma_unmap_sg(dev, src, req_ctx->in_nents, DMA_BIDIRECTIONAL); |
| 397 | dev_dbg(dev, "Unmapped req->src=%pK\n", sg_virt(src)); |
| 398 | |
| 399 | if (src != dst) { |
| 400 | dma_unmap_sg(dev, dst, req_ctx->out_nents, DMA_BIDIRECTIONAL); |
| 401 | dev_dbg(dev, "Unmapped req->dst=%pK\n", sg_virt(dst)); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | int cc_map_cipher_request(struct cc_drvdata *drvdata, void *ctx, |
| 406 | unsigned int ivsize, unsigned int nbytes, |
| 407 | void *info, struct scatterlist *src, |
| 408 | struct scatterlist *dst, gfp_t flags) |
| 409 | { |
| 410 | struct cipher_req_ctx *req_ctx = (struct cipher_req_ctx *)ctx; |
| 411 | struct mlli_params *mlli_params = &req_ctx->mlli_params; |
| 412 | struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle; |
| 413 | struct device *dev = drvdata_to_dev(drvdata); |
| 414 | struct buffer_array sg_data; |
| 415 | u32 dummy = 0; |
| 416 | int rc = 0; |
| 417 | u32 mapped_nents = 0; |
| 418 | |
| 419 | req_ctx->dma_buf_type = CC_DMA_BUF_DLLI; |
| 420 | mlli_params->curr_pool = NULL; |
| 421 | sg_data.num_of_buffers = 0; |
| 422 | |
| 423 | /* Map IV buffer */ |
| 424 | if (ivsize) { |
| 425 | dump_byte_array("iv", (u8 *)info, ivsize); |
| 426 | req_ctx->gen_ctx.iv_dma_addr = |
| 427 | dma_map_single(dev, (void *)info, |
| 428 | ivsize, DMA_BIDIRECTIONAL); |
| 429 | if (dma_mapping_error(dev, req_ctx->gen_ctx.iv_dma_addr)) { |
| 430 | dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n", |
| 431 | ivsize, info); |
| 432 | return -ENOMEM; |
| 433 | } |
| 434 | dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n", |
| 435 | ivsize, info, &req_ctx->gen_ctx.iv_dma_addr); |
| 436 | } else { |
| 437 | req_ctx->gen_ctx.iv_dma_addr = 0; |
| 438 | } |
| 439 | |
| 440 | /* Map the src SGL */ |
| 441 | rc = cc_map_sg(dev, src, nbytes, DMA_BIDIRECTIONAL, &req_ctx->in_nents, |
| 442 | LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, &mapped_nents); |
| 443 | if (rc) |
| 444 | goto cipher_exit; |
| 445 | if (mapped_nents > 1) |
| 446 | req_ctx->dma_buf_type = CC_DMA_BUF_MLLI; |
| 447 | |
| 448 | if (src == dst) { |
| 449 | /* Handle inplace operation */ |
| 450 | if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) { |
| 451 | req_ctx->out_nents = 0; |
| 452 | cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src, |
| 453 | nbytes, 0, true, |
| 454 | &req_ctx->in_mlli_nents); |
| 455 | } |
| 456 | } else { |
| 457 | /* Map the dst sg */ |
| 458 | rc = cc_map_sg(dev, dst, nbytes, DMA_BIDIRECTIONAL, |
| 459 | &req_ctx->out_nents, LLI_MAX_NUM_OF_DATA_ENTRIES, |
| 460 | &dummy, &mapped_nents); |
| 461 | if (rc) |
| 462 | goto cipher_exit; |
| 463 | if (mapped_nents > 1) |
| 464 | req_ctx->dma_buf_type = CC_DMA_BUF_MLLI; |
| 465 | |
| 466 | if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) { |
| 467 | cc_add_sg_entry(dev, &sg_data, req_ctx->in_nents, src, |
| 468 | nbytes, 0, true, |
| 469 | &req_ctx->in_mlli_nents); |
| 470 | cc_add_sg_entry(dev, &sg_data, req_ctx->out_nents, dst, |
| 471 | nbytes, 0, true, |
| 472 | &req_ctx->out_mlli_nents); |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) { |
| 477 | mlli_params->curr_pool = buff_mgr->mlli_buffs_pool; |
| 478 | rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags); |
| 479 | if (rc) |
| 480 | goto cipher_exit; |
| 481 | } |
| 482 | |
| 483 | dev_dbg(dev, "areq_ctx->dma_buf_type = %s\n", |
| 484 | cc_dma_buf_type(req_ctx->dma_buf_type)); |
| 485 | |
| 486 | return 0; |
| 487 | |
| 488 | cipher_exit: |
| 489 | cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst); |
| 490 | return rc; |
| 491 | } |
| 492 | |
| 493 | void cc_unmap_aead_request(struct device *dev, struct aead_request *req) |
| 494 | { |
| 495 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 496 | unsigned int hw_iv_size = areq_ctx->hw_iv_size; |
| 497 | struct cc_drvdata *drvdata = dev_get_drvdata(dev); |
| 498 | |
| 499 | if (areq_ctx->mac_buf_dma_addr) { |
| 500 | dma_unmap_single(dev, areq_ctx->mac_buf_dma_addr, |
| 501 | MAX_MAC_SIZE, DMA_BIDIRECTIONAL); |
| 502 | } |
| 503 | |
| 504 | if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) { |
| 505 | if (areq_ctx->hkey_dma_addr) { |
| 506 | dma_unmap_single(dev, areq_ctx->hkey_dma_addr, |
| 507 | AES_BLOCK_SIZE, DMA_BIDIRECTIONAL); |
| 508 | } |
| 509 | |
| 510 | if (areq_ctx->gcm_block_len_dma_addr) { |
| 511 | dma_unmap_single(dev, areq_ctx->gcm_block_len_dma_addr, |
| 512 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 513 | } |
| 514 | |
| 515 | if (areq_ctx->gcm_iv_inc1_dma_addr) { |
| 516 | dma_unmap_single(dev, areq_ctx->gcm_iv_inc1_dma_addr, |
| 517 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 518 | } |
| 519 | |
| 520 | if (areq_ctx->gcm_iv_inc2_dma_addr) { |
| 521 | dma_unmap_single(dev, areq_ctx->gcm_iv_inc2_dma_addr, |
| 522 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | if (areq_ctx->ccm_hdr_size != ccm_header_size_null) { |
| 527 | if (areq_ctx->ccm_iv0_dma_addr) { |
| 528 | dma_unmap_single(dev, areq_ctx->ccm_iv0_dma_addr, |
| 529 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 530 | } |
| 531 | |
| 532 | dma_unmap_sg(dev, &areq_ctx->ccm_adata_sg, 1, DMA_TO_DEVICE); |
| 533 | } |
| 534 | if (areq_ctx->gen_ctx.iv_dma_addr) { |
| 535 | dma_unmap_single(dev, areq_ctx->gen_ctx.iv_dma_addr, |
| 536 | hw_iv_size, DMA_BIDIRECTIONAL); |
