blob: 07df012893bb0a0ffd58817fc5bbf1b97f829222 [file] [log] [blame]
b.liue9582032025-04-17 19:18:16 +08001// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4 *
5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6 *
7 * This file add support for MD5 and SHA1.
8 *
9 * You could find the datasheet in Documentation/arm/sunxi.rst
10 */
11#include "sun4i-ss.h"
12#include <linux/scatterlist.h>
13
14/* This is a totally arbitrary value */
15#define SS_TIMEOUT 100
16
17int sun4i_hash_crainit(struct crypto_tfm *tfm)
18{
19 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
20 struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
21 struct sun4i_ss_alg_template *algt;
22
23 memset(op, 0, sizeof(struct sun4i_tfm_ctx));
24
25 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
26 op->ss = algt->ss;
27
28 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
29 sizeof(struct sun4i_req_ctx));
30 return 0;
31}
32
33/* sun4i_hash_init: initialize request context */
34int sun4i_hash_init(struct ahash_request *areq)
35{
36 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
37 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
38 struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
39 struct sun4i_ss_alg_template *algt;
40
41 memset(op, 0, sizeof(struct sun4i_req_ctx));
42
43 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
44 op->mode = algt->mode;
45
46 return 0;
47}
48
49int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
50{
51 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
52 struct md5_state *octx = out;
53 int i;
54
55 octx->byte_count = op->byte_count + op->len;
56
57 memcpy(octx->block, op->buf, op->len);
58
59 if (op->byte_count) {
60 for (i = 0; i < 4; i++)
61 octx->hash[i] = op->hash[i];
62 } else {
63 octx->hash[0] = SHA1_H0;
64 octx->hash[1] = SHA1_H1;
65 octx->hash[2] = SHA1_H2;
66 octx->hash[3] = SHA1_H3;
67 }
68
69 return 0;
70}
71
72int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
73{
74 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
75 const struct md5_state *ictx = in;
76 int i;
77
78 sun4i_hash_init(areq);
79
80 op->byte_count = ictx->byte_count & ~0x3F;
81 op->len = ictx->byte_count & 0x3F;
82
83 memcpy(op->buf, ictx->block, op->len);
84
85 for (i = 0; i < 4; i++)
86 op->hash[i] = ictx->hash[i];
87
88 return 0;
89}
90
91int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
92{
93 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
94 struct sha1_state *octx = out;
95 int i;
96
97 octx->count = op->byte_count + op->len;
98
99 memcpy(octx->buffer, op->buf, op->len);
100
101 if (op->byte_count) {
102 for (i = 0; i < 5; i++)
103 octx->state[i] = op->hash[i];
104 } else {
105 octx->state[0] = SHA1_H0;
106 octx->state[1] = SHA1_H1;
107 octx->state[2] = SHA1_H2;
108 octx->state[3] = SHA1_H3;
109 octx->state[4] = SHA1_H4;
110 }
111
112 return 0;
113}
114
115int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
116{
117 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
118 const struct sha1_state *ictx = in;
119 int i;
120
121 sun4i_hash_init(areq);
122
123 op->byte_count = ictx->count & ~0x3F;
124 op->len = ictx->count & 0x3F;
125
126 memcpy(op->buf, ictx->buffer, op->len);
127
128 for (i = 0; i < 5; i++)
129 op->hash[i] = ictx->state[i];
130
131 return 0;
132}
133
134#define SS_HASH_UPDATE 1
135#define SS_HASH_FINAL 2
136
137/*
138 * sun4i_hash_update: update hash engine
139 *
140 * Could be used for both SHA1 and MD5
141 * Write data by step of 32bits and put then in the SS.
142 *
143 * Since we cannot leave partial data and hash state in the engine,
144 * we need to get the hash state at the end of this function.