| 537 | kzfree(areq_ctx->gen_ctx.iv); |
| 538 | } |
| 539 | |
| 540 | /* Release pool */ |
| 541 | if ((areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI || |
| 542 | areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) && |
| 543 | (areq_ctx->mlli_params.mlli_virt_addr)) { |
| 544 | dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n", |
| 545 | &areq_ctx->mlli_params.mlli_dma_addr, |
| 546 | areq_ctx->mlli_params.mlli_virt_addr); |
| 547 | dma_pool_free(areq_ctx->mlli_params.curr_pool, |
| 548 | areq_ctx->mlli_params.mlli_virt_addr, |
| 549 | areq_ctx->mlli_params.mlli_dma_addr); |
| 550 | } |
| 551 | |
| 552 | dev_dbg(dev, "Unmapping src sgl: req->src=%pK areq_ctx->src.nents=%u areq_ctx->assoc.nents=%u assoclen:%u cryptlen=%u\n", |
| 553 | sg_virt(req->src), areq_ctx->src.nents, areq_ctx->assoc.nents, |
| 554 | areq_ctx->assoclen, req->cryptlen); |
| 555 | |
| 556 | dma_unmap_sg(dev, req->src, areq_ctx->src.mapped_nents, |
| 557 | DMA_BIDIRECTIONAL); |
| 558 | if (req->src != req->dst) { |
| 559 | dev_dbg(dev, "Unmapping dst sgl: req->dst=%pK\n", |
| 560 | sg_virt(req->dst)); |
| 561 | dma_unmap_sg(dev, req->dst, areq_ctx->dst.mapped_nents, |
| 562 | DMA_BIDIRECTIONAL); |
| 563 | } |
| 564 | if (drvdata->coherent && |
| 565 | areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT && |
| 566 | req->src == req->dst) { |
| 567 | /* copy back mac from temporary location to deal with possible |
| 568 | * data memory overriding that caused by cache coherence |
| 569 | * problem. |
| 570 | */ |
| 571 | cc_copy_mac(dev, req, CC_SG_FROM_BUF); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | static bool cc_is_icv_frag(unsigned int sgl_nents, unsigned int authsize, |
| 576 | u32 last_entry_data_size) |
| 577 | { |
| 578 | return ((sgl_nents > 1) && (last_entry_data_size < authsize)); |
| 579 | } |
| 580 | |
| 581 | static int cc_aead_chain_iv(struct cc_drvdata *drvdata, |
| 582 | struct aead_request *req, |
| 583 | struct buffer_array *sg_data, |
| 584 | bool is_last, bool do_chain) |
| 585 | { |
| 586 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 587 | unsigned int hw_iv_size = areq_ctx->hw_iv_size; |
| 588 | struct device *dev = drvdata_to_dev(drvdata); |
| 589 | gfp_t flags = cc_gfp_flags(&req->base); |
| 590 | int rc = 0; |
| 591 | |
| 592 | if (!req->iv) { |
| 593 | areq_ctx->gen_ctx.iv_dma_addr = 0; |
| 594 | areq_ctx->gen_ctx.iv = NULL; |
| 595 | goto chain_iv_exit; |
| 596 | } |
| 597 | |
| 598 | areq_ctx->gen_ctx.iv = kmemdup(req->iv, hw_iv_size, flags); |
| 599 | if (!areq_ctx->gen_ctx.iv) |
| 600 | return -ENOMEM; |
| 601 | |
| 602 | areq_ctx->gen_ctx.iv_dma_addr = |
| 603 | dma_map_single(dev, areq_ctx->gen_ctx.iv, hw_iv_size, |
| 604 | DMA_BIDIRECTIONAL); |
| 605 | if (dma_mapping_error(dev, areq_ctx->gen_ctx.iv_dma_addr)) { |
| 606 | dev_err(dev, "Mapping iv %u B at va=%pK for DMA failed\n", |
| 607 | hw_iv_size, req->iv); |
| 608 | kzfree(areq_ctx->gen_ctx.iv); |
| 609 | areq_ctx->gen_ctx.iv = NULL; |
| 610 | rc = -ENOMEM; |
| 611 | goto chain_iv_exit; |
| 612 | } |
| 613 | |
| 614 | dev_dbg(dev, "Mapped iv %u B at va=%pK to dma=%pad\n", |
| 615 | hw_iv_size, req->iv, &areq_ctx->gen_ctx.iv_dma_addr); |
| 616 | // TODO: what about CTR?? ask Ron |
| 617 | if (do_chain && areq_ctx->plaintext_authenticate_only) { |
| 618 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 619 | unsigned int iv_size_to_authenc = crypto_aead_ivsize(tfm); |
| 620 | unsigned int iv_ofs = GCM_BLOCK_RFC4_IV_OFFSET; |
| 621 | /* Chain to given list */ |
| 622 | cc_add_buffer_entry(dev, sg_data, |
| 623 | (areq_ctx->gen_ctx.iv_dma_addr + iv_ofs), |
| 624 | iv_size_to_authenc, is_last, |
| 625 | &areq_ctx->assoc.mlli_nents); |
| 626 | areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI; |
| 627 | } |
| 628 | |
| 629 | chain_iv_exit: |
| 630 | return rc; |
| 631 | } |
| 632 | |
| 633 | static int cc_aead_chain_assoc(struct cc_drvdata *drvdata, |
| 634 | struct aead_request *req, |
| 635 | struct buffer_array *sg_data, |
| 636 | bool is_last, bool do_chain) |
| 637 | { |
| 638 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 639 | int rc = 0; |
| 640 | int mapped_nents = 0; |
| 641 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 642 | unsigned int size_of_assoc = areq_ctx->assoclen; |
| 643 | struct device *dev = drvdata_to_dev(drvdata); |
| 644 | |
| 645 | if (areq_ctx->is_gcm4543) |
| 646 | size_of_assoc += crypto_aead_ivsize(tfm); |
| 647 | |
| 648 | if (!sg_data) { |
| 649 | rc = -EINVAL; |
| 650 | goto chain_assoc_exit; |
| 651 | } |
| 652 | |
| 653 | if (areq_ctx->assoclen == 0) { |
| 654 | areq_ctx->assoc_buff_type = CC_DMA_BUF_NULL; |
| 655 | areq_ctx->assoc.nents = 0; |
| 656 | areq_ctx->assoc.mlli_nents = 0; |
| 657 | dev_dbg(dev, "Chain assoc of length 0: buff_type=%s nents=%u\n", |
| 658 | cc_dma_buf_type(areq_ctx->assoc_buff_type), |
| 659 | areq_ctx->assoc.nents); |
| 660 | goto chain_assoc_exit; |
| 661 | } |
| 662 | |
| 663 | mapped_nents = sg_nents_for_len(req->src, size_of_assoc); |
| 664 | if (mapped_nents < 0) |
| 665 | return mapped_nents; |
| 666 | |
| 667 | if (mapped_nents > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) { |
| 668 | dev_err(dev, "Too many fragments. current %d max %d\n", |
| 669 | mapped_nents, LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES); |
| 670 | return -ENOMEM; |
| 671 | } |
| 672 | areq_ctx->assoc.nents = mapped_nents; |
| 673 | |
| 674 | /* in CCM case we have additional entry for |
| 675 | * ccm header configurations |
| 676 | */ |
| 677 | if (areq_ctx->ccm_hdr_size != ccm_header_size_null) { |
| 678 | if ((mapped_nents + 1) > LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES) { |
| 679 | dev_err(dev, "CCM case.Too many fragments. Current %d max %d\n", |
| 680 | (areq_ctx->assoc.nents + 1), |
| 681 | LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES); |
| 682 | rc = -ENOMEM; |
| 683 | goto chain_assoc_exit; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | if (mapped_nents == 1 && areq_ctx->ccm_hdr_size == ccm_header_size_null) |
| 688 | areq_ctx->assoc_buff_type = CC_DMA_BUF_DLLI; |
| 689 | else |
| 690 | areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI; |
| 691 | |
| 692 | if (do_chain || areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) { |
| 693 | dev_dbg(dev, "Chain assoc: buff_type=%s nents=%u\n", |
| 694 | cc_dma_buf_type(areq_ctx->assoc_buff_type), |
| 695 | areq_ctx->assoc.nents); |
| 696 | cc_add_sg_entry(dev, sg_data, areq_ctx->assoc.nents, req->src, |
| 697 | areq_ctx->assoclen, 0, is_last, |
| 698 | &areq_ctx->assoc.mlli_nents); |
| 699 | areq_ctx->assoc_buff_type = CC_DMA_BUF_MLLI; |
| 700 | } |
| 701 | |
| 702 | chain_assoc_exit: |
| 703 | return rc; |
| 704 | } |
| 705 | |
| 706 | static void cc_prepare_aead_data_dlli(struct aead_request *req, |
| 707 | u32 *src_last_bytes, u32 *dst_last_bytes) |
| 708 | { |
| 709 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 710 | enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type; |
| 711 | unsigned int authsize = areq_ctx->req_authsize; |
| 712 | struct scatterlist *sg; |
| 713 | ssize_t offset; |
| 714 | |
| 715 | areq_ctx->is_icv_fragmented = false; |
| 716 | |
| 717 | if ((req->src == req->dst) || direct == DRV_CRYPTO_DIRECTION_DECRYPT) { |
| 718 | sg = areq_ctx->src_sgl; |
| 719 | offset = *src_last_bytes - authsize; |
| 720 | } else { |
| 721 | sg = areq_ctx->dst_sgl; |
| 722 | offset = *dst_last_bytes - authsize; |
| 723 | } |
| 724 | |
| 725 | areq_ctx->icv_dma_addr = sg_dma_address(sg) + offset; |
| 726 | areq_ctx->icv_virt_addr = sg_virt(sg) + offset; |
| 727 | } |
| 728 | |
| 729 | static void cc_prepare_aead_data_mlli(struct cc_drvdata *drvdata, |
| 730 | struct aead_request *req, |
| 731 | struct buffer_array *sg_data, |
| 732 | u32 *src_last_bytes, u32 *dst_last_bytes, |
| 733 | bool is_last_table) |
| 734 | { |
| 735 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 736 | enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type; |
| 737 | unsigned int authsize = areq_ctx->req_authsize; |
| 738 | struct device *dev = drvdata_to_dev(drvdata); |
| 739 | struct scatterlist *sg; |
| 740 | |
| 741 | if (req->src == req->dst) { |
| 742 | /*INPLACE*/ |
| 743 | cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents, |
| 744 | areq_ctx->src_sgl, areq_ctx->cryptlen, |
| 745 | areq_ctx->src_offset, is_last_table, |
| 746 | &areq_ctx->src.mlli_nents); |
| 747 | |
| 748 | areq_ctx->is_icv_fragmented = |
| 749 | cc_is_icv_frag(areq_ctx->src.nents, authsize, |
| 750 | *src_last_bytes); |
| 751 | |
| 752 | if (areq_ctx->is_icv_fragmented) { |
| 753 | /* Backup happens only when ICV is fragmented, ICV |
| 754 | * verification is made by CPU compare in order to |
| 755 | * simplify MAC verification upon request completion |
| 756 | */ |
| 757 | if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) { |
| 758 | /* In coherent platforms (e.g. ACP) |
| 759 | * already copying ICV for any |
| 760 | * INPLACE-DECRYPT operation, hence |
| 761 | * we must neglect this code. |
| 762 | */ |
| 763 | if (!drvdata->coherent) |
| 764 | cc_copy_mac(dev, req, CC_SG_TO_BUF); |
| 765 | |
| 766 | areq_ctx->icv_virt_addr = areq_ctx->backup_mac; |
| 767 | } else { |
| 768 | areq_ctx->icv_virt_addr = areq_ctx->mac_buf; |
| 769 | areq_ctx->icv_dma_addr = |
| 770 | areq_ctx->mac_buf_dma_addr; |
| 771 | } |
| 772 | } else { /* Contig. ICV */ |
| 773 | sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1]; |
| 774 | /*Should hanlde if the sg is not contig.*/ |
| 775 | areq_ctx->icv_dma_addr = sg_dma_address(sg) + |
| 776 | (*src_last_bytes - authsize); |
| 777 | areq_ctx->icv_virt_addr = sg_virt(sg) + |
| 778 | (*src_last_bytes - authsize); |
| 779 | } |
| 780 | |
| 781 | } else if (direct == DRV_CRYPTO_DIRECTION_DECRYPT) { |
| 782 | /*NON-INPLACE and DECRYPT*/ |
| 783 | cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents, |
| 784 | areq_ctx->src_sgl, areq_ctx->cryptlen, |
| 785 | areq_ctx->src_offset, is_last_table, |
| 786 | &areq_ctx->src.mlli_nents); |
| 787 | cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents, |
| 788 | areq_ctx->dst_sgl, areq_ctx->cryptlen, |
| 789 | areq_ctx->dst_offset, is_last_table, |
| 790 | &areq_ctx->dst.mlli_nents); |
| 791 | |
| 792 | areq_ctx->is_icv_fragmented = |
| 793 | cc_is_icv_frag(areq_ctx->src.nents, authsize, |
| 794 | *src_last_bytes); |
| 795 | /* Backup happens only when ICV is fragmented, ICV |
| 796 | |
| 797 | * verification is made by CPU compare in order to simplify |
| 798 | * MAC verification upon request completion |
| 799 | */ |
| 800 | if (areq_ctx->is_icv_fragmented) { |