145 * We can get the hash state every 64 bytes
146 *
147 * So the first work is to get the number of bytes to write to SS modulo 64
148 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
149 *
150 * So at the begin of update()
151 * if op->len + areq->nbytes < 64
152 * => all data will be written to wait buffer (op->buf) and end=0
153 * if not, write all data from op->buf to the device and position end to
154 * complete to 64bytes
155 *
156 * example 1:
157 * update1 60o => op->len=60
158 * update2 60o => need one more word to have 64 bytes
159 * end=4
160 * so write all data from op->buf and one word of SGs
161 * write remaining data in op->buf
162 * final state op->len=56
163 */
164static int sun4i_hash(struct ahash_request *areq)
165{
166 /*
167 * i is the total bytes read from SGs, to be compared to areq->nbytes
168 * i is important because we cannot rely on SG length since the sum of
169 * SG->length could be greater than areq->nbytes
170 *
171 * end is the position when we need to stop writing to the device,
172 * to be compared to i
173 *
174 * in_i: advancement in the current SG
175 */
176 unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
177 unsigned int in_i = 0;
178 u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
179 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
180 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
181 struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
182 struct sun4i_ss_ctx *ss = tfmctx->ss;
183 struct scatterlist *in_sg = areq->src;
184 struct sg_mapping_iter mi;
185 int in_r, err = 0;
186 size_t copied = 0;
187 __le32 wb = 0;
188
189 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
190 __func__, crypto_tfm_alg_name(areq->base.tfm),
191 op->byte_count, areq->nbytes, op->mode,
192 op->len, op->hash[0]);
193
194 if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
195 return 0;
196
197 /* protect against overflow */
198 if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
199 dev_err(ss->dev, "Cannot process too large request\n");
200 return -EINVAL;
201 }
202
203 if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
204 /* linearize data to op->buf */
205 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
206 op->buf + op->len, areq->nbytes, 0);
207 op->len += copied;
208 return 0;
209 }
210
211 spin_lock_bh(&ss->slock);
212
213 /*
214 * if some data have been processed before,
215 * we need to restore the partial hash state
216 */
217 if (op->byte_count) {
218 ivmode = SS_IV_ARBITRARY;
219 for (i = 0; i < 5; i++)
220 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
221 }
222 /* Enable the device */
223 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
224
225 if (!(op->flags & SS_HASH_UPDATE))
226 goto hash_final;
227
228 /* start of handling data */
229 if (!(op->flags & SS_HASH_FINAL)) {
230 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
231
232 if (end > areq->nbytes || areq->nbytes - end > 63) {
233 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
234 end, areq->nbytes);
235 err = -EINVAL;
236 goto release_ss;
237 }
238 } else {
239 /* Since we have the flag final, we can go up to modulo 4 */
240 if (areq->nbytes < 4)
241 end = 0;
242 else
243 end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
244 }
245
246 /* TODO if SGlen % 4 and !op->len then DMA */
247 i = 1;
248 while (in_sg && i == 1) {
249 if (in_sg->length % 4)
250 i = 0;
251 in_sg = sg_next(in_sg);
252 }
253 if (i == 1 && !op->len && areq->nbytes)
254 dev_dbg(ss->dev, "We can DMA\n");
255
256 i = 0;
257 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
258 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
259 sg_miter_next(&mi);
260 in_i = 0;
261
262 do {
263 /*
264 * we need to linearize in two case:
265 * - the buffer is already used
266 * - the SG does not have enough byte remaining ( < 4)
267 */
268 if (op->len || (mi.length - in_i) < 4) {
269 /*
270 * if we have entered here we have two reason to stop
271 * - the buffer is full
272 * - reach the end
273 */
274 while (op->len < 64 && i < end) {
275 /* how many bytes we can read from current SG */
276 in_r = min(end - i, 64 - op->len);
277 in_r = min_t(size_t, mi.length - in_i, in_r);
278 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
279 op->len += in_r;
280 i += in_r;
281 in_i += in_r;
282 if (in_i == mi.length) {
283 sg_miter_next(&mi);
284 in_i = 0;
285 }
286 }
287 if (op->len > 3 && !(op->len % 4)) {
288 /* write buf to the device */
289 writesl(ss->base + SS_RXFIFO, op->buf,
290 op->len / 4);
291 op->byte_count += op->len;
292 op->len = 0;
293 }
294 }
295 if (mi.length - in_i > 3 && i < end) {
296 /* how many bytes we can read from current SG */
297 in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
298 in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
299 /* how many bytes we can write in the device*/
300 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
301 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
302 op->byte_count += todo * 4;
303 i += todo * 4;
304 in_i += todo * 4;
305 rx_cnt -= todo;
306 if (!rx_cnt) {
307 spaces = readl(ss->base + SS_FCSR);
308 rx_cnt = SS_RXFIFO_SPACES(spaces);
309 }
310 if (in_i == mi.length) {
311 sg_miter_next(&mi);
312 in_i = 0;
313 }
314 }
315 } while (i < end);
316
317 /*
318 * Now we have written to the device all that we can,
319 * store the remaining bytes in op->buf
320 */
321 if ((areq->nbytes - i) < 64) {
322 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
323 /* how many bytes we can read from current SG */
324 in_r = min(areq->nbytes - i, 64 - op->len);
325 in_r = min_t(size_t, mi.length - in_i, in_r);
326 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
327 op->len += in_r;
328 i += in_r;
329 in_i += in_r;
330 if (in_i == mi.length) {
331 sg_miter_next(&mi);
332 in_i = 0;
333 }
334 }
335 }
336
337 sg_miter_stop(&mi);
338
339 /*
340 * End of data process
341 * Now if we have the flag final go to finalize part
342 * If not, store the partial hash
343 */
344 if (op->flags & SS_HASH_FINAL)
345 goto hash_final;
346
347 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
348 i = 0;
349 do {
350 v = readl(ss->base + SS_CTL);
351 i++;
352 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
353 if (unlikely(i >= SS_TIMEOUT)) {
354 dev_err_ratelimited(ss->dev,
355 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
356 i, SS_TIMEOUT, v, areq->nbytes);
357 err = -EIO;
358 goto release_ss;
359 }
360
361 /*
362 * The datasheet isn't very clear about when to retrieve the digest. The
363 * bit SS_DATA_END is cleared when the engine has processed the data and
364 * when the digest is computed *but* it doesn't mean the digest is
365 * available in the digest registers. Hence the delay to be sure we can
366 * read it.