| 801 | cc_copy_mac(dev, req, CC_SG_TO_BUF); |
| 802 | areq_ctx->icv_virt_addr = areq_ctx->backup_mac; |
| 803 | |
| 804 | } else { /* Contig. ICV */ |
| 805 | sg = &areq_ctx->src_sgl[areq_ctx->src.nents - 1]; |
| 806 | /*Should hanlde if the sg is not contig.*/ |
| 807 | areq_ctx->icv_dma_addr = sg_dma_address(sg) + |
| 808 | (*src_last_bytes - authsize); |
| 809 | areq_ctx->icv_virt_addr = sg_virt(sg) + |
| 810 | (*src_last_bytes - authsize); |
| 811 | } |
| 812 | |
| 813 | } else { |
| 814 | /*NON-INPLACE and ENCRYPT*/ |
| 815 | cc_add_sg_entry(dev, sg_data, areq_ctx->dst.nents, |
| 816 | areq_ctx->dst_sgl, areq_ctx->cryptlen, |
| 817 | areq_ctx->dst_offset, is_last_table, |
| 818 | &areq_ctx->dst.mlli_nents); |
| 819 | cc_add_sg_entry(dev, sg_data, areq_ctx->src.nents, |
| 820 | areq_ctx->src_sgl, areq_ctx->cryptlen, |
| 821 | areq_ctx->src_offset, is_last_table, |
| 822 | &areq_ctx->src.mlli_nents); |
| 823 | |
| 824 | areq_ctx->is_icv_fragmented = |
| 825 | cc_is_icv_frag(areq_ctx->dst.nents, authsize, |
| 826 | *dst_last_bytes); |
| 827 | |
| 828 | if (!areq_ctx->is_icv_fragmented) { |
| 829 | sg = &areq_ctx->dst_sgl[areq_ctx->dst.nents - 1]; |
| 830 | /* Contig. ICV */ |
| 831 | areq_ctx->icv_dma_addr = sg_dma_address(sg) + |
| 832 | (*dst_last_bytes - authsize); |
| 833 | areq_ctx->icv_virt_addr = sg_virt(sg) + |
| 834 | (*dst_last_bytes - authsize); |
| 835 | } else { |
| 836 | areq_ctx->icv_dma_addr = areq_ctx->mac_buf_dma_addr; |
| 837 | areq_ctx->icv_virt_addr = areq_ctx->mac_buf; |
| 838 | } |
| 839 | } |
| 840 | } |
| 841 | |
| 842 | static int cc_aead_chain_data(struct cc_drvdata *drvdata, |
| 843 | struct aead_request *req, |
| 844 | struct buffer_array *sg_data, |
| 845 | bool is_last_table, bool do_chain) |
| 846 | { |
| 847 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 848 | struct device *dev = drvdata_to_dev(drvdata); |
| 849 | enum drv_crypto_direction direct = areq_ctx->gen_ctx.op_type; |
| 850 | unsigned int authsize = areq_ctx->req_authsize; |
| 851 | unsigned int src_last_bytes = 0, dst_last_bytes = 0; |
| 852 | int rc = 0; |
| 853 | u32 src_mapped_nents = 0, dst_mapped_nents = 0; |
| 854 | u32 offset = 0; |
| 855 | /* non-inplace mode */ |
| 856 | unsigned int size_for_map = areq_ctx->assoclen + req->cryptlen; |
| 857 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 858 | u32 sg_index = 0; |
| 859 | bool is_gcm4543 = areq_ctx->is_gcm4543; |
| 860 | u32 size_to_skip = areq_ctx->assoclen; |
| 861 | struct scatterlist *sgl; |
| 862 | |
| 863 | if (is_gcm4543) |
| 864 | size_to_skip += crypto_aead_ivsize(tfm); |
| 865 | |
| 866 | offset = size_to_skip; |
| 867 | |
| 868 | if (!sg_data) |
| 869 | return -EINVAL; |
| 870 | |
| 871 | areq_ctx->src_sgl = req->src; |
| 872 | areq_ctx->dst_sgl = req->dst; |
| 873 | |
| 874 | if (is_gcm4543) |
| 875 | size_for_map += crypto_aead_ivsize(tfm); |
| 876 | |
| 877 | size_for_map += (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? |
| 878 | authsize : 0; |
| 879 | src_mapped_nents = cc_get_sgl_nents(dev, req->src, size_for_map, |
| 880 | &src_last_bytes); |
| 881 | sg_index = areq_ctx->src_sgl->length; |
| 882 | //check where the data starts |
| 883 | while (src_mapped_nents && (sg_index <= size_to_skip)) { |
| 884 | src_mapped_nents--; |
| 885 | offset -= areq_ctx->src_sgl->length; |
| 886 | sgl = sg_next(areq_ctx->src_sgl); |
| 887 | if (!sgl) |
| 888 | break; |
| 889 | areq_ctx->src_sgl = sgl; |
| 890 | sg_index += areq_ctx->src_sgl->length; |
| 891 | } |
| 892 | if (src_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) { |
| 893 | dev_err(dev, "Too many fragments. current %d max %d\n", |
| 894 | src_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES); |
| 895 | return -ENOMEM; |
| 896 | } |
| 897 | |
| 898 | areq_ctx->src.nents = src_mapped_nents; |
| 899 | |
| 900 | areq_ctx->src_offset = offset; |
| 901 | |
| 902 | if (req->src != req->dst) { |
| 903 | size_for_map = areq_ctx->assoclen + req->cryptlen; |
| 904 | |
| 905 | if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) |
| 906 | size_for_map += authsize; |
| 907 | else |
| 908 | size_for_map -= authsize; |
| 909 | |
| 910 | if (is_gcm4543) |
| 911 | size_for_map += crypto_aead_ivsize(tfm); |
| 912 | |
| 913 | rc = cc_map_sg(dev, req->dst, size_for_map, DMA_BIDIRECTIONAL, |
| 914 | &areq_ctx->dst.mapped_nents, |
| 915 | LLI_MAX_NUM_OF_DATA_ENTRIES, &dst_last_bytes, |
| 916 | &dst_mapped_nents); |
| 917 | if (rc) |
| 918 | goto chain_data_exit; |
| 919 | } |
| 920 | |
| 921 | dst_mapped_nents = cc_get_sgl_nents(dev, req->dst, size_for_map, |
| 922 | &dst_last_bytes); |
| 923 | sg_index = areq_ctx->dst_sgl->length; |
| 924 | offset = size_to_skip; |
| 925 | |
| 926 | //check where the data starts |
| 927 | while (dst_mapped_nents && sg_index <= size_to_skip) { |
| 928 | dst_mapped_nents--; |
| 929 | offset -= areq_ctx->dst_sgl->length; |
| 930 | sgl = sg_next(areq_ctx->dst_sgl); |
| 931 | if (!sgl) |
| 932 | break; |
| 933 | areq_ctx->dst_sgl = sgl; |
| 934 | sg_index += areq_ctx->dst_sgl->length; |
| 935 | } |
| 936 | if (dst_mapped_nents > LLI_MAX_NUM_OF_DATA_ENTRIES) { |
| 937 | dev_err(dev, "Too many fragments. current %d max %d\n", |
| 938 | dst_mapped_nents, LLI_MAX_NUM_OF_DATA_ENTRIES); |
| 939 | return -ENOMEM; |
| 940 | } |
| 941 | areq_ctx->dst.nents = dst_mapped_nents; |
| 942 | areq_ctx->dst_offset = offset; |
| 943 | if (src_mapped_nents > 1 || |
| 944 | dst_mapped_nents > 1 || |
| 945 | do_chain) { |
| 946 | areq_ctx->data_buff_type = CC_DMA_BUF_MLLI; |
| 947 | cc_prepare_aead_data_mlli(drvdata, req, sg_data, |
| 948 | &src_last_bytes, &dst_last_bytes, |
| 949 | is_last_table); |
| 950 | } else { |
| 951 | areq_ctx->data_buff_type = CC_DMA_BUF_DLLI; |
| 952 | cc_prepare_aead_data_dlli(req, &src_last_bytes, |
| 953 | &dst_last_bytes); |
| 954 | } |
| 955 | |
| 956 | chain_data_exit: |
| 957 | return rc; |
| 958 | } |
| 959 | |
| 960 | static void cc_update_aead_mlli_nents(struct cc_drvdata *drvdata, |
| 961 | struct aead_request *req) |
| 962 | { |
| 963 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 964 | u32 curr_mlli_size = 0; |
| 965 | |
| 966 | if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI) { |
| 967 | areq_ctx->assoc.sram_addr = drvdata->mlli_sram_addr; |
| 968 | curr_mlli_size = areq_ctx->assoc.mlli_nents * |
| 969 | LLI_ENTRY_BYTE_SIZE; |
| 970 | } |
| 971 | |
| 972 | if (areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) { |
| 973 | /*Inplace case dst nents equal to src nents*/ |
| 974 | if (req->src == req->dst) { |
| 975 | areq_ctx->dst.mlli_nents = areq_ctx->src.mlli_nents; |
| 976 | areq_ctx->src.sram_addr = drvdata->mlli_sram_addr + |
| 977 | curr_mlli_size; |
| 978 | areq_ctx->dst.sram_addr = areq_ctx->src.sram_addr; |
| 979 | if (!areq_ctx->is_single_pass) |
| 980 | areq_ctx->assoc.mlli_nents += |
| 981 | areq_ctx->src.mlli_nents; |
| 982 | } else { |
| 983 | if (areq_ctx->gen_ctx.op_type == |
| 984 | DRV_CRYPTO_DIRECTION_DECRYPT) { |
| 985 | areq_ctx->src.sram_addr = |
| 986 | drvdata->mlli_sram_addr + |
| 987 | curr_mlli_size; |
| 988 | areq_ctx->dst.sram_addr = |
| 989 | areq_ctx->src.sram_addr + |
| 990 | areq_ctx->src.mlli_nents * |
| 991 | LLI_ENTRY_BYTE_SIZE; |
| 992 | if (!areq_ctx->is_single_pass) |
| 993 | areq_ctx->assoc.mlli_nents += |
| 994 | areq_ctx->src.mlli_nents; |
| 995 | } else { |
| 996 | areq_ctx->dst.sram_addr = |
| 997 | drvdata->mlli_sram_addr + |
| 998 | curr_mlli_size; |
| 999 | areq_ctx->src.sram_addr = |
| 1000 | areq_ctx->dst.sram_addr + |
| 1001 | areq_ctx->dst.mlli_nents * |
| 1002 | LLI_ENTRY_BYTE_SIZE; |
| 1003 | if (!areq_ctx->is_single_pass) |
| 1004 | areq_ctx->assoc.mlli_nents += |
| 1005 | areq_ctx->dst.mlli_nents; |
| 1006 | } |
| 1007 | } |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | int cc_map_aead_request(struct cc_drvdata *drvdata, struct aead_request *req) |
| 1012 | { |
| 1013 | struct aead_req_ctx *areq_ctx = aead_request_ctx(req); |
| 1014 | struct mlli_params *mlli_params = &areq_ctx->mlli_params; |
| 1015 | struct device *dev = drvdata_to_dev(drvdata); |
| 1016 | struct buffer_array sg_data; |
| 1017 | unsigned int authsize = areq_ctx->req_authsize; |
| 1018 | struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle; |
| 1019 | int rc = 0; |
| 1020 | struct crypto_aead *tfm = crypto_aead_reqtfm(req); |
| 1021 | bool is_gcm4543 = areq_ctx->is_gcm4543; |
| 1022 | dma_addr_t dma_addr; |
| 1023 | u32 mapped_nents = 0; |
| 1024 | u32 dummy = 0; /*used for the assoc data fragments */ |
| 1025 | u32 size_to_map = 0; |
| 1026 | gfp_t flags = cc_gfp_flags(&req->base); |
| 1027 | |
| 1028 | mlli_params->curr_pool = NULL; |
| 1029 | sg_data.num_of_buffers = 0; |
| 1030 | |
| 1031 | /* copy mac to a temporary location to deal with possible |
| 1032 | * data memory overriding that caused by cache coherence problem. |
| 1033 | */ |
| 1034 | if (drvdata->coherent && |
| 1035 | areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT && |
| 1036 | req->src == req->dst) |
| 1037 | cc_copy_mac(dev, req, CC_SG_TO_BUF); |
| 1038 | |
| 1039 | /* cacluate the size for cipher remove ICV in decrypt*/ |
| 1040 | areq_ctx->cryptlen = (areq_ctx->gen_ctx.op_type == |
| 1041 | DRV_CRYPTO_DIRECTION_ENCRYPT) ? |
| 1042 | req->cryptlen : |
| 1043 | (req->cryptlen - authsize); |
| 1044 | |
| 1045 | dma_addr = dma_map_single(dev, areq_ctx->mac_buf, MAX_MAC_SIZE, |
| 1046 | DMA_BIDIRECTIONAL); |
| 1047 | if (dma_mapping_error(dev, dma_addr)) { |
| 1048 | dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n", |
| 1049 | MAX_MAC_SIZE, areq_ctx->mac_buf); |
| 1050 | rc = -ENOMEM; |
| 1051 | goto aead_map_failure; |
| 1052 | } |
| 1053 | areq_ctx->mac_buf_dma_addr = dma_addr; |
| 1054 | |
| 1055 | if (areq_ctx->ccm_hdr_size != ccm_header_size_null) { |
| 1056 | void *addr = areq_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET; |
| 1057 | |
| 1058 | dma_addr = dma_map_single(dev, addr, AES_BLOCK_SIZE, |
| 1059 | DMA_TO_DEVICE); |
| 1060 | |
| 1061 | if (dma_mapping_error(dev, dma_addr)) { |
| 1062 | dev_err(dev, "Mapping mac_buf %u B at va=%pK for DMA failed\n", |
| 1063 | AES_BLOCK_SIZE, addr); |
| 1064 | areq_ctx->ccm_iv0_dma_addr = 0; |
| 1065 | rc = -ENOMEM; |
| 1066 | goto aead_map_failure; |
| 1067 | } |
| 1068 | areq_ctx->ccm_iv0_dma_addr = dma_addr; |
| 1069 | |
| 1070 | rc = cc_set_aead_conf_buf(dev, areq_ctx, areq_ctx->ccm_config, |
| 1071 | &sg_data, areq_ctx->assoclen); |
| 1072 | if (rc) |
| 1073 | goto aead_map_failure; |
| 1074 | } |
| 1075 | |
| 1076 | if (areq_ctx->cipher_mode == DRV_CIPHER_GCTR) { |
| 1077 | dma_addr = dma_map_single(dev, areq_ctx->hkey, AES_BLOCK_SIZE, |
| 1078 | DMA_BIDIRECTIONAL); |
| 1079 | if (dma_mapping_error(dev, dma_addr)) { |
| 1080 | dev_err(dev, "Mapping hkey %u B at va=%pK for DMA failed\n", |
| 1081 | AES_BLOCK_SIZE, areq_ctx->hkey); |
| 1082 | rc = -ENOMEM; |
| 1083 | goto aead_map_failure; |
| 1084 | } |
| 1085 | areq_ctx->hkey_dma_addr = dma_addr; |
| 1086 | |
| 1087 | dma_addr = dma_map_single(dev, &areq_ctx->gcm_len_block, |
| 1088 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 1089 | if (dma_mapping_error(dev, dma_addr)) { |
| 1090 | dev_err(dev, "Mapping gcm_len_block %u B at va=%pK for DMA failed\n", |
| 1091 | AES_BLOCK_SIZE, &areq_ctx->gcm_len_block); |
| 1092 | rc = -ENOMEM; |
| 1093 | goto aead_map_failure; |
| 1094 | } |
| 1095 | areq_ctx->gcm_block_len_dma_addr = dma_addr; |
| 1096 | |
| 1097 | dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc1, |
| 1098 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 1099 | |
| 1100 | if (dma_mapping_error(dev, dma_addr)) { |
| 1101 | dev_err(dev, "Mapping gcm_iv_inc1 %u B at va=%pK for DMA failed\n", |
| 1102 | AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc1)); |
| 1103 | areq_ctx->gcm_iv_inc1_dma_addr = 0; |
| 1104 | rc = -ENOMEM; |
| 1105 | goto aead_map_failure; |
| 1106 | } |
| 1107 | areq_ctx->gcm_iv_inc1_dma_addr = dma_addr; |
| 1108 | |
| 1109 | dma_addr = dma_map_single(dev, areq_ctx->gcm_iv_inc2, |
| 1110 | AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| 1111 | |
| 1112 | if (dma_mapping_error(dev, dma_addr)) { |
| 1113 | dev_err(dev, "Mapping gcm_iv_inc2 %u B at va=%pK for DMA failed\n", |
| 1114 | AES_BLOCK_SIZE, (areq_ctx->gcm_iv_inc2)); |
| 1115 | areq_ctx->gcm_iv_inc2_dma_addr = 0; |
| 1116 | rc = -ENOMEM; |
| 1117 | goto aead_map_failure; |
| 1118 | } |
| 1119 | areq_ctx->gcm_iv_inc2_dma_addr = dma_addr; |
| 1120 | } |
| 1121 | |
| 1122 | size_to_map = req->cryptlen + areq_ctx->assoclen; |
| 1123 | /* If we do in-place encryption, we also need the auth tag */ |
| 1124 | if ((areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_ENCRYPT) && |
| 1125 | (req->src == req->dst)) { |
| 1126 | size_to_map += authsize; |
| 1127 | } |
| 1128 | if (is_gcm4543) |
| 1129 | size_to_map += crypto_aead_ivsize(tfm); |
| 1130 | rc = cc_map_sg(dev, req->src, size_to_map, DMA_BIDIRECTIONAL, |
| 1131 | &areq_ctx->src.mapped_nents, |
| 1132 | (LLI_MAX_NUM_OF_ASSOC_DATA_ENTRIES + |
| 1133 | LLI_MAX_NUM_OF_DATA_ENTRIES), |
| 1134 | &dummy, &mapped_nents); |
| 1135 | if (rc) |
| 1136 | goto aead_map_failure; |
| 1137 | |
| 1138 | if (areq_ctx->is_single_pass) { |
| 1139 | /* |
| 1140 | * Create MLLI table for: |
| 1141 | * (1) Assoc. data |
| 1142 | * (2) Src/Dst SGLs |
| 1143 | * Note: IV is contg. buffer (not an SGL) |
| 1144 | */ |
| 1145 | rc = cc_aead_chain_assoc(drvdata, req, &sg_data, true, false); |
| 1146 | if (rc) |
| 1147 | goto aead_map_failure; |
| 1148 | rc = cc_aead_chain_iv(drvdata, req, &sg_data, true, false); |
| 1149 | if (rc) |
| 1150 | goto aead_map_failure; |
| 1151 | rc = cc_aead_chain_data(drvdata, req, &sg_data, true, false); |
| 1152 | if (rc) |
| 1153 | goto aead_map_failure; |
| 1154 | } else { /* DOUBLE-PASS flow */ |
| 1155 | /* |
| 1156 | * Prepare MLLI table(s) in this order: |
| 1157 | * |
| 1158 | * If ENCRYPT/DECRYPT (inplace): |
| 1159 | * (1) MLLI table for assoc |
| 1160 | * (2) IV entry (chained right after end of assoc) |
| 1161 | * (3) MLLI for src/dst (inplace operation) |
| 1162 | * |
| 1163 | * If ENCRYPT (non-inplace) |
| 1164 | * (1) MLLI table for assoc |
| 1165 | * (2) IV entry (chained right after end of assoc) |
| 1166 | * (3) MLLI for dst |
| 1167 | * (4) MLLI for src |
| 1168 | * |
| 1169 | * If DECRYPT (non-inplace) |
| 1170 | * (1) MLLI table for assoc |
| 1171 | * (2) IV entry (chained right after end of assoc) |
| 1172 | * (3) MLLI for src |
| 1173 | * (4) MLLI for dst |
| 1174 | */ |
| 1175 | rc = cc_aead_chain_assoc(drvdata, req, &sg_data, false, true); |
| 1176 | if (rc) |
| 1177 | goto aead_map_failure; |
| 1178 | rc = cc_aead_chain_iv(drvdata, req, &sg_data, false, true); |
| 1179 | if (rc) |
| 1180 | goto aead_map_failure; |
| 1181 | rc = cc_aead_chain_data(drvdata, req, &sg_data, true, true); |
| 1182 | if (rc) |
| 1183 | goto aead_map_failure; |
| 1184 | } |
| 1185 | |
| 1186 | /* Mlli support -start building the MLLI according to the above |
| 1187 | * results |
| 1188 | */ |
| 1189 | if (areq_ctx->assoc_buff_type == CC_DMA_BUF_MLLI || |
| 1190 | areq_ctx->data_buff_type == CC_DMA_BUF_MLLI) { |
| 1191 | mlli_params->curr_pool = buff_mgr->mlli_buffs_pool; |
| 1192 | rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags); |
| 1193 | if (rc) |
| 1194 | goto aead_map_failure; |
| 1195 | |
| 1196 | cc_update_aead_mlli_nents(drvdata, req); |
| 1197 | dev_dbg(dev, "assoc params mn %d\n", |
| 1198 | areq_ctx->assoc.mlli_nents); |
| 1199 | dev_dbg(dev, "src params mn %d\n", areq_ctx->src.mlli_nents); |
| 1200 | dev_dbg(dev, "dst params mn %d\n", areq_ctx->dst.mlli_nents); |
| 1201 | } |
| 1202 | return 0; |
| 1203 | |
| 1204 | aead_map_failure: |
| 1205 | cc_unmap_aead_request(dev, req); |
| 1206 | return rc; |
| 1207 | } |
| 1208 | |
| 1209 | int cc_map_hash_request_final(struct cc_drvdata *drvdata, void *ctx, |
| 1210 | struct scatterlist *src, unsigned int nbytes, |
| 1211 | bool do_update, gfp_t flags) |
| 1212 | { |
| 1213 | struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx; |
| 1214 | struct device *dev = drvdata_to_dev(drvdata); |
| 1215 | u8 *curr_buff = cc_hash_buf(areq_ctx); |
| 1216 | u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx); |
| 1217 | struct mlli_params *mlli_params = &areq_ctx->mlli_params; |
| 1218 | struct buffer_array sg_data; |
| 1219 | struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle; |
| 1220 | int rc = 0; |
| 1221 | u32 dummy = 0; |
| 1222 | u32 mapped_nents = 0; |
| 1223 | |
| 1224 | dev_dbg(dev, "final params : curr_buff=%pK curr_buff_cnt=0x%X nbytes = 0x%X src=%pK curr_index=%u\n", |
| 1225 | curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index); |
| 1226 | /* Init the type of the dma buffer */ |
| 1227 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL; |
| 1228 | mlli_params->curr_pool = NULL; |
| 1229 | sg_data.num_of_buffers = 0; |
| 1230 | areq_ctx->in_nents = 0; |
| 1231 | |
| 1232 | if (nbytes == 0 && *curr_buff_cnt == 0) { |
| 1233 | /* nothing to do */ |
| 1234 | return 0; |
| 1235 | } |
| 1236 | |
| 1237 | /*TODO: copy data in case that buffer is enough for operation */ |
| 1238 | /* map the previous buffer */ |
| 1239 | if (*curr_buff_cnt) { |
| 1240 | rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt, |
| 1241 | &sg_data); |
| 1242 | if (rc) |
| 1243 | return rc; |
| 1244 | } |
| 1245 | |
| 1246 | if (src && nbytes > 0 && do_update) { |
| 1247 | rc = cc_map_sg(dev, src, nbytes, DMA_TO_DEVICE, |
| 1248 | &areq_ctx->in_nents, LLI_MAX_NUM_OF_DATA_ENTRIES, |
| 1249 | &dummy, &mapped_nents); |
| 1250 | if (rc) |
| 1251 | goto unmap_curr_buff; |
| 1252 | if (src && mapped_nents == 1 && |
| 1253 | areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) { |
| 1254 | memcpy(areq_ctx->buff_sg, src, |
| 1255 | sizeof(struct scatterlist)); |
| 1256 | areq_ctx->buff_sg->length = nbytes; |
| 1257 | areq_ctx->curr_sg = areq_ctx->buff_sg; |
| 1258 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI; |
| 1259 | } else { |
| 1260 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | /*build mlli */ |
| 1265 | if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) { |
| 1266 | mlli_params->curr_pool = buff_mgr->mlli_buffs_pool; |
| 1267 | /* add the src data to the sg_data */ |
| 1268 | cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, nbytes, |
| 1269 | 0, true, &areq_ctx->mlli_nents); |
| 1270 | rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags); |
| 1271 | if (rc) |
| 1272 | goto fail_unmap_din; |
| 1273 | } |
| 1274 | /* change the buffer index for the unmap function */ |
| 1275 | areq_ctx->buff_index = (areq_ctx->buff_index ^ 1); |
| 1276 | dev_dbg(dev, "areq_ctx->data_dma_buf_type = %s\n", |
| 1277 | cc_dma_buf_type(areq_ctx->data_dma_buf_type)); |
| 1278 | return 0; |
| 1279 | |
| 1280 | fail_unmap_din: |
| 1281 | dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE); |
| 1282 | |
| 1283 | unmap_curr_buff: |
| 1284 | if (*curr_buff_cnt) |
| 1285 | dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE); |
| 1286 | |
| 1287 | return rc; |
| 1288 | } |
| 1289 | |
| 1290 | int cc_map_hash_request_update(struct cc_drvdata *drvdata, void *ctx, |
| 1291 | struct scatterlist *src, unsigned int nbytes, |
| 1292 | unsigned int block_size, gfp_t flags) |
| 1293 | { |
| 1294 | struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx; |
| 1295 | struct device *dev = drvdata_to_dev(drvdata); |
| 1296 | u8 *curr_buff = cc_hash_buf(areq_ctx); |
| 1297 | u32 *curr_buff_cnt = cc_hash_buf_cnt(areq_ctx); |
| 1298 | u8 *next_buff = cc_next_buf(areq_ctx); |
| 1299 | u32 *next_buff_cnt = cc_next_buf_cnt(areq_ctx); |
| 1300 | struct mlli_params *mlli_params = &areq_ctx->mlli_params; |
| 1301 | unsigned int update_data_len; |
| 1302 | u32 total_in_len = nbytes + *curr_buff_cnt; |
| 1303 | struct buffer_array sg_data; |
| 1304 | struct buff_mgr_handle *buff_mgr = drvdata->buff_mgr_handle; |
| 1305 | unsigned int swap_index = 0; |
| 1306 | int rc = 0; |
| 1307 | u32 dummy = 0; |
| 1308 | u32 mapped_nents = 0; |
| 1309 | |
| 1310 | dev_dbg(dev, " update params : curr_buff=%pK curr_buff_cnt=0x%X nbytes=0x%X src=%pK curr_index=%u\n", |
| 1311 | curr_buff, *curr_buff_cnt, nbytes, src, areq_ctx->buff_index); |
| 1312 | /* Init the type of the dma buffer */ |
| 1313 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_NULL; |
| 1314 | mlli_params->curr_pool = NULL; |
| 1315 | areq_ctx->curr_sg = NULL; |
| 1316 | sg_data.num_of_buffers = 0; |
| 1317 | areq_ctx->in_nents = 0; |
| 1318 | |
| 1319 | if (total_in_len < block_size) { |
| 1320 | dev_dbg(dev, " less than one block: curr_buff=%pK *curr_buff_cnt=0x%X copy_to=%pK\n", |
| 1321 | curr_buff, *curr_buff_cnt, &curr_buff[*curr_buff_cnt]); |
| 1322 | areq_ctx->in_nents = sg_nents_for_len(src, nbytes); |
| 1323 | sg_copy_to_buffer(src, areq_ctx->in_nents, |
| 1324 | &curr_buff[*curr_buff_cnt], nbytes); |
| 1325 | *curr_buff_cnt += nbytes; |
| 1326 | return 1; |
| 1327 | } |
| 1328 | |
| 1329 | /* Calculate the residue size*/ |
| 1330 | *next_buff_cnt = total_in_len & (block_size - 1); |
| 1331 | /* update data len */ |
| 1332 | update_data_len = total_in_len - *next_buff_cnt; |
| 1333 | |
| 1334 | dev_dbg(dev, " temp length : *next_buff_cnt=0x%X update_data_len=0x%X\n", |
| 1335 | *next_buff_cnt, update_data_len); |
| 1336 | |
| 1337 | /* Copy the new residue to next buffer */ |
| 1338 | if (*next_buff_cnt) { |
| 1339 | dev_dbg(dev, " handle residue: next buff %pK skip data %u residue %u\n", |
| 1340 | next_buff, (update_data_len - *curr_buff_cnt), |
| 1341 | *next_buff_cnt); |
| 1342 | cc_copy_sg_portion(dev, next_buff, src, |
| 1343 | (update_data_len - *curr_buff_cnt), |
| 1344 | nbytes, CC_SG_TO_BUF); |
| 1345 | /* change the buffer index for next operation */ |
| 1346 | swap_index = 1; |
| 1347 | } |
| 1348 | |
| 1349 | if (*curr_buff_cnt) { |
| 1350 | rc = cc_set_hash_buf(dev, areq_ctx, curr_buff, *curr_buff_cnt, |
| 1351 | &sg_data); |
| 1352 | if (rc) |
| 1353 | return rc; |
| 1354 | /* change the buffer index for next operation */ |
| 1355 | swap_index = 1; |
| 1356 | } |
| 1357 | |
| 1358 | if (update_data_len > *curr_buff_cnt) { |
| 1359 | rc = cc_map_sg(dev, src, (update_data_len - *curr_buff_cnt), |
| 1360 | DMA_TO_DEVICE, &areq_ctx->in_nents, |
| 1361 | LLI_MAX_NUM_OF_DATA_ENTRIES, &dummy, |
| 1362 | &mapped_nents); |
| 1363 | if (rc) |
| 1364 | goto unmap_curr_buff; |
| 1365 | if (mapped_nents == 1 && |
| 1366 | areq_ctx->data_dma_buf_type == CC_DMA_BUF_NULL) { |
| 1367 | /* only one entry in the SG and no previous data */ |
| 1368 | memcpy(areq_ctx->buff_sg, src, |
| 1369 | sizeof(struct scatterlist)); |
| 1370 | areq_ctx->buff_sg->length = update_data_len; |
| 1371 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_DLLI; |
| 1372 | areq_ctx->curr_sg = areq_ctx->buff_sg; |
| 1373 | } else { |
| 1374 | areq_ctx->data_dma_buf_type = CC_DMA_BUF_MLLI; |
| 1375 | } |
| 1376 | } |
| 1377 | |
| 1378 | if (areq_ctx->data_dma_buf_type == CC_DMA_BUF_MLLI) { |
| 1379 | mlli_params->curr_pool = buff_mgr->mlli_buffs_pool; |
| 1380 | /* add the src data to the sg_data */ |
| 1381 | cc_add_sg_entry(dev, &sg_data, areq_ctx->in_nents, src, |
| 1382 | (update_data_len - *curr_buff_cnt), 0, true, |
| 1383 | &areq_ctx->mlli_nents); |
| 1384 | rc = cc_generate_mlli(dev, &sg_data, mlli_params, flags); |
| 1385 | if (rc) |
| 1386 | goto fail_unmap_din; |
| 1387 | } |
| 1388 | areq_ctx->buff_index = (areq_ctx->buff_index ^ swap_index); |
| 1389 | |
| 1390 | return 0; |
| 1391 | |
| 1392 | fail_unmap_din: |
| 1393 | dma_unmap_sg(dev, src, areq_ctx->in_nents, DMA_TO_DEVICE); |
| 1394 | |
| 1395 | unmap_curr_buff: |
| 1396 | if (*curr_buff_cnt) |
| 1397 | dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE); |
| 1398 | |
| 1399 | return rc; |
| 1400 | } |
| 1401 | |
| 1402 | void cc_unmap_hash_request(struct device *dev, void *ctx, |
| 1403 | struct scatterlist *src, bool do_revert) |
| 1404 | { |
| 1405 | struct ahash_req_ctx *areq_ctx = (struct ahash_req_ctx *)ctx; |
| 1406 | u32 *prev_len = cc_next_buf_cnt(areq_ctx); |
| 1407 | |
| 1408 | /*In case a pool was set, a table was |
| 1409 | *allocated and should be released |
| 1410 | */ |
| 1411 | if (areq_ctx->mlli_params.curr_pool) { |
| 1412 | dev_dbg(dev, "free MLLI buffer: dma=%pad virt=%pK\n", |
| 1413 | &areq_ctx->mlli_params.mlli_dma_addr, |
| 1414 | areq_ctx->mlli_params.mlli_virt_addr); |
| 1415 | dma_pool_free(areq_ctx->mlli_params.curr_pool, |
| 1416 | areq_ctx->mlli_params.mlli_virt_addr, |
| 1417 | areq_ctx->mlli_params.mlli_dma_addr); |
| 1418 | } |
| 1419 | |
| 1420 | if (src && areq_ctx->in_nents) { |
| 1421 | dev_dbg(dev, "Unmapped sg src: virt=%pK dma=%pad len=0x%X\n", |
| 1422 | sg_virt(src), &sg_dma_address(src), sg_dma_len(src)); |
| 1423 | dma_unmap_sg(dev, src, |
| 1424 | areq_ctx->in_nents, DMA_TO_DEVICE); |
| 1425 | } |
| 1426 | |
| 1427 | if (*prev_len) { |
| 1428 | dev_dbg(dev, "Unmapped buffer: areq_ctx->buff_sg=%pK dma=%pad len 0x%X\n", |
| 1429 | sg_virt(areq_ctx->buff_sg), |
| 1430 | &sg_dma_address(areq_ctx->buff_sg), |
| 1431 | sg_dma_len(areq_ctx->buff_sg)); |
| 1432 | dma_unmap_sg(dev, areq_ctx->buff_sg, 1, DMA_TO_DEVICE); |
| 1433 | if (!do_revert) { |
| 1434 | /* clean the previous data length for update |
| 1435 | * operation |
| 1436 | */ |
| 1437 | *prev_len = 0; |
| 1438 | } else { |
| 1439 | areq_ctx->buff_index ^= 1; |
| 1440 | } |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | int cc_buffer_mgr_init(struct cc_drvdata *drvdata) |
| 1445 | { |
| 1446 | struct buff_mgr_handle *buff_mgr_handle; |
| 1447 | struct device *dev = drvdata_to_dev(drvdata); |
| 1448 | |
| 1449 | buff_mgr_handle = kmalloc(sizeof(*buff_mgr_handle), GFP_KERNEL); |
| 1450 | if (!buff_mgr_handle) |
| 1451 | return -ENOMEM; |
| 1452 | |
| 1453 | drvdata->buff_mgr_handle = buff_mgr_handle; |
| 1454 | |
| 1455 | buff_mgr_handle->mlli_buffs_pool = |
| 1456 | dma_pool_create("dx_single_mlli_tables", dev, |
| 1457 | MAX_NUM_OF_TOTAL_MLLI_ENTRIES * |
| 1458 | LLI_ENTRY_BYTE_SIZE, |
| 1459 | MLLI_TABLE_MIN_ALIGNMENT, 0); |
| 1460 | |
| 1461 | if (!buff_mgr_handle->mlli_buffs_pool) |
| 1462 | goto error; |
| 1463 | |
| 1464 | return 0; |
| 1465 | |
| 1466 | error: |
| 1467 | cc_buffer_mgr_fini(drvdata); |
| 1468 | return -ENOMEM; |
| 1469 | } |
| 1470 | |
| 1471 | int cc_buffer_mgr_fini(struct cc_drvdata *drvdata) |
| 1472 | { |
| 1473 | struct buff_mgr_handle *buff_mgr_handle = drvdata->buff_mgr_handle; |
| 1474 | |
| 1475 | if (buff_mgr_handle) { |
| 1476 | dma_pool_destroy(buff_mgr_handle->mlli_buffs_pool); |
| 1477 | kfree(drvdata->buff_mgr_handle); |
| 1478 | drvdata->buff_mgr_handle = NULL; |
| 1479 | } |
| 1480 | return 0; |
| 1481 | } |