367 */
368 ndelay(1);
369
370 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
371 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
372
373 goto release_ss;
374
375/*
376 * hash_final: finalize hashing operation
377 *
378 * If we have some remaining bytes, we write them.
379 * Then ask the SS for finalizing the hashing operation
380 *
381 * I do not check RX FIFO size in this function since the size is 32
382 * after each enabling and this function neither write more than 32 words.
383 * If we come from the update part, we cannot have more than
384 * 3 remaining bytes to write and SS is fast enough to not care about it.
385 */
386
387hash_final:
388
389 /* write the remaining words of the wait buffer */
390 if (op->len) {
391 nwait = op->len / 4;
392 if (nwait) {
393 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
394 op->byte_count += 4 * nwait;
395 }
396
397 nbw = op->len - 4 * nwait;
398 if (nbw) {
399 wb = cpu_to_le32(*(u32 *)(op->buf + nwait * 4));
400 wb &= GENMASK((nbw * 8) - 1, 0);
401
402 op->byte_count += nbw;
403 }
404 }
405
406 /* write the remaining bytes of the nbw buffer */
407 wb |= ((1 << 7) << (nbw * 8));
408 bf[j++] = le32_to_cpu(wb);
409
410 /*
411 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
412 * I take the operations from other MD5/SHA1 implementations
413 */
414
415 /* last block size */
416 fill = 64 - (op->byte_count % 64);
417 min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
418
419 /* if we can't fill all data, jump to the next 64 block */
420 if (fill < min_fill)
421 fill += 64;
422
423 j += (fill - min_fill) / sizeof(u32);
424
425 /* write the length of data */
426 if (op->mode == SS_OP_SHA1) {
427 __be64 *bits = (__be64 *)&bf[j];
428 *bits = cpu_to_be64(op->byte_count << 3);
429 j += 2;
430 } else {
431 __le64 *bits = (__le64 *)&bf[j];
432 *bits = cpu_to_le64(op->byte_count << 3);
433 j += 2;
434 }
435 writesl(ss->base + SS_RXFIFO, bf, j);
436
437 /* Tell the SS to stop the hashing */
438 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
439
440 /*
441 * Wait for SS to finish the hash.
442 * The timeout could happen only in case of bad overclocking
443 * or driver bug.
444 */
445 i = 0;
446 do {
447 v = readl(ss->base + SS_CTL);
448 i++;
449 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
450 if (unlikely(i >= SS_TIMEOUT)) {
451 dev_err_ratelimited(ss->dev,
452 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
453 i, SS_TIMEOUT, v, areq->nbytes);
454 err = -EIO;
455 goto release_ss;
456 }
457
458 /*
459 * The datasheet isn't very clear about when to retrieve the digest. The
460 * bit SS_DATA_END is cleared when the engine has processed the data and
461 * when the digest is computed *but* it doesn't mean the digest is
462 * available in the digest registers. Hence the delay to be sure we can
463 * read it.
464 */
465 ndelay(1);
466
467 /* Get the hash from the device */
468 if (op->mode == SS_OP_SHA1) {
469 for (i = 0; i < 5; i++) {
470 v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
471 memcpy(areq->result + i * 4, &v, 4);
472 }
473 } else {
474 for (i = 0; i < 4; i++) {
475 v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
476 memcpy(areq->result + i * 4, &v, 4);
477 }
478 }
479
480release_ss:
481 writel(0, ss->base + SS_CTL);
482 spin_unlock_bh(&ss->slock);
483 return err;
484}
485
486int sun4i_hash_final(struct ahash_request *areq)
487{
488 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
489
490 op->flags = SS_HASH_FINAL;
491 return sun4i_hash(areq);
492}
493
494int sun4i_hash_update(struct ahash_request *areq)
495{
496 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
497
498 op->flags = SS_HASH_UPDATE;
499 return sun4i_hash(areq);
500}
501
502/* sun4i_hash_finup: finalize hashing operation after an update */
503int sun4i_hash_finup(struct ahash_request *areq)
504{
505 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
506
507 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
508 return sun4i_hash(areq);
509}
510
511/* combo of init/update/final functions */
512int sun4i_hash_digest(struct ahash_request *areq)
513{
514 int err;
515 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
516
517 err = sun4i_hash_init(areq);
518 if (err)
519 return err;
520
521 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
522 return sun4i_hash(areq);
523